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We combine the density matrix renormalization group (DMRG) with matrix product state tangent space
concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the
thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS)
with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation
(ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works
very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional
models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already
existing DMRG implementation.
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I. INTRODUCTION

The strategy of renormalization group (RG) techniques to
successively reduce a large number of microscopic degrees of
freedom to a smaller set of effective degrees of freedom has
led to powerful numerical and analytical methods to probe
and understand the effective macroscopic behavior of both
classical and quantum many-body systems [1–4]. However,
it was not until the advent of White’s celebrated density
matrix renormalization group (DMRG) [5,6] that variational
RG methods reached unprecedented accuracy in numerically
studying strongly correlated one-dimensional quantum lattice
systems at low temperature. The underlying variational Ansatz
of matrix product states (MPS) [7–13] belongs to a class of
Ansätze known as tensor network states [11,14,15]. These
variational classes encode the many-body wave function in
terms of virtual entanglement degrees of freedom living on the
boundary and thus satisfy an area law scaling of entanglement
entropy per construction. As such, they provide a natural
parametrization for the physical corner of Hilbert space, where
low-energy states of quantum many-body systems ought to live
in [16,17]. MPS in particular are especially fit for studying
ground states of strongly correlated one-dimensional quantum
systems with local interactions [18–20].

The variational parameters in MPS are contained within
local tensors associated with the individual sites of the lattice
system. For homogeneous systems, the global wave function
can then be captured using just a single (or a small number
of) such tensors, independent of the system size. They conse-
quently offer very natural access to the thermodynamic limit,
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providing a clear advantage over other numerical approaches
such as exact diagonalization or quantum Monte Carlo.

On finite lattices, (one-site) DMRG implements the varia-
tional principle (energy minimization) by exploiting that the
quantum state is a multilinear function of the local tensors.
By fixing all but one tensors, the global eigenvalue prob-
lem is transformed into an effective eigenvalue problem for
the local tensor [5,6,12,21–23]. Using a translation invariant
parametrization gives rise to an energy expectation value with
a highly nonlinear dependence on the tensor(s). Two different
algorithms are widely used to obtain such an MPS in the ther-
modynamic limit. Infinite system DMRG (IDMRG) [5,6,24]
proceeds by performing regular DMRG on a successively
growing lattice, inserting and optimizing over new tensors in
the center of the lattice in each step only, effectively mimicking
an infinite lattice by using a finite, albeit very large lattice. After
convergence the most recently inserted tensors in the center are
taken as a unit cell for an infinite MPS approximation of the
ground state. An alternative approach is known as infinite time
evolving block decimation (ITEBD) [25,26]. It works directly
in the thermodynamic limit and is based on evolving an initial
state in imaginary time by using a Trotter decomposition of
the evolution operator.

We present a new variational algorithm, inspired by tan-
gent space ideas [13,27,28], that combines the advantages of
IDMRG and ITEBD and addresses some of their shortcomings.
As such it is directly formulated in the thermodynamic limit,
but at the same time optimizes the state by solving effective
eigenvalue problems, rather than employing imaginary-time
evolution. We find that it leads to a significant increase in effi-
ciency in all of our test cases. The following section introduces
MPS notations and definitions and presents our variational
algorithm, heuristically motivated from the perspective of finite
size DMRG. Section III illustrates the performance of our
algorithm on various test cases, and compares to conventional
IDMRG and ITEBD results. After the conclusion in Sec. IV, we
provide further technical details in the appendices. Appendix A
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contains additional theoretical background: we derive the
self-consistent conditions that characterize the variational
minimum and provide additional motivation for our algorithm
from the perspective of the MPS tangent space. Appendix B
presents a suitable strategy to expand the bond dimension
of translation invariant MPS. Appendix C explains how to
construct effective Hamiltonians in the thermodynamic limit.
These involve infinite geometric sums of the transfer matrix,
which are further studied in Appendix D.

II. A VARIATIONAL ALGORITHM FOR MATRIX
PRODUCT STATES IN THE THERMODYNAMIC LIMIT

In this section, we introduce a variational algorithm for
optimizing MPS directly in the thermodynamic limit. Because
the algorithm strongly resembles conventional DMRG, we
explain it by describing a single iteration step from the
viewpoint of DMRG and show that only a few additional
ingredients are needed to arrive at our variational algorithm.
We only briefly motivate these extra ingredients for the sake of
readability, and refer to Appendix A for additional explanations
and more rigorous theoretical motivations. As such, the new
algorithm can easily be implemented as an extension to an
already existing (I)DMRG implementation.

We start by considering a setting familiar from conventional
DMRG: a finite homogeneous one-dimensional quantum lat-
tice system, where every site corresponds to a d level system.
We label the sites by an integer n and thus have a basis {|s〉n,s =
1, . . . ,d} for the local Hilbert space on site n. The total
Hilbert space is spanned by the product basis |s〉 = ⊗

n |s〉n.
We assume the dynamics of the system to be governed by a
translation invariant Hamiltonian H .

We further consider a variational parametrization of a
ground-state approximation of the system, for now in terms
of a finite size (site dependent) MPS, but we will ultimately
be interested in the thermodynamic limit. DMRG proceeds
to find the best variational ground-state approximation by
employing an alternating least squares minimization: it starts
from some initial state and successively optimizes each of
the individual MPS tensors site by site by solving effective
(Hamiltonian) eigenvalue problems, in a sweeping process
through the lattice until convergence, where each iteration
depends on already optimized tensors from previous iterations
(see, e.g., Refs. [5,6,12,21,23]).

We are now, however, interested in the thermodynamic limit
n ∈ Z (but will ignore the technical complications involving a
rigorous definition of a Hilbert space in that limit). In that
case the MPS ground-state approximation will be given in
terms of a translation invariant uniform MPS, described by
a single MPS tensor (or a unit cell of N tensors), repeated on
all sites. Two immediate difficulties arise. Firstly, conventional
DMRG updates the variational state site by site, thus breaking
translation invariance. Secondly, the effective Hamiltonian for
a single-site optimization has to be constructed from an infinite
environment.

After briefly introducing the variational class of uniform
MPS and introducing necessary notation and conventions (for
further details see Sec. A 2), we describe how the new algorithm
modifies DMRG accordingly to exactly account for these two

issues in order to arrive at a variational ground-state algorithm
directly formulated in the thermodynamic limit.

A. Uniform MPS

A uniform MPS (uMPS) of bond dimension D defined on an
infinite translation invariant lattice is parameterized by a single
collection of d matrices As ∈ CD×D for s = 1, . . . ,d. The
overall translation invariant variational state is then given by

|�(A)〉 =
∑

s

(. . . Asn−1AsnAsn+1 . . .)|s〉 (1)

and can be represented diagrammatically as

|Ψ(A)〉 = . . . A A A A A . . .

Exploiting the invariance of (1) under local gauge transfor-
mations As → XAsX−1, with X ∈ CD×D invertible, the state
can be cast into certain favorable representations, among them
the left and right canonical representations:∑

s

As
L
†
As

L = 1,
∑

s

As
L R As

L
† = R, (2a)

∑
s

As
RAs

R
† = 1,

∑
s

As
R
†
LAs

R = L, (2b)

or, diagrammatically,

AL

ĀL

=

AL

ĀL

R = R

AR

ĀR

= L

AR

ĀR

= L

Here, L and R correspond to the left and right reduced
density matrices of a bipartition of the state, respectively. We
henceforth refer to AL (AR) as a left (right) isometric tensor,
or just a left (right) isometry.

Defining the left and right transfer matrices

TL/R =
∑

s

Ās
L/R ⊗ As

L/R (3)

and using the notation (x| and |x) for vectorizations of a D × D

matrix x in the D2 dimensional “double layer” virtual space
the transfer matrices act upon, the gauge conditions (2) are
equivalent to

(1|TL = (1|, TL|R) = |R), (4a)

TR|1) = |1), (L|TR = (L|, (4b)

i.e., 1 and R are the left and right dominant eigenvectors of
TL, while L and 1 are the left and right dominant eigenvectors
of TR .
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As is standard practice in DMRG, we mix both of these
representations and cast the state into the mixed canonical
representation

|�(A)〉 =
∑

s

(
. . . A

sn−1
L A

sn

C A
sn+1
R . . .

)|s〉 (5a)

=
∑

s

(
. . . A

sn−1
L A

sn

L CA
sn+1
R A

sn+2
R . . .

)|s〉, (5b)

or, diagrammatically,

|Ψ(A)〉 = . . . AL AL AC AR AR . . .

= . . . AL AL AL C AR AR . . .

Here we have defined the center site tensor As
C (known as the

single-site wave function �s in DMRG)

As
C = As

LC = CAs
R

AC = AL C = C AR
(6)

in terms of the bond matrix C, which constitutes the (invertible)
gauge transformation relating AL and AR via As

L = CAs
RC−1.

The singular values of C then encode the entanglement
spectrum of the state. Indeed, using As

LC = CAs
R , we can

verify that the left and right reduced density matrices in (2) are
given by L = C†C and R = CC†. Furthermore, As

LC = CAs
R

ensures that (5a) and (5b) are translation invariant and that
AC and C can be shifted around arbitrarily. Normalization of
the state, as well as of the reduced density matrices L and R,
corresponds to the single condition ‖C‖2

2 = Tr(CC†) = 1.

For ease of notation, we further introduce the following
partial states:

|Ψα
L〉 =

∑
s

(. . . Asn−1
L Asn

L )α |. . . sn−1sn〉

= . . . AL AL AL α

(7a)

|Ψα
R〉 =

∑
s

(Asn

R A
sn+1
R . . .)α |snsn+1 . . .〉

= α AR AR AR . . .

(7b)

with n arbitrary, and use them to define the reduced basis states∣∣�(α,s,β)
AC

〉 = ∣∣�α
L

〉|s〉∣∣�β

R

〉
, (8a)∣∣�(α,β)

C

〉 = ∣∣�α
L

〉∣∣�β

R

〉
. (8b)

B. Effective Hamiltonian

The use of the mixed canonical representation (5a) in
DMRG is of significant importance for the stability, as it
reduces the minimization of the (global) energy expectation
value 〈�|H |�〉/〈�|�〉 with respect to AC into a standard
(Hermitian) eigenvalue problem, instead of a generalized
one. The effective Hamiltonian for this eigenvalue problem
is the system Hamiltonian H projected onto the degrees of
freedom of AC , and is known as the “reduced” or “superblock”
Hamiltonian in DMRG.

We define the thermodynamic limit version of this reduced
single-site Hamiltonian acting on AC as

HAC

(α′,s ′,β ′)
(α,s,β) = 〈

�
(α′,s ′,β ′)
AC

∣∣H ∣∣�(α,s,β)
AC

〉
= · · ·

AL AL AR AR

ĀL ĀL ĀR ĀR

H · · · (9)

Additionally, we also define an effective Hamiltonian acting on the bond matrix C as

HC
(α′,β ′)
(α,β) = 〈

�
(α′,β ′)
C

∣∣H ∣∣�(α,β)
C

〉
= · · ·

AL AL AR AR

ĀL ĀL ĀR ĀR

H · · · (10)

which does not appear directly in the context of DMRG, but will be needed later for a consistent update of the state without
breaking translation invariance. It can be interpreted as a “zero site” effective Hamiltonian, which would feature in an optimization
of the global energy expectation value with respect to the Schmidt values. In an efficient implementation, these effective eigenvalue
problems are typically solved using an iterative eigensolver, so that we only need to implement the action of HAC

and HC onto
AC and C.

While the energy expectation value is extensive and thus divergent in the thermodynamic limit, the effective Hamiltonians
HAC

and HC are well defined and finite in the thermodynamic limit if one properly subtracts the current energy expectation value
from the Hamiltonian H . We demonstrate this procedure for the case of nearest-neighbor interactions H = ∑

n hn,n+1, where the
two-site Hamiltonian hn,n+1 acts on neighboring sites n,n + 1 only. We refer to Appendix C for the case of long-range interactions
and for general Hamiltonians given in terms of matrix product operators (MPOs).
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In the case of nearest-neighbor interactions, the action of HAC
onto AC splits up into four individual contributions, which

follow from the decomposition |�〉 = ∑
α,β,s As

C,(α,β)|�α
L〉|s〉|�β

R〉 (left block containing sites n < 0, center site n = 0, and right
block containing sites n > 0). The action of HAC

onto AC is given by

A′s
C =

∑
tk�

hts
k�A

t
L

†
Ak

LA�
C + hst

k�A
k
CA�

RAt
R

† + HLAs
C + As

CHR,

A′
C =

AL AC

ĀL

h +

AC AR

ĀR

h + HL

AC

+

AC

HR

(11)

where the first two terms correspond to the Hamiltonian terms
h−1,0 and h0,1 coupling the center site to the left and right
blocks, respectively, and HL and HR sum up the contributions
of all the Hamiltonian terms hn,n+1 acting strictly to the left
and to the right of the center site.

The environments HL and HR are usually constructed
iteratively while sweeping through the (finite) lattice in con-
ventional DMRG, or grown successively in every iteration in
IDMRG. In the thermodynamic limit, these terms consist of a
diverging number of individual local interaction contributions
hn,n+1, and care needs to be taken in their construction.

Indeed, the kth contribution to (HL| comes from the Hamil-
tonian term h−k−1,−k and is given by (hL|[TL]k−1. Likewise,
[TR]k−1|hR) is the kth contribution to |HR) stemming from
hk,k+1. Here, we have used the definitions

hL =
∑
stk�

hst
k�A

t
L

†
As

L
†
Ak

LA�
L,

hR =
∑
stk�

hst
k�A

k
RA�

RAt
R

†
As

R
†
,

(12)

or, diagrammatically,

hL = h

AL AL

ĀL ĀL

hR = h

AR AR

ĀR ĀR

Summing up all such local contributions gives rise to infinite
geometric sums of the transfer matrices TL/R:

(HL| = (hL|
∞∑

k=0

[TL]k, |HR) =
∞∑

k=0

[TR]k|hR), (13)

where (HL| can be presented diagrammatically as

HL = hL

⎡
⎢⎢⎢⎢⎣

11 +

AL

ĀL

+

AL

ĀL

AL

ĀL

+ . . .

⎤
⎥⎥⎥⎥⎦

and likewise for |HR).
The transfer matrix TL has a dominant eigenvalue of

magnitude one, with corresponding left and right eigenvectors
(1| and |R). The projection (hL|[TL]k|R) = (hL|R) is the
energy density expectation value e = 〈�|h−k−1,−k|�〉 and is
independent of k. Subtracting the energy e from the Hamil-
tonian as h̃ = h − e1, we can write (hL| = (h̃L| + e(1|. The
second term is exactly proportional to the left eigenvector of
eigenvalue 1 and therefore gives rise to a diverging contribution
in the geometric sum, corresponding to the total energy of
the left half infinite block. Since this contribution acts as the
identity in the effective Hamiltonian HAC

[Eq. (11)], we can,
however, safely discard this diverging contribution without
changing the eigenvectors of HAC

. This corresponds to an
overall energy shift of the left half infinite block such that
(HL|R) = 0. For the remaining part (h̃L| the geometric sum
converges. With |h̃R) = |hR) − e|1) the same comments apply
to the construction of |HR).

We can evaluate HL and HR recursively as

(
H

[n+1]
L

∣∣ = (
H

[n]
L

∣∣TL + (h̃L|,∣∣H [n+1]
R

) = TR

∣∣H [n]
R

) + |h̃R) (14)

with initialization (H [0]
L | = (h̃L| and |H [0]

R ) = |h̃R). We can
repeat these recursions until, e.g., ‖H [n+1]

L/R − H
[n]
L/R‖ drops

below some desired accuracy εS. This strategy is conceptually
simple and closely resembles the successive construction of
the environments in the context of (I)DMRG, but is not very
efficient, as its performance is comparable to that of a power
method.

A more efficient approach is to formally perform the
geometric sums in (14) explicitly, and to iteratively solve the
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TABLE I. Pseudocode for obtaining the explicit terms of the effective Hamiltonians HAC
and HC for systems with nearest-neighbor

interactions and their applications onto a state.

Algorithm 1 Explicit terms of effective Hamiltonians with nearest neighbor interactions and their application
Input: two-site Hamiltonian h, current uMPS tensors AL, AR in left and right gauge, left dominant eigenvector (L| of TR,

right dominant eigenvector |R) of TL, desired precision S for terms involving infinite geometric sums
Output: Explicit terms of effective Hamiltonians HAC and HC , updated AC and C
1: function HeffTerms(H = h,AL,AR,L,R, S) Calculates explicit terms of effective Hamiltonians
2: Calculate hL and hR from (12)
3: Calculate HL and HR by iteratively solving (14) or (preferably) (15), to precision S

4: HAC ← {h, AL, AR, HL, HR}
5: HC ← {h, AL, AR, HL, HR}
6: return HAC , HC

7: end function
8: function ApplyHAC(AC ,HAC ) Terms of HAC from HeffTerms(H,AL,AR,L,R, S)
9: Calculate updated AC from (11)

10: return AC

11: end function
12: function ApplyHC(C,HC) Terms of HC from HeffTerms(H,AL,AR,L,R, S)
13: Calculate updated C from (16)
14: return C
15: end function

resulting two systems of equations:

(HL|[1 − TL + |R)(1|] = (hL| − (hL|R)(1|,
[1 − TR + |1)(L|]|HR) = |hR) − |1)(L|hR) (15)

for (HL| and |HR) to precision εS, as explained in Appendix D.
So far, we have discussed the action of HAC

. The action of
HC onto C follows simply from (11) by projecting onto AL

or AR . Using the defining property of HL or HR , the result
simplifies to

C ′ =
∑
stk�

hst
k�A

s
L
†
Ak

LCA�
RAt

R

† + HLC + CHR,

C ′ =

AL C AR

ĀL ĀR

h + HL

C

+

C

HR

(16)

The first two terms of (11) can be applied in O(d4D3)
operations [29], and the last two terms in O(dD3) operations.
For (16) the first term can be applied in O(d4D3) operations,
and the last two terms in O(D3) operations. To generate
the necessary terms for (11) and (16), we have to iteratively
evaluate two infinite geometric sums, involving O(D3) oper-
ations [when iteratively solving (15) the solutions from the
previous iteration can be used as starting vectors to speed
up convergence]. A pseudocode summary for obtaining the
necessary explicit terms of HAC

and HC and their applications
onto a state is presented in Table I.

C. Updating the state

In DMRG, we would update the state by replacing AC with
the lowest eigenvector ÃC of HAC

and then shift the center site
to the right by computing an orthogonal factorization Ãs

C =
Ãs

LC̃R , or to the left by computing Ãs
C = C̃LÃs

R . As such,

the state gets updated by only replacing the current site with
Ãs

L or Ãs
R , while leaving all other sites untouched. However,

applying this scheme in our setting would immediately destroy
translation invariance after a single step.

We want to construct an alternative scheme that applies
global updates in order to preserve translation invariance at
any time. Global updates can most easily be applied with an
explicit uniform parametrization in terms of a single tensor
A. On the other hand, DMRG experience teaches us that the
stability is greatly enhanced when applying updates at the level
of AC and C, which are isometrically related to the full state.

We therefore calculate the lowest eigenvector ÃC of HAC

like in DMRG, but additionally also the lowest eigenvector
C̃ of HC . We then globally update the state by finding new
ÃL and ÃR as the left and right isometric tensors that mini-
mize

∑
s ‖Ãs

LC̃ − Ãs
C‖2 and

∑
s ‖C̃Ãs

R − Ãs
C‖2, respectively.

These minimization problems can be solved directly (not
iteratively) and without inverting C̃ (see below). As shown
in Appendix A, at the variational optimum the values of these
objective functions go to zero, and current AC and C are the
lowest eigenvectors of HAC

and HC , respectively.
For the remainder of this section, we omit tildes and use the

following matricizations of the three-index tensors:

AL,(sα,β) = As
L,(α,β),

AR,(α,sβ) = As
R,(α,β),

A[�]
C,(sα,β) = A[r]

C,(α,sβ) = As
C,(α,β).

(17)

We thus want to extract updated AL and AR from updated AC

and C by solving

εL = min
A†

LAL=1

∥∥A[�]
C − ALC

∥∥
2, (18a)

εR = min
ARA†

R=1

∥∥A[r]
C − CAR

∥∥
2. (18b)
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In exact arithmetic, the solution of these minimization
problems is known, namely AL will be the isometry in
the polar decomposition of A[l]

C C† (and similar for AR , see
Theorem IX.7.2 in Ref. [30]). Computing the singular value
decompositions (SVD)

A[�]
C C† = U [�]�[�]V [�]†, C†A[r]

C = U [r]�[r]V [r]†, (19)

we thus obtain

AL = U [�]V [�]†, AR = U [r]V [r]†. (20)

Notice that close to (or at) an exact solution As
C = As

LC =
CAs

R , the singular values contained in �[�/r] are the square of
the singular values of C, and might well fall below machine
precision. Consequently, in finite precision arithmetic, corre-
sponding singular vectors will not be accurately computed.

An alternative that has proven to be robust and still close to
optimal is given by directly using the following left and right
polar decompositions

A[�]
C = U

[�]
AC

P
[�]
AC

, C = U
[�]
C P

[�]
C , (21a)

A[r]
C = P

[r]
AC

U
[r]
AC

, C = P
[r]
C U

[r]
C (21b)

to obtain

AL = U
[�]
AC

U
[�]
C

†
, AR = U

[r]
C

†
U

[r]
AC

, (22)

where matrices P are hermitian and positive. Alternative
isometric decompositions might be considered in Eq. (21),
though it is important that they are unique (e.g., QR with
positive diagonal in R) in order to have P

[�/r]
AC

≈ P
[�/r]
C close

to convergence.

D. The algorithm: VUMPS

We are now ready to formulate our variational uniform MPS
(VUMPS) algorithm. As shown in Appendix A, a variational
minimum (vanishing energy gradient) in the manifold of uMPS
is characterized by tensors AL, C, and AR satisfying the
conditions

HAC
AC = EAC

AC, (23a)

HC C = EC C, (23b)

As
C = As

LC = CAs
R. (23c)

Here, bold symbols denote vectorizations of the MPS
tensors and matricizations of the effective Hamiltonians, and
EAC

and EC are the lowest eigenvalues of the effective
Hamiltonians [31].

When iterating the steps outlined in the previous sections,
convergence is obtained when these conditions are satisfied. In
particular, starting with a properly orthogonalized initial trial
state |�(A)〉 of some bond dimension D, we begin by solving
the two eigenvalue problems for the effective Hamiltonians
HAC

and HC . Since we are still far from the fixed point, the
resulting lowest energy states ÃC and C̃ will in general not
satisfy the gauge condition (23c) together with current AL/R .

Following the procedure of the previous section, we can,
however, find optimal approximations Ãs

L and Ãs
R for (23c)

to arrive at an updated uMPS. Conversely, ÃC and C̃ will not
be the correct lowest energy eigenstates of the new effective
Hamiltonians HÃC

and HC̃ generated from ÃL/R . We then
use the updated state and reiterate this process of alternately
solving the effective eigenvalue problems, and finding optimal
approximations for AL and AR to update the state. For a
pseudocode summary of this algorithm, see Table II.

We now elaborate on the various steps in the VUMPS algo-
rithm. Firstly, extracting new ÃL/R from updated ÃC and C̃ can
be done using the theoretically optimal (but numerically often
inaccurate) Eq. (20) or the more robust Eq. (22), depending
on the magnitude of the smallest singular value in C̃. As a
good uMPS approximation will always involve small singular
values, Eq. (22) is preferable most of the time, except maybe
during the first few iterations.

The maximum of the error quantities (18),

εprec = max(εL,εR), (24)

provides an error measure for the fixed point condition in
Eq. (23c) and is used as a global convergence criterion. It
measures the precision of the current uMPS ground-state ap-
proximation. Within every iteration, we use iterative methods
(e.g., some variation of Lanczos) to find the eigenvectors ÃC

and C̃ of the Hermitian operators HAC
and HC . As the goal is

to drive the state towards the fixed point relations in Eqs. (23a)
and (23b), it is not necessary to solve these eigenvalue problems
to full machine precision. Rather, it is sufficient to use a
tolerance εH chosen relative to εprec [32]. A value of εH of
the order of εprec/100 has proven to work well in practice. It is
also worthwhile to use tensors from the previous iteration as
initial guess for the iterative solvers to speed up convergence.

As the main part of the algorithm works at fixed bond
dimension (i.e., it is a single-site scheme in DMRG termi-
nology), one might choose to increase the bond dimension D

before starting a new iteration. We have developed a subspace
expansion technique that works directly in the thermodynamic
limit and is explained in Appendix B.

While the true comparison of this algorithm with IDMRG
[5,24] and ITEBD [26] will take place in Sec. III by gathering
actual numerical simulation results, we can already compare
the theoretical properties of these algorithms. Neither IDMRG
or ITEBD is truly solving the variational problem in the sense
of directly trying to satisfy the fixed point conditions Eqs. (23).
IDMRG closely resembles regular DMRG on a successively
growing lattice, as it inserts and optimizes over new tensors
in the center of the lattice in each step. Tensors from previous
steps are not updated, as this would render the cost prohibitive.
When this approach converges, the resulting fixed point tensors
in the center can be assumed to specify the unit cell of an infinite
MPS. VUMPS has the immediate advantage that (i) it directly
works in the thermodynamic limit at all iterations and (ii) it
completely replaces the entire state after every iteration, thus
moving faster through the variational manifold. In contrast,
IDMRG keeps memory of earlier iterations and cannot guar-
antee a monotonically decreasing energy that converges to an
optimum associated with a translation invariant MPS in which
the effects of the boundary have completely disappeared. The
advantages of VUMPS come with a greater computational cost
per iteration, as two eigenvalue problems (for AC and for C)
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TABLE II. Pseudocode of the VUMPS algorithm described in Sec. II D. Terms within step 5 involving the evaluation of infinite geometric
sums usually require the left dominant eigenvector L of TR and the right dominant eigenvector R of TL, for which L = C†C and R = CC†

with current C are a good enough approximation to current precision εprec (see main text). Notice that this algorithm is free of any possibly
ill-conditioned inverses and therefore has no convergence issues in the presence of small Schmidt values. It also does not require expensive
reorthogonalizations of the state at intermediate iterations.

Algorithm 2 variational uMPS algorithm for single-site unit cells
Input: Hamiltonian H, initial uMPS AL, AR, C, convergence threshold
Output: uMPS approximation AL, AR, C of ground state of H, fulfilling fixed point relations (23a), (23b) and (23c) up to

precision
1: procedure VUMPS(H,AL,AR,C, )
2: initialize current precision prec

3: while prec do
4: (optional) Dynamically adjust bond dimension following Appendix B
5: Calculate explicit terms of effective Hamiltonians HAC , HC ←HeffTerms(H,AL,AR,L,R, S ≤ prec) from

Algorithm 1, 5 or 6
6: Calculate ground state ÃC of effective Hamiltonian HAC to precision H prec using an iterative eigensolver,

calling ApplyHAC(AC ,HAC ) from Algorithm 1, 5 or 6

7: Calculate ground state C̃ of effective Hamiltonian HC to precision H prec using an iterative eigensolver,
calling ApplyHC(C,HC) from Algorithm 1, 5 or 6

8: Calculate new ÃL and ÃR from ÃC and C̃ using (20) or (22), depending on singular values of C̃
9: Evaluate new L and R from (18)

10: (optional) Calculate current expectation values

11: Set prec ← max( L R) and replace AL ← ÃL, AR ← ÃR and C ← C̃
12: end while
13: return AL, AR, C
14: end procedure

and—in the case of nearest-neighbor interactions—two linear
systems (for HL and HR) have to be solved. IDMRG only
solves a single eigenvalue problem and builds HL and HR step
by step in every iteration. The latter approach is analogous
to a power method for eigenvalue problems and, while very
cheap, is expected to require many iteration steps to converge,
especially for systems with large correlation lengths (e.g., close
to criticality).

ITEBD [26] is based on evolving an initial state in imaginary
time by using a Trotter decomposition of the evolution operator.
Like VUMPS, ITEBD works in the thermodynamic limit at any
intermediate step, typically with a unit cell that depends on how
the Hamiltonian was split into local terms in order to apply the
Trotter decomposition. Furthermore, as every application of
the evolution operator increases the virtual dimension of the
MPS, truncation steps are required to restore the original (or
any suitable) value of the bond dimension. While VUMPS
can take big steps through the variational space, time steps
in ITEBD have to be chosen sufficiently small (especially in
the final steps of the algorithm) to eliminate the Trotter error,
which negatively affects the rate of convergence (Ref. [33]
however proposes a scheme to effectively obtain a larger time
step). Furthermore, the Trotter splitting essentially limits the
applicability of ITEBD to short-range interactions and dictates
the size of the unit cell of the resulting MPS, e.g., in the
most common case of nearest-neighbor interactions a two-site
unit cell is obtained. (The approach of Ref. [34] to obtain a
translation invariant MPS is restricted to certain Hamiltonians,
but see Ref. [35] for an alternative proposal that can in fact also
deal with long-range interactions.)

Finally, we can also compare VUMPS to the more recent
time dependent variational principle (TDVP) [27], which

was implemented as an alternative approach to simulate real
and imaginary-time evolution within the manifold of MPS
by projecting the evolution direction onto the MPS tangent
space. This approach can be applied to translation invariant
MPS, independent of the type of Hamiltonian. When used to
evolve in imaginary time, it can be identified as a covariant
formulation of a gradient descent method, in that it evolves the
state in the direction of the gradient of the energy functional,
preconditioned with the metric of the manifold. As such, the
energy decreases monotonically and at convergence, an exact
(local) minimum is obtained, as characterized by the vanishing
gradient. However, in its original formulation, TDVP was not
formulated in a center site form and was therefore unstable and
restricted to small time steps. For finite systems, a different
formulation of the TDVP algorithm was provided in Ref. [28],
which allows for taking the limit of the imaginary-time step to
infinite, and then becomes provably equivalent to the single-
site DMRG algorithm. VUMPS can be motivated from these
developments, as explained in Appendix A.

We conclude this section by elaborating on how to incorpo-
rate symmetries in the algorithm. The construction of uMPS
that is explicitly invariant under onsite unitary symmetries is
equivalent to (I)DMRG [12,23] and (I)TEBD [36,37], and it
is immediately clear that the various steps in VUMPS have
a corresponding covariant formulation. The same comments
apply to time reversal symmetry, in which case everything can
be implemented in real arithmetic, or to reflection symmetry,
in which case C and As

C will be symmetric matrices and
As

R = As
L

T (which implies that HL and HR are also related). In
all of these cases, the computational cost is reduced. However,
explicitly imposing the symmetry in the MPS requires caution,
as the physical system might have spontaneous symmetry
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breaking, or—more subtly—might be in a symmetry protected
topological phase where the symmetries cannot be represented
trivially on the MPS tensor.

In the case of spontaneous symmetry breaking, MPS al-
gorithms tend to converge to maximally symmetry broken
states for which the entanglement is minimal. This is also the
case for VUMPS. One can control which state the algorithm
converges to by suitably biasing the initial state or by adding
small perturbation terms to the Hamiltonian which explicitly
break the symmetry, and which are switched off after a few
iterations.

Explicit conservation of translation symmetry was the
very first requirement in the construction of VUMPS. In
the case of spontaneous breaking of translation symmetry
down to N -site translation symmetry (as, e.g., in the case
of a state with antiferromagnetic order), enforcing one-site
translation symmetry would result in a (noninjective) equal
weight superposition of all symmetry broken uMPS ground-
state approximations. In order to reach an optimal accuracy
with a given bond dimension, such a superposition of N states
is however undesirable, as the effective bond dimension is
reduced to D/N . In the case where this situation cannot be
amended by a simple unitary transformation that restores one-
site translation symmetry (such as, e.g., flipping every second
spin in the case of an antiferromagnet), it is preferable to choose
an MPS Ansatz with a N -site unit cell, such that the state can
spontaneously break translation symmetry. The generalization
of the algorithm to multisite unit cells is described in the next
section.

E. Multisite unit-cell implementations

We now generalize the VUMPS algorithm of the previous
section for one-site translation invariant uMPS to the setting of
translation invariance over N sites. Such a uMPS Ansatz is then
parameterized by N independent tensors A(k)s ∈ CD×d×D ,
k = 1, . . . ,N , which define the unit-cell tensor

Asn = A(1)snN+1 . . . A(N )snN+N , (25)

where s = (s1, . . . ,sN ) is a combined index. We can then write
the variational state as

|�(A)〉 =
∑

s

(. . .Asn−1AsnAsn+1 . . .)|s〉

and the left and right orthonormal forms are given by the
relations

∑
s

A(k)sL
†
A(k)sL = 1,

∑
s

A(k)sL R(k) A(k)sL
† = R(k − 1)

(26a)

and ∑
s

A(k)sR A(k)sR
† = 1,

∑
s

A(k)sR
†
L(k − 1) A(k)sR = L(k),

(26b)

where it is understood that N + 1 ≡ 1 and 0 ≡ N .

Defining the bond matrices C(k) as the gauge trans-
formation that relates left and right canonical form via
C(k − 1)A(k)sR = A(k)sLC(k), we have R(k) = C(k)C(k)† and
L(k) = C(k)†C(k). We can then also cast |�(A)〉 in a mixed
canonical form similar to (5a) with the center site tensor given
by A(k)sC = A(k)sLC(k) = C(k − 1)A(k)sR .

The variational minimum within this set of states is charac-
terized by the following 3N fixed point relations:

HA(k)C A(k)C = EA(k)C A(k)C, (27a)

HC(k) C(k) = EC(k) C(k), (27b)

A(k)sC = A(k)sLC(k) = C(k − 1)A(k)sR. (27c)

Notice that due to (27c), the relations for different k are con-
nected. There are several possible strategies for constructing
algorithms which obtain states satisfying these conditions.

In the following we present two approaches which have
shown good performance and stable convergence, which we
shall term the “sequential” and “parallel” methods. However,
let us first elaborate on computing effective Hamiltonians for
multisite unit cells, which works similarly in both methods.
We again restrict to the case of nearest-neighbor interactions,
such that the effective Hamiltonians are constructed similar as
in Sec. II B. To construct, e.g., the left block Hamiltonian HL,
we first collect all local contributions from a single unit cell
in hL, before performing the geometric series of the transfer
matrix, which now mediates a translation over an entire unit
cell.

1. Sequential algorithm

The sequential algorithm is inspired by finite size DMRG,
in that we sweep through the unit cell, successively optimizing
one tensor at a time while keeping tensors on other sites
fixed. Notice that at site k we, however, need two updated
bond matrices C̃(k)L = C̃(k − 1) and C̃(k)R = C̃(k), in order
to calculate updated Ã(k)sL/R from Ã(k)sC ≈ Ã(k)sL C̃(k)R ≈
C̃(k)L Ã(k)sR . We thus have to amend steps 5, 6, and 7 of the
single-site algorithm in Table II by constructing and solving
for two effective Hamiltonians HC(k−1) and HC(k) instead of a
single one. The newly optimized tensors then get replaced in
all unit cells of the infinite lattice, and contributions to the
effective Hamiltonians have to be recalculated accordingly,
before moving on to the next site. For a pseudocode summary
see algorithm 3 in Table III.

One could now try to argue that, e.g., in a left to right
sweep it is enough at site k to calculate updated Ã(k)C and
C̃(k)R = C̃(k) only, and to use C̃(k − 1)R from the previous
step at site k − 1 as C̃(k)L for calculating Ã(k)R . This approach
however fails, as the effective Hamiltonian used for calculat-
ing Ã(k)C already contains updated Ã(k − 1)L/R , while the
effective Hamiltonian used for calculating C̃(k − 1)R does not,
and we cannot determine Ã(k)R from Ã(k)C and C̃(k − 1)R .
Rather, C̃(k)L has to be recalculated using an updated effective
Hamiltonian, which exactly leads to the sequential algorithm 3.

There is an additional subtlety that needs to be considered,
in order for all tensors to fulfill the gauge constraints (27c)
to current precision. Bond matrices C̃(k) are calculated as
lowest energy eigenvectors of effective Hamiltonians HC(k)

and are therefore only determined up to a phase. Consider C(k)
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TABLE III. Pseudocode for the two approaches for a multisite unit-cell implementation described in Sec. II E. Algorithm 3 sweeps through
the unit cell and sequentially updates tensors site by site, replacing updated tensors in all unit cells before moving on to the next site. Algorithm
4 updates the entire unit cell at once by independently updating tensors on each site.

Algorithm 3 sequential variational uMPS algorithm for multi-site unit cells
Input: Hamiltonian H, initial uMPS {AL}, {AR}, {C} of an N -site unit cell, convergence threshold
Output: uMPS approximation {AL}, {AR}, {C} of ground state of H, fulfilling fixed point relations (27a), (27b) and (27c)

up to precision .
1: procedure VUMPSMultiSequential(H,{AL}, {AR}, {C}, )
2: initialize current precision prec

3: while prec do
4: for n = 1, . . . , N do
5: (optional) Dynamically adjust bond dimension following Appendix B
6: Calculate explicit terms of effective Hamiltonians from a multi-site version

HA(n)C
, HC(n−1), HC(n) ←HeffTermsMulti(H,{AL},{AR},{L},{R}, S ≤ prec) of Algorithm 1, 5 or 6

7: Calculate ground state ÃC of effective Hamiltonian HA(n)C
to precision H prec using an iterative

eigensolver, calling ApplyHAC(C,HA(n)C
) from Algorithm 1, 5 or 6

8: Calculate ground state C̃L of effective Hamiltonian HC(n−1) to precision H prec using an iterative
eigensolver, calling ApplyHC(C,HC(n−1)) from Algorithm 1, 5 or 6 To ensure gauge consistency,

employ a phase convention for C̃L

9: Calculate ground state C̃R of effective Hamiltonian HC(n) to precision H prec using an iterative
eigensolver, calling ApplyHC(C,HC(n)) from Algorithm 1, 5 or 6 To ensure gauge consistency,

employ a phase convention for C̃R

10: Calculate new ÃL from ÃC and C̃R using (20) or (22), depending on singular values of C̃R

11: Calculate new ÃR from ÃC and C̃L using (20) or (22), depending on singular values ofC̃L

12: Evaluate new L(n) and R(n) from (18a) and (18b)

13: Replace A(n)L ← ÃL, A(n)R ← ÃR, C(n − 1) ← C̃L and C(n) ← C̃R

14: end for
15: Set prec ← max({ L}, { R})
16: (optional) Calculate current expectation values
17: end while
18: return {AL}, {AR}, {C}
19: end procedure

Algorithm 4 parallel variational uMPS algorithm for multi-site unit cells
Input: Hamiltonian H, initial uMPS {AL}, {AR}, {C} of an N -site unit cell, convergence threshold
Output: uMPS approximation {AL}, {AR}, {C} of ground state of H, fulfilling fixed point relations (27a), (27b) and (27c)

up to precision .
1: procedure VUMPSMultiParallel(H,{AL}, {AR}, {C}, )
2: initialize current precision prec

3: while prec do
4: (optional) Dynamically adjust bond dimension following Appendix B
5: for n = 1, . . . , N do
6: Calculate explicit terms of effective Hamiltonians from a multi-site version

HA(n)C
, HC(n) ←HeffTermsMulti(H,{AL},{AR},{L},{R}, S ≤ prec) of Algorithm 1, 5 or 6

7: Calculate ground state Ã(n)C of effective Hamiltonian HA(n)C
to precision H prec using an iterative

eigensolver, calling ApplyHAC(C,HA(n)C
) from Algorithm 1, 5 or 6

8: Calculate ground state C̃(n) of effective Hamiltonian HC(n) to precision H prec using an iterative
eigensolver, calling ApplyHC(C,HC(n−1)) from Algorithm 1, 5 or 6

9: end for
10: for n = 1, . . . , N do
11: Calculate new Ã(n)L from Ã(n)C and C̃(n) using (20) or (22), depending on singular values of C̃(n)

12: Calculate new Ã(n)R from Ã(n)C and C̃(n − 1) using (20) or (22), depending on singular values of C̃(n − 1)
13: Evaluate new L(n) and R(n) from (18a) and (18b)
14: end for
15: Replace {AL} ← {ÃL}, {AR} ← {ÃR} and {C} ← {C̃}
16: (optional) Calculate current expectation values
17: Set prec ← max({ L}, { R})
18: end while
19: return {AL}, {AR}, {C}
20: end procedure
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defined between sites k and k + 1. At step k, it is updated as
C̃(k)R and used to calculate Ã(k)sL. In the next step k + 1,
however, it is recalculated as C̃(k + 1)L (with an updated
effective Hamiltonian) and used to determine Ã(k + 1)sR . At
the fixed point we should then have C̃(k)R = C̃(k + 1)L =
C(k), but this is only true if there is no phase ambiguity, which
would also consequently lead to a phase mismatch between
Ã(k)L and C̃(k) after step k + 1. This issue does not pose
a problem for algorithm convergence [during calculations,
matrices C(k) always appear as products of the form C(k)†C(k)
or C(k)C(k)† and mismatching phases thus cancel out], but can
be easily circumvented by employing a phase convention when
calculating updated C̃(k).

2. Parallel algorithm

In the parallel approach, we choose to update an entire unit
cell at once, using effective Hamiltonians generated from the
same current state. To that end, we first generate all terms
necessary for all HA(k)C and HC(k). For the case of nearest-
neighbor interactions, the contributions HL and HR to the left
and right environment outside the unit cell can be shared, so that
the corresponding geometric sum only needs to be computed
once, and contributions inside the unit cell are obtained through
successive applications of transfer matrices.

Next, we simultaneously and independently solve for the
ground states Ã(k)C and C̃(k) of all 2N effective Hamiltonians
at once. Once these are obtained we again simultaneously
and independently determine all updated Ã(k)L and Ã(k)R ,
concluding one iteration for updating the entire unit cell. For
a pseudocode summary see algorithm 3 in Table III.

3. Juxtaposition of both approaches

Several comments on the two presented algorithms are in
order. First, the parallel algorithm requires substantially less
computational effort, since the construction of the different
effective Hamiltonians HA(k)C can recycle the calculation of
the infinite geometric sum. Therefore updating an entire unit
cell only requires to evaluate two infinite geometric sums and
2N effective eigenvalue problems. In the sequential algorithm,
updating the environment after every tensor update requires
to reevaluate the geometric sum, thus leading to 2N infinite
geometric sums and 3N effective eigenvalue problems for
updating the complete unit cell. Additionally, the parallel
approach offers the possibility of parallelizing the solution
of all 2N eigenvalue problems in one iteration, while in the
sequential approach only three eigenvalue problems can be
solved in parallel for each site. However, while sweeping
through the unit cell in the sequential approach, initial guesses
for solving the infinite geometric sums can be generated easily
from the previous iterations, and are usually much better
than the initial guesses in the parallel algorithm. Equivalently,
updated C̃(k) obtained at site k is a very good initial guess
for its recalculation with updated environment on site k + 1.
Overall, the computational cost for the parallel update is still
much cheaper, albeit less than expected.

On the other hand, state convergence in terms of iterations
is generally substantially faster in the sequential approach.
This seems reasonable, as the optimization on a current site
takes into account all previous optimization steps, whereas

in the parallel approach, the optimizations on different sites
within one iteration are independent of each other. This
effect gets amplified with increasing unit-cell size N , and the
performance of the parallel approach decreases, while the per-
formance of the sequential approach seems more stable against
increasing N .

In conclusion, while updating the entire unit cell is com-
putationally cheaper in the parallel approach, the sequential
algorithm usually requires a substantially smaller number of
iterations due to faster convergence. While there are instances
where one approach clearly outperforms the other by far, such
cases are rare and strongly depend on initial conditions, and
generally both approaches show comparable performance. For
comparison benchmark results see Sec. III B 5.

III. TEST CASES AND COMPARISON

In this section, we test the performance of the new algorithm
on several paradigmatic strongly correlated lattice models
in the thermodynamic limit, with nearest-neighbor as well
as long-range interactions. In Sec. III A, we introduce and
discuss the models under considerations. In Sec. III B, we first
test the convergence and stability of the single and multisite
implementations of the new algorithm. Lastly, we compare its
performance against established conventional MPS methods
for ground-state search in Sec. III C.

A. Models

As examples for spin chain models with nearest-neighbor
interactions we study the spin S = 1/2 transverse field Ising
(TFI) model

HTFI = −
∑

j

XjXj+1 − h
∑

j

Zj (28)

and the XXZ model for general spin S:

HXXZ =
∑

j

XjXj+1 + YjYj+1 + �ZjZj+1. (29)

Here X, Y , and Z are spin S representations of the generators
of SU (2). The ground-state energies are known exactly for the
TFI model [38], and for S = 1/2, also for the XXZ model
[39]. For the S = 1, XXZ model we focus on the isotropic
antiferromagnetic case � = 1 and take the result of Ref. [27]
for the ground-state energy for D = 1024 as quasiexact result.

As a further example for a system with nearest-neighbor
interactions, we also study the Fermi Hubbard model

HHUB = −t
∑
σ,j

cσ,j c
†
σ,j+1 − c

†
σ,j cσ,j+1

+U
∑

j

(
n↑,j − 1

2

)(
n↓,j − 1

2

)
, (30)

where cσ,j , c†σ,j are creation and annihilation operators of elec-

trons of spin σ on site j , nσ,j = c
†
σ,j cσ,j and nj = n↑,j + n↓,j

are the particle number operators. Again, the exact ground-state
energy is known [40,41].

As an example for an exactly solvable model with (alge-
braically decaying) long-range interactions we consider the
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Haldane-Shastry model [42,43]

HHS =
∑

j

∑
n>0

n−2[XjXj+n + YjYj+n + ZjZj+n], (31)

where X, Y , and Z are again spin S = 1/2 representations of
the generators of SU(2). In order to efficiently compute the
terms of the effective Hamiltonian (see Appendix C 1), we
expand the distance function f (n) = n−2 in a sum of K = 20
exponentials, with maximum residual less than 10−6 for a fit
over N = 1000 sites.

Finally, as a state of the art problem of current interest, we
also consider the two-dimensional antiferromagnetic S = 1/2
Heisenberg model on a cylinder of infinite length, but finite
circumference W ,

H
cyl
XXZ =

∑
i,j

X[i,j ](X[i,j+1] + X[i+1,j ])

+Y[i,j ](Y[i,j+1] + Y[i+1,j ])

+Z[i,j ](Z[i,j+1] + Z[i+1,j ]), (32)

where [i,j ] denotes the location on the cylinder with i ∈ Z
and 1 � j � W (assuming periodic boundary conditions, i.e.,
W + 1 ≡ 1). Following the popular procedure (as, e.g., also
done in Ref. [44]), we map the model onto a one-dimensional
chain following a sawtooth path along the cylinder, such
that the longest-range spin-spin interactions are over W sites.
We take the energies obtained from Loop QMC for several
cylinder circumferences W presented in Table I in Ref. [44] as
quasiexact ground-state energies.

B. Performance benchmarks

We performed convergence benchmarks for several in-
stances of the models introduced in the previous section, using
simple implementations of VUMPS for single or multisite unit
cells presented in algorithms 2, 3, and 4, without explicitly
exploiting any symmetries. Hereto, we consider firstly the error
in the variational energy density

�e = e − eexact (33)

as a function of the number of iterations. Here, eexact is the exact
analytic (or quasiexact numerical) ground-state energy density
of the model under consideration. VUMPS as formulated in
Table II has its internal convergence measure used to determine
when to stop the iteration loop, as well as to set the tolerance
in the iterative solvers used within every single outer iteration.
However, as a more objective quantity that measures the
distance to the variational minimum, we also compute the
norm of the energy gradient; it is an absolute measure of
convergence, which is independent of any prior iterations, as
opposed to relative changes in, e.g., the energy or Schmidt
spectrum between iterations. We denote this quantity as ‖B‖,
the two-norm of a D × d × D tensor B, which can be worked
out to be given by (see Appendix A 3)

Bs = A′s
C − As

LC ′ or Bs = A′s
C − C ′As

R. (34)

The efficient and accurate computation of the gradient norm
is further discussed in Appendix A 4. To obtain the energy
gradient ‖B‖ of an N -site unit cell, it is equivalent to determine

the gradients B(k) for each site independently and to calculate
the norm of the concatenation of all N gradients.

A well-known property of the variational principle is that
the energy expectation value itself converges quadratically
faster than the state. When the state has converged to some
accuracy ‖B‖, the energy density has already converged to
precision O(‖B‖2), which can therefore be well beyond ma-
chine precision. The convergence measure ‖B‖ does, however,
dictate the convergence of other observables, which are not
diagonal in the energy eigenbasis. Note, however, that we
are here referring to convergence towards the value at the
variational optimum, not towards the exact value. The error
between the variational optimum and the exact ground state
can be quantified using, e.g., the energy variance, or—in
the context of DMRG—the truncation error. Both quantities
are also discussed in Appendix A 4. We show results for
the truncation error further down in Sec. III B 4, and when
comparing VUMPS to IDMRG and ITEBD in Sec. III C.

We show results for examples of three gapped and five
critical systems in Fig. 1. Specifically, as examples for gapped
systems we considered (a) the TFI model (28) in the symmetry
broken ferromagnetic phase at h = 0.48, (b) the isotropic
S = 1 Heisenberg antiferromagnet, i.e., the S = 1 XXZ model
(29) at � = 1, and (c) the S = 1/2 XXZ model (29) in
the symmetry broken antiferromagnetic phase at � = 2. As
examples for gapless systems we considered (d) the isotropic
S = 1/2 Heisenberg antiferromagnet, i.e., the S = 1/2 XXZ

model (29) at � = 1, (e) the repulsive Fermi Hubbard model
(30) at U = 10 and half filling and (f) the Haldane-Shastry
model (31). Finally, we also show results for the isotropic
S = 1/2 Heisenberg antiferromagnet on a cylinder (32) for
different widths W in (g) and (h).

Out of the gapped systems, only the antiferromagnetic
ground state of (c) physically breaks translation invariance by
spontaneously breaking the Z2 spin-flip symmetry; we there-
fore choose a two-site unit cell in this case. The critical systems
physically show no spontaneous symmetry breaking. However,
for uMPS ground-state approximations in the gapless case, it is
often energetically beneficial to artificially break symmetries
(which are restored in the limit of infinite bond dimension).
In all three cases, the optimal uMPS ground-state approx-
imation artificially breaks a SU(2) symmetry and develops
antiferromagnetic order, breaking translation invariance. We
therefore choose a two-site unit cell in the case of the Hubbard
model (e) and the Haldane-Shastry model (f). In the case of
the Heisenberg antiferromagnet (d), translation invariance can
be restored through a unitary transformation by rotating every
second spin by π around the z axis, transforming HXXZ(�) →
−HXXZ(−�), and the artificially symmetry broken ground
state becomes ferromagnetically ordered along the x and y

directions. We can therefore choose a single-site unit cell for
(d), and the staggered magnetization along z is thus zero.
A similar approach could be chosen to restore translation
invariance also for the gapped antiferromagnet (c) and the
Hubbard model (e), but we do not choose to do so for
demonstrative reasons. For (g) and (h), we choose a similar
strategy as for (d) and rotate every second spin by π around the
z axis, allowing the usage of a unit-cell size N = W instead
of N = 2W , which would be necessary to accommodate an
antiferromagnetically ordered ground state.
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FIG. 1. Plot of energy density error �e and gradient norm ‖B‖ for VUMPS with a single-site or N -site unit cell: (a) TFI model in the
gapped symmetry broken phase at h = 0.48 and D = 25, (b) gapped isotropic S = 1 XXZ antiferromagnet and D = 120, (c) S = 1/2 XXZ

antiferromagnet in the gapped symmetry broken phase at � = 2 and D = 54, (d) critical isotropic S = 1/2 XXZ antiferromagnet at � = 1 and
D = 137, (e) critical Fermi Hubbard model at U = 10 and D = 256, (f) critical S = 1/2 Haldane-Shastry model at D = 200, and the isotropic
S = 1/2 Heisenberg antiferromagnet on a Cylinder of circumference W = 8 (g) and W = 10 (h). The uMPS ground-state approximations of
(c), (e), (f), (g), and (h) are not translation invariant and have been obtained from algorithm 3 with a multisite unit cell. Regardless of the
criticality of the model, VUMPS converges exponentially fast in gradient norm ‖B‖. Notice that at the point where the energy has already
converged to machine precision, the gradient is still quite far from zero, and the state thus still some distance from the variational optimum.
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To summarize, we used the single-site algorithm 2 for (a),
(b), and (d), and the sequential algorithm 3 with a two-site unit
cell for (c), (e), and (f) and a W -site unit cell for (g) and (h).
For a comparison between the sequential and parallel approach
see Sec. III B 5.

1. General convergence

Above all, we observe that VUMPS shows unprecedented
fast convergence, both in the energy density e and the norm of
its gradient ‖B‖, and excellent accuracy of the final ground-
state approximation. Observe in Fig. 1 that in all cases the
energy is already well converged to machine precision after
O(10–50) iterations, while the state is still quite some distance
from the variational optimum, according to the gradient norm
‖B‖. Further optimizing the state, this quantity can also be
converged to essentially machine precision (even in the pres-
ence of small Schmidt values), while the energy virtually does
not change anymore. The resulting final state then corresponds
to the variationally optimal state for the given bond dimension.
This is very useful in the case where the quantum state itself
is required to be accurate to high precision, e.g., when used as
a starting state for real-time evolution or as a starting point to
compute excited states and scattering thereof [45–47].

The Schmidt spectrum of the ground state of the S = 1
Heisenberg antiferromagnet at D = 120, converged to gradient
norm ‖B‖ < 10−15, is depicted in Fig. 2. It can be seen
that the degeneracies are reproduced perfectly to the same
precision, without explicitly exploiting any symmetries in the
implementation of the algorithm.

In cases where the final desired bond dimension Dfinal is
not known beforehand, one can successively enlarge a state of
some small initial bond dimension every few iterations until the
state fulfills the desired criteria, e.g., current bond dimension
above some threshold, truncation error (see below) or smallest
Schmidt value below some threshold, etc. This strategy is
particularly useful when using an implementation exploiting
physical symmetries of the system, such as, e.g., conservation
of magnetization or particle number, as the correct number
and size of the required symmetry sectors in the MPS tensors
is generally not known beforehand [48]. On the other hand,
if Dfinal is known beforehand, it generally appears to be more
efficient to immediately start from an initial state with D =
Dfinal. The gain in computational time due to the cheaper initial
iterations with small bond dimension is usually outweighed by
a considerable number of required additional iterations. On the
other hand, for some hard problems (e.g., the Hubbard model)
stability and convergence speed can profit from a strategy of
sequentially increasing the bond dimension from some small
initial value.

To conclude the discussion of general convergence, we
plot the evolution of the Schmidt spectrum, as well as the
gradient norm ‖B‖ and various observables versus iteration
number during a ground-state optimization for the TFI model
(28) in the ferromagnetic phase at h = 0.45 in Fig. 3. During
the simulation we used a sequence of bond dimensions D =
[9,19,33,55], where we started with an initial random state
with D = 9 and increased the bond dimension to the next value
as soon as ‖B‖ dropped below 10−14. We chose this set of
bond dimension in order to not cut any degenerate multiplets
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FIG. 2. (Top) Schmidt spectrum of the S = 1 Heisenberg anti-
ferromagnet for D = 120, converged to gradient norm ‖B‖ < 10−15.
(Bottom) The table shows the first 30 Schmidt values in descending
order. The degeneracies are reproduced to 15 digits of precision,
without exploiting any symmetries.

of Schmidt values (see also Sec. III B 3). It can be seen that the
high lying Schmidt values converge quite quickly, while most
of the computational time goes into converging the low lying
Schmidt values. Moreover, there is quite some rearrangement
of the small Schmidt values every time the gradient norm ‖B‖
reaches a local maximum during a phase of nonmonotonous
evolution (see also next subsection). Lastly, from the evolution
of the errors of the local observables 〈X〉 and 〈Z〉, it is apparent
that they require a substantially higher bond dimension of
D = 55 to reach the same accuracy as the energy, which is
already correct to machine precision at D = 19.

2. Different regimes of gradient norm convergence

Depending on the complexity of the model, the gradient
norm shows a period of irregular nonmonotonous behavior
before entering a regime of monotonous convergence. This
can be understood as the (random) initial state having to
adapt its initial structure (e.g., the Schmidt spectrum) to the
requirements of the best variational ground-state approxima-
tion. Monitoring the Schmidt values during this period nicely
shows how groups of Schmidt values slightly rearrange to the
correct structure (see, e.g., Fig. 3). This period is usually more
dominant in critical systems—as can be seen in Figs. 1(d)–1(f),
where it takes O(50–100) iterations—and of course strongly
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FIG. 3. Evolution of the Schmidt spectrum (top) and the gradient
norm ‖B‖ and various observables (bottom) with iteration number
for the TFI model at h = 0.45. Here we defined the deviation of
an observable O from its exact value as �O = |〈O〉 − 〈O〉exact|,
similar to (33) for the energy. We used bond dimensions D =
[9,19,33,55], i.e., we increased the bond dimension three times during
the optimization process as soon as ‖B‖ dropped below 10−14 (at
iterations 36, 60, and 84). It is apparent that while high lying Schmidt
values converge quite quickly, the better part of the final iterations
goes into converging low lying Schmidt values. Moreover, one can
see that there is quite some rearrangement of exactly these low lying
Schmidt values every time ‖B‖ reaches a local maximum (e.g., around
iterations 12, 40, 70, 88, and 92) during a nonmonotonous phase of
gradient evolution (see also Sec. III B 2).

depends on the chosen initial state. One could argue that the
jumps in parameter space caused by the algorithm during this
period are too big for the state to find the correct structure
quickly, hindering a fast crossover to the regime of monotonous
convergence. However, an approach of preconverging the state
using smaller steps through parameter space—e.g., by means
of imaginary-time evolution with moderate time steps—has
proven to be even slower in all cases tried. Thus the best
choice is still to use VUMPS during the entire optimization
process. We want to emphasize here that we have never
observed a stagnation of the algorithm during this initial
regime; the algorithm always reached the monotonous regime
eventually in all cases, and instances where the algorithm
remains in the irregular regime for an unusually long time
are rare and only occur in the case of particularly hard
problems.

As soon as the gradient norm reaches the monotonous
regime, it always converges exponentially fast. Surprisingly,
this is true even for critical systems, where one would in
principle expect algebraic convergence. This can be quali-
tatively understood from the theory of finite entanglement
scaling [49–51], which states that the MPS approximation itself
introduces a small perturbation away from criticality, and thus
a finite gap. However, as VUMPS improves convergence speed
over existing methods (see also Sec. III C), it is ideally suited
to study critical systems via the theory of finite entanglement
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FIG. 4. Comparison of the convergence rate of the gradient norm
‖B‖ for the TFI model at h = 0.55, with D = 33 and 35. Convergence
is roughly 4 times faster for D = 33 as compared to D = 35. The inset
shows the Schmidt spectrum of the ground state (up to D = 43). For
D = 35 the smallest Schmidt values form an incomplete degenerate
multiplet, whereas for D = 33 the multiplet is complete.

scaling, which still requires that one finds the optimal MPS
approximation in the first place.

3. Degenerate schmidt values

In the presence of multiplets of degenerate Schmidt values,
the convergence rate is severely affected if the smallest few
Schmidt values are part of an incomplete multiplet, i.e., if the
last multiplet is “cut.” In that case, the algorithm still shows
stable convergence, albeit at a greatly reduced rate. For an
example in the TFI model see Fig. 4. This issue can be easily
circumvented by ensuring that the smallest few Schmidt values
are part of a complete multiplet when dynamically increasing
the bond dimension, or by choosing a viable (or reducing from
some) fixed initial bond dimension.

4. Energy convergence with bond dimension

In a careful MPS study, variational energies obtained for
different bond dimension D are compared in order to extrap-
olate to the exact D → ∞ limit. This can be done by plotting
the energy e(D) as a function of bond dimension against the
inverse of the bond dimension 1/D. The infinite D limit is then
obtained by fitting with a power law form and extrapolating to
1/D → 0. In DMRG, another popular measure for the quality
of an MPS approximation is given by the truncation error or
discarded weight ερ , defined in Eq. (A28). The variational
energy is found to scale linearly with ερ [52,53] and an
extrapolation to ερ → 0 is thus generally easier and more
stable. For further details on assessing the quality of the
ground-state approximation we refer to Appendix A 4.

We show an example for both extrapolation schemes for the
isotropic S = 1/2 Heisenberg antiferromagnet in Fig. 5. The
exact ground-state energy is given by eexact = 1

4 − ln(2), or as a
numerical value by e = −0.4431471805599453 to 16 digits of
precision. On the left, we plot the energy versus truncation error
and obtain an estimate eT = −0.443147178(1) with nine digits
of precision from a linear fit e(ερ) = e + a ερ . On the right, we
plot the energy versus inverse bond dimension and obtain an
estimate eD = −0.4431471797(1) with ten digits of precision
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FIG. 5. Scaling of the variational ground-state energy e with truncations error ερ and bond dimension D for the isotropic S = 1/2 Heisenberg
antiferromagnet. We plot the energy e vs truncation error ερ on the left and vs inverse bond dimension 1/D on the right. The exact ground-state
energy is given by eexact = −0.4431471805599453 to 16 digits of precision. We obtain estimates from a linear fit e(ερ) = e + a ερ (left) and a
power law fit e(1/D) = e + a (1/D)b (right), where the estimate on the right has one more digit of precision and is roughly four times more
accurate than the estimate on the left.

from a power law fit e(1/D) = e + a (1/D)b. Comparing to
eexact, we observe that eT has an error of �eT ≈ 3 × 10−9,
while eD has an error �eD ≈ 8 × 10−10.

5. Multisite unit-cell implementations

Lastly, we discuss and compare the performance of the
sequential and parallel algorithms for multisite unit cells
presented in Sec. II E. As the two methods differ in their
convergence with the number of iterations, as well as in
the computational effort for each iteration of updating the
entire unit cell, we compare the rate of convergence with
absolute computing time t in seconds. To that end, we only time
operations that are absolutely necessary for each algorithm,
i.e., we do not time measurements, data storage, etc. We
further start from the same (random) initial state and keep the
bond dimension fixed throughout the entire simulation for both
methods to make the simulations as comparable as possible. All
calculations are performed using a nonparallelized MATLAB
implementation on a single core of a standard laptop CPU.

We find that in general for gapped systems, the sequential
approach outperforms the parallel approach, while in critical
systems no definite statement about better performance can
be made. There are instances where one algorithm takes
substantially longer than the other to reach the regime of
monotonous convergence, but such cases are rare and strongly
depend on the model and initial state. Once both algorithms
are in the monotonous regime, convergence speed in terms
of absolute computing time is similar, with the sequential
approach generally taking longer for each iteration, but the
parallel approach generally requiring more iterations to reach
convergence. Overall both approaches thus generally show
comparable performance, with the sequential approach appear-
ing to be slightly more stable and reliable in the cases we
considered. Figure 6 shows examples for two gapped and two
gapless systems.

C. Comparison with IDMRG and ITEBD

We further benchmark the performance of VUMPS against
a standard two-site IDMRG implementation [5,6,24], and
a standard two-site ITEBD implementation [26,36], and

compare the rate of convergence of the energy error �e and the
norm of the energy gradient ‖B‖ between the three methods.
For VUMPS, we solve the effective eigenvalue problems
in each iteration to precision εH = εprec/100 with εprec the
current precision according to (24). For IDMRG, we solve
the effective two-site eigenvalue problem in each iteration
to precision εH = (1 − F )/100, with F being the current
orthogonality fidelity (see Sec. III A in Ref. [24]). For ITEBD,
we employ a fourth-order Suzuki Trotter decomposition and
measure every 10 time steps. We use a sequence of time steps
δt ∈ [10−1,10−2,10−3,10−4,10−5,10−6] where we decrease
the time step as soon as the change in Schmidt values per unit of
imaginary time drops below a certain threshold. Naturally, the
strategy of time step reduction should be optimized carefully
for each model under consideration, however, we choose the
same strategy for all example cases to maintain comparability.
We also explicitly calculate all necessary quantities for obtain-
ing a truly variational energy (e.g., by reorthogonalizing the
unit cell) and for measuring the energy gradient, even if these
quantities are not necessary for the respective algorithm itself.

As the three methods differ quite substantially in the
number of iterations required for convergence, as well as the
computational effort for each iteration, we again compare
convergence against absolute computing time t in seconds,
where we only time operations that are absolutely necessary for
each algorithm and we do not time measurements, data storage,
reorthogonalizing, etc. We further start from the same (random)
initial state and keep the bond dimension fixed throughout the
entire simulation for all three methods to make the simulations
as comparable as possible. Again, all calculations were per-
formed using a nonparallelized MATLAB implementation on
a single core of a standard laptop CPU.

We show example comparisons for two gapped and
two critical models in Fig. 7, similar to the cases studied
in the previous section. Specifically, we show results for
(a) the gapped isotropic S = 1 Heisenberg antiferromagnet,
i.e., the S = 1 XXZ model (29) at � = 1, (b) the S = 1/2
XXZ model (29) in the gapped symmetry broken antiferro-
magnetic phase at � = 2, (c) the critical isotropic S = 1/2
Heisenberg antiferromagnet, i.e., the S = 1/2 XXZ model
(29) at � = 1, and (d) the critical Fermi Hubbard model (30) at

045145-15



V. ZAUNER-STAUBER et al. PHYSICAL REVIEW B 97, 045145 (2018)

t [s]
0 2 4 6 8 10 12 14 16

|B|

10 -14

10 -10

10 -6

10 -2

(a) parallel
sequential

t [s]
0 5 10 15 20 25 30 35

|B|

10 -14

10 -10

10 -6

10 -2

(b) parallel
sequential

t [s]
0 50 100 150 200 250 300 350

|B|

10 -14

10 -10

10 -6

10 -2

(c) parallel
sequential

t [s]
0 500 1000 1500 2000 2500 3000

|B|

10 -14

10 -10

10 -6

10 -2

(d) parallel
sequential

FIG. 6. Example performance comparisons between the sequential and parallel algorithm presented in Sec. II E. We show examples for the
gapped S = 1/2 XXZ antiferromagnet at � = 2 and D = 87 with (a) a two-site unit cell, (b) a four-site unit cell, as well as (c) the critical
Hubbard model at U = 5 and D = 66 with a two-site unit cell and (d) the critical Haldane-Shastry model at D = 60 with a two-site unit cell.
In each example, both approaches were initialized in the same (random) initial state. It can be seen that while the parallel approach usually
takes less time for one unit-cell update iteration, the sequential approach shows faster convergence in the number of iterations. Both approaches
show similar performance in the considered cases, except for example (d).

U = 5 and half-filling. We plot the energy error �e on the left
and the gradient norm ‖B‖ on the right, versus absolute com-
puting time t in seconds. For VUMPS, we used a single-site
unit cell for (a) and (c), and a two-site unit cell for (b) and (d).

Above all, we observe that VUMPS clearly outperforms
both IDMRG and ITEBD by far, both in convergence speed and
accuracy of the final state, especially for critical systems. In all
shown cases, the final energy error �e of all three algorithms
only differs by a few percent; VUMPS, however, always yields
the best variational energy, often already after a few seconds,
and thus converges in energy much faster than IDMRG or
ITEBD—in the case of critical systems even by orders of
magnitude. Observe that especially for the two critical systems
(c) and (d), a large part of the computational time of IDMRG
and ITEBD goes in converging the last few digits of the energy
(see also insets in Fig. 7). For (d) in particular, the final energy
error obtained by IDMRG is still almost 10% higher than the
value obtained by VUMPS.

In terms of convergence of the energy gradient ‖B‖,
we observe that IDMRG and ITEBD perform quite poorly.
Surprisingly, IDMRG usually stagnates at some value ‖B‖ >

10−7. ITEBD, on the other hand, would be, in principle, capable
of converging ‖B‖ essentially also to machine precision, albeit
at prohibitively long simulation times, as the limiting factor
appears to be the Trotter error, requiring very small time steps;
we therefore also only reach values of ‖B‖ � 10−10 with
ITEBD within reasonable simulation times [54]. VUMPS, on

the other hand, is always capable to converge ‖B‖ essentially to
machine precision, and does so—contrary to other methods—
exponentially fast and with unprecedented speed. For instance,
in the case of the Hubbard model in example (d), ITEBD only
reached a gradient norm of ‖B‖ = 1.3 × 10−7 after ≈60 hours
of absolute computing time, while VUMPS already reached
this value after only ≈30 seconds, and converged further to
‖B‖ < 10−14 in ≈90 seconds. IDMRG, on the other hand,
stagnated at a quite high value of ‖B‖ ≈ 2 × 10−4.

Finally, we also compare variational ground-state energies
for the S = 1/2 Heisenberg antiferromagnet on a cylinder with
results from Refs. [44,55]. We have already seen in Fig. 1
that VUMPS shows excellent convergence speed also for this
model. We show a comparison of obtained energies for cylinder
circumferences W = 6, 8 and bond dimensions D = 256, 512
in Table IV. There, it is shown that for all cases, VUMPS
yields lower energies with differences roughly around the
fifth–seventh significant digit [56]. We conclude that VUMPS
is thus perfectly suited for a fast and accurate study of two-
dimensional models of current interest on infinite cylinders
and improves over the current state of the art methods.

1. Observables

We also measure and compare the regular and staggered
(averaged) magnetizations mr and ms of the final state after
convergence for the Hubbard model in example (d), as in this
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FIG. 7. Comparative benchmark plots for VUMPS, IDMRG, and ITEBD. We plot the error �e on the left and the gradient norm ‖B‖ on
the right vs total computing time t in seconds for (a) the gapped isotropic S = 1 XXZ antiferromagnet at D = 120, (b) the gapped S = 1/2
XXZ antiferromagnet at � = 2 and D = 54, (c) the critical isotropic S = 1/2 XXZ antiferromagnet at D = 70, and (d) the critical Hubbard
model at U = 5 and D = 65. The dashed lines are a guide to the eye and denote the minimum values of �e and ‖B‖ obtained by the respective
algorithm. The insets show a plot of the entire ITEBD and/or IDMRG simulation with logarithmic time scale. It is obvious that VUMPS reaches
convergence orders of magnitude faster than IDMRG or ITEBD, especially for critical systems. Notice also that, while �e differs only by a few
percent between the different algorithms [up to ≈10% for (d)], VUMPS always manages to also converge ‖B‖ essentially to machine precision,
whereas IDMRG and ITEBD stagnate at some substantially higher values, remaining quite far from the variational optimum.
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TABLE IV. Comparison of obtained variational ground-state
energies for the S = 1/2 Heisenberg antiferromagnet on a cylinder
(32) for circumference W = 6,8 and bond dimensions D = 256,512.
VUMPS improves on the values obtained by IDMRG around the
fifth–seventh significant digit.

W = 6 D = 256 D = 512

VUMPS −0.672 544 677 277 −0.672 724 840 927
IDMRG −0.672 518 318 233 −0.672 724 792 693
W = 8 D = 256 D = 512
VUMPS −0.669 761 862 738 −0.670 380 353 990
IDMRG −0.669 761 333 217 −0.670 379 398 859

case all three methods use a two-site unit cell. The exact ground
state is SU(2) symmetric and thus has zero magnetization;
a finite D ground-state approximation, however, artificially
breaks this symmetry. The final values for the regular mag-
netization mr are zero to machine precision for both VUMPS
and IDMRG, but mr = 8 × 10−12 for ITEBD. The staggered
magnetization is ms = 0.011162 for VUMPS, ms = 0.080768
for IDMRG, and ms = 0.034797 for ITEBD. Both the regular
and staggered magnetizations are thus smallest for the final
state obtained from VUMPS. For IDMRG, the staggered
magnetization is highest, but the regular magnetization is zero,
which in turn is finite for ITEBD. This result is not surprising,
as VUMPS yields the best variational state out of the three
methods.

2. Truncation error

As a last figure of merit, popular in DMRG studies as a
measure of the quality of the MPS ground-state approximation
and used for extrapolations to the exact infinite D limit, we also
calculate the truncation error or discarded weight ερ of the final
state, defined in Eq. (A28). In the case of the Hubbard model in
example (d), we obtain a truncation error ερ = 2.54438 × 10−6

from IDMRG, and a slightly lower ερ = 2.45138 × 10−6 from
VUMPS.

IV. CONCLUSION AND OUTLOOK

We have introduced a novel algorithm for calculating
MPS ground-state approximations of strongly correlated one-
dimensional quantum lattice models with nearest-neighbor
or long-range interactions, in the thermodynamic limit. It
combines ideas from conventional DMRG and tangent space
methods by variationally optimizing a uniform MPS by succes-
sive solutions of effective eigenvalue problems. The algorithm
can easily be implemented by extending an existing single-site
(I)DMRG implementation with routines for (i) calculating
effective Hamiltonian contributions from infinite environments
and (ii) solving an effective “zero site” eigenvalue problem in
addition to the usual single-site problem. The new algorithm
is free of any ill-conditioned inverses and therefore does not
suffer from small Schmidt values, contrary to other tangent
space methods such as TDVP. Additionally, as it does not rely
on imaginary-time evolution, it is especially fit for studying
systems with long-range interactions.

We described and benchmarked implementations for uni-
form MPS with both single-site and multisite unit cells. We
observed that the new algorithm clearly outperforms existing
methods such as IDMRG and ITEBD, both in convergence
speed and accuracy of the final state at convergence. This is
especially also the case for systems with long-range interac-
tions or simulations of two-dimensional models on infinite
cylinders. The energy converges with unprecedented speed
after O(10–50) iterations, even in critical systems (where this
is orders of magnitude faster than conventional methods).
The algorithm further proceeds to converge the state to the
variational optimum by minimizing the energy gradient es-
sentially to machine precision; it does so exponentially fast,
even for critical systems, contrary to other methods. The
new algorithm is thus the perfect choice for studying critical
systems. Additionally, a state converged to the variational
optimum is particularly useful in cases where the quantum
state itself is required to be accurate to high precision, e.g.,
when used as a starting state for the real-time evolution or for
a variational calculation of elementary excitations [45–47].

It is straightforward to include physical symmetries that
come with good quantum numbers (such as, e.g., conserved
magnetization or particle number) after a proper definition of a
symmetric uniform MPS unit cell, where absolute (diverging)
values of these quantum numbers are replaced by densities.
All steps of the algorithm then immediately also apply to
MPS tensors with good quantum numbers. Symmetric ground
states obtained this way are an excellent starting point for
obtaining elementary excitations with well defined quantum
numbers following Ref. [45], which, for instance, enables
to target elementary excitation that lie within a multiparticle
continuum [48].

Within the same framework it is also very natural to recover
real or imaginary-time evolution by replacing the effective
Hamiltonian ground-state problems (23a) and (23b) by small
finite time evolution steps, which yields the thermodynamic
limit version of the time evolution algorithm presented in
Ref. [28]. This enables, e.g., to efficiently study real-time
evolution of quantum states on systems with long-range in-
teractions in the thermodynamic limit [57,58].

We believe that the ideas presented in this paper should
be relevant for other classes of tensor-network states as
well. Specifically, in the case of projected entangled pair
states (PEPS) [59], designed to capture ground states on
two-dimensional quantum lattices, the further development of
efficient variational algorithms—as an alternative to ITEBD
inspired approaches—is still much desired [60,61]. In particu-
lar, it motivates the search for (approximate) canonical forms
for PEPS, which would enable a translation of the VUMPS
algorithm to the two-dimensional setting. Equivalently, an
adaptation of the new algorithm for continuous matrix product
state (cMPS) [62] would allow for a much desired increase of
efficiency for cMPS simulations, building on recent advances
in that direction [63].
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APPENDIX A: THEORETICAL BACKGROUND

In this Appendix, we reiterate definitions and concepts
needed for the algorithm presented in Sec. II in more detail, and
motivate the VUMPS algorithm from a variational perspective.

1. Variational principle on manifolds

The variational principle in quantum mechanics character-
izes the ground state of a given Hamiltonian as the state |�〉
which minimizes the normalized energy expectation value

E = 〈�|H |�〉
〈�|�〉 .

If (typically for computational reasons) we only have access to
a subset of Hilbert space, the variational principle still gives a
way to find an approximation to the true ground state, namely
by solving the minimization problem within the restricted set.
If this subset is a linear subspace spanned by a number of basis
vectors {|i〉,i = 1, . . . ,N}, we obtain a generalized eigenvalue
problem

〈i|H |j〉cj = E〈i|j 〉cj

for the expansion coefficients ci in |�〉 = ∑N
i=1 ci |i〉. This

is known as the Rayleigh-Ritz method, and by orthonor-
malizing the basis it clearly amounts to projecting the full
time-independent Schrödinger equation into the variational
subspace.

If, more generally, we have a variational Ansatz |�(A)〉
which depends analytically on a number of complex param-
eters, as encoded in the complex vector A, a variational
minimum |�(A∗)〉 is characterized by a vanishing gradient
of the energy expectation value, i.e.,

〈∂ı�( Ā∗
)|H − E( Ā∗

,A∗)|�(A∗〉 = 0, (A1)

with Ā the (formally independent) complex conjugate of A,
∂i , and ∂ı̄ the complex derivatives with respect to the i’th
component of A and Ā and

E( Ā,A) = 〈�( Ā)|H |�(A)〉
〈�( Ā)|�(A)〉 .

Equation (A1) can be interpreted as a Galerkin condition:
it forces the residual (H − E)|�〉 of the full Schrödinger
eigenvalue equation—which does not have an exact solution in
the variational subset—to be orthogonal to the space spanned
by the states |∂i�(A∗)〉. If the variational subset is a manifold,
these states can be interpreted as a basis for the tangent space
of the manifold at the point of the variational optimum. Hence,
geometrically, the residual has to be orthogonal to the manifold

(and thus to its tangent space) at the point of the variational
optimum. Interpreting Eq. (A1) as a Galerkin condition on
the ground-state eigenvalue problem is useful because it can
be generalized to other eigenvalue problems which do not
necessarily have a variational characterization (and thus no
gradient), as, e.g., when the operator is non-Hermitian. Indeed,
a similar approach as is developed here was described for
finding fixed points of transfer matrices, encoded as matrix
product operators, in Ref. [64].

However, before discussing Eq. (A1) in the context of MPS,
let us conclude this section by relating it to the time-dependent
variational principle (TDVP) [27]. Geometrically, the TDVP
also amounts to an orthogonal projection of the equation
of motion (the time-dependent Schrödinger equation) onto
the tangent space of the variational manifold. In the case of
imaginary-time evolution, it can be written as

gı̄,j (A,A)
d

dt
Aj = −〈∂ı̄�(A)|H − E(A,A)|�(A)〉, (A2)

where

gı̄,j (A,A) = 〈∂ı�(A)|∂j�(A)〉
is the Gram matrix of the tangent vectors and thus the metric
of the manifold. The right hand side of Eq. (A2) is again the
gradient of the objective function, and the TDVP will thus
converge when it reaches a variational optimum A∗ where
Eq. (A1) is satisfied. However, the metric gı̄,j in the left hand
side shows that the TDVP equation is not a normal gradient
flow, but rather a proper covariant gradient flow that takes the
geometry of the manifold and its embedding into the Hilbert
space into account. We can thus also associate a quantum state
with the gradient, which is given by

|∂i�〉gi,j̄ 〈∂j̄�|(H − E)|�〉 = PT|�〉M(H − E)|�〉, (A3)

where we have omitted the arguments A and Ā, gi,j̄ is the
inverse of the metric and

PT|�〉M = |∂i�〉gi,j̄ 〈∂j̄�| (A4)

is the projector onto the tangent space at the point |�〉 in
the variational manifold M. This latter expression is only
valid when the variational parameters are proper coordinates
for the manifold (i.e., a bijective mapping). While this is not
the case for MPS because of gauge freedom (see below), the
geometrical interpretation for the Galerkin condition

PT|�〉M(H − E)|�〉 = 0 (A5)

remains valid; the correct expression for the MPS tangent-
space projector will be discussed in more detail in the following
section. Independent of whether a variational algorithm is
based on a gradient flow, the Hilbert space norm of the
gradient ‖PT|�〉MH |�〉‖ provides an objective measure for the
convergence of the state towards the variational optimum. Note
that this is different from the standard Euclidean norm of the
naive gradient vector with components 〈∂j̄�|H − E|�〉.

2. Manifold of uniform MPS and its tangent space

We have already introduced the set of uniform MPS and
some of its properties in Sec II A. For completeness, we restate
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the definition as

|�(A)〉 =
∑

s

�v†
L

(∏
n∈Z

Asn

)
�vR|s〉. (A6)

Such states can be rigorously defined in the thermodynamic
limit and correspond to the so-called purely generated finitely
correlated states of Ref. [7]. However, for all practical pur-
poses, we can interpret this state as a large but finite MPS,
which happens to be uniformly parameterized (and therefore
translation invariant) in the bulk. We have now introduced
boundary vectors vL,vR living at ±∞. They represent just
one way to close the matrix product near the boundaries, but
any other behavior is equally fine and will not affect the bulk
properties, provided that the MPS tensor A has the property
of injectivity [10]. This condition is generically fulfilled
and is in one-to-one correspondence with the MPS transfer
matrix

T =
∑

s

Ās ⊗ As =

A

Ā

(A7)

having a unique eigenvalue of largest magnitude, with corre-
sponding eigenvectors that can be reinterpreted as full rank
positive D × D matrices. A proper normalization of the state
is obtained by rescaling the tensor A such that this largest
magnitude eigenvalue is 1.

We can then use gauge invariance to transform the tensor A

into the left and right canonical representations (2) discussed
in the main text. These representations are themselves related
via the bond matrix C as As

LC = CAs
R , which allows to write

the state in the mixed canonical representation (5) familiar
from DMRG. We can also make contact with the representation
commonly used in TEBD [25,26] by additional unitary gauge
transforms. We make C diagonal by considering the SVD C =
UλV † and gauge transform Ãs

L = U †As
LU , Ãs

R = V †As
RV .

The singular values λ are then the Schmidt values of a biparti-
tion of the state and we can obtain �s = λ−1Ãs

L = Ãs
Rλ−1, or

equivalently

Ãs
C = Ãs

Lλ = λÃs
R = λ�sλ, (A8)

and L = R = λ2.
It was proven in Ref. [65] that the set of injective uMPS

constitute a (complex) manifold. We now construct the tangent
space projector P|�(A)〉 ≡ PT|�(A)〉M for a uMPS |�(A)〉 in the
thermodynamic limit.

Let us first discuss generic tangent vectors |�〉 in this
tangent space. To define them via the partial derivatives of
|�(A)〉, we require that the latter is represented using a uniform
parametrization or gauge choice of the tensor A throughout.
By applying the chain rule, the derivative will give rise to
a uniform superposition of states where a single A tensor is
replaced by a new tensor B [13,65]. However, it is clear that
we can afterwards change gauges again and absorb the gauge
factors in the tensor B that parameterizes the tangent vector,

so as to obtain the most general tangent vector representation

|Φ(B)〉 =
∑
n∈Z

∑
s

(. . . Asn−2
L A

sn−1
L BsnA

sn+1
R A

sn+2
R ) |s〉

=
∑
n∈Z

∑
sn,α,β

Bsn

(α,β) |Ψ(α,sn,β)
AC

(n)〉

=
∑
n∈Z

. . . AL AL B AR AR

. . . sn−1 sn sn+1 . . .

. . .

(A9)

The multiplicative gauge freedom of the MPS translates into an
additive gauge freedom in the tangent space, i.e., a transforma-
tion Bs → Bs + As

LX − XAs
R with X ∈ CD×D leaves |�(B)〉

invariant, as can readily be verified by explicit substitution. We
can exploit these gauge degrees of freedom to impose, e.g., the
left tangent space gauge

∑
s

As
L
†Bs =

B

ĀL

= 0 (A10)

or the right tangent space gauge

∑
s

BsAs
R
† =

B

ĀR

= 0. (A11)

Strictly speaking, these conditions can only be imposed for
tangent vectors |�(B)〉 ⊥ |�(A)〉. This is no restriction as
we can always evaluate the contribution in the direction of
|�(A)〉 separately. Under either of these two gauge constraints,
we indeed have 〈�(A)|�(B)〉 = 0, but more importantly, the
overlap between two tangent vectors simplifies to

〈�(B2)|�(B1)〉 = |Z|
∑

s

Tr
(
Bs

2
†
Bs

1

)
. (A12)

This corresponds to an Euclidean inner product for the B ten-
sors and thus to an orthonormal basis for the tangent space. The
diverging factor |Z| arises because a tangent vector contains a
sum over all lattice sites, i.e., its norm is extensive. Fortunately,
this diverging factor will drop out in all computations.

Given Eq. (A5) we need to derive the explicit form of the
projector onto the tangent space, a derivation that was written
down in Ref. [28] for the case of finite MPS. The tangent
vector |�(B)〉 = P|�(A)〉|�〉 resulting from the orthogonal
projection of a general translation invariant state |�〉 onto the
tangent space can be readily found by solving the minimization
problem

min
B

‖|�〉 − |�(B)〉‖2,

or, equivalently,

min
B

(〈�(B)|�(B)〉 − 〈�|�(B)〉 − 〈�(B)|�〉).

045145-20



VARIATIONAL OPTIMIZATION ALGORITHMS FOR … PHYSICAL REVIEW B 97, 045145 (2018)

In order to use Eq. (A12) for the first term, we, however,
need to impose the constraint in Eq. (A10) or (A11). In
the former case, this will add a term Tr[�

∑
s(A

s
L)†Bs] +

Tr[�̄
∑

s(B
s)†As

L] to the objective function, with � and �̄

corresponding Lagrange multipliers. The solution is readily
obtained by demanding ∂B̄(. . . ) = 0, where Eq. (A12) simply
results in ∂B̄〈�(B)|�(B)〉 = |Z|B. The overlap between a
tangent vector and |�〉 is given by

〈Φ(B)|Ξ〉 = |Z|

× . . .

Ξ

ĀL ĀL B̄ ĀR ĀR

. . . ,

so that its derivative ∂B̄〈�(B)|�〉 is easily obtained by omitting
the tensor B̄ from the diagram and interpreting the open legs
as defining the indices of a new tensor. Without the Lagrange
multiplier, we would simply obtain

B = . . .

Ξ

ĀL ĀL ĀR ĀR

. . . .

With the additional constraint, the solution is still straightfor-
ward. It can be easily verified that the correct value of the
Lagrange multiplier is such that the additional term acts as a
projection

Bs → Bs − As
L

[∑
t

At
L

†
Bt

]
(A13)

or, similarly,

Bs → Bs −
[∑

t

BtAt
R

†
]
As

R (A14)

if we would have chosen the right gauge of Eq. (A11).
By inserting the solution for B back into Eq. (A9), we

can read off the tangent space projector. While the value of
B depends on the gauge condition, the resulting projector is of
course gauge independent and given by

P|Ψ(A)〉 =
∑
n∈Z

. . .

ĀL ĀL ĀR ĀR

AL AL AR AR

sn−2 sn−1 sn sn+1 sn+2

. . .

− . . .

ĀL ĀL ĀL ĀR ĀR

AL AL AL AR AR

sn−2 sn−1 sn sn+1 sn+2

. . . .

We can represent the tangent space projector as

P|�(A)〉 =
∑
n∈Z

PAC
(n) − PC(n), (A15)

by defining the partial projectors

PAC
(n) = PL(n − 1) ⊗ 1n ⊗ PR(n + 1), (A16a)

PC(n) = PL(n) ⊗ PR(n + 1), (A16b)

PL(n) =
∑

α

∣∣�α
L(n)

〉〈
�α

L(n)
∣∣, (A16c)

PR(n) =
∑

α

∣∣�α
R(n)

〉〈
�α

R(n)
∣∣. (A16d)

We can verify that P2
|�(A)〉 = P|�(A)〉 by using

PL(m) PL(n) = PL(max(m,n)), (A17a)

PR(m) PR(n) = PR(min(m,n)). (A17b)

3. Gradient and effective Hamiltonians

As discussed in the beginning of this section, a variational
optimum can be characterized geometrically as

P|�(A)〉(H − E)|�(A)〉 = 0, (A18)

where E = 〈�(A)|H |�(A)〉 (unit normalization is assumed).
Since the Galerkin condition is automatically ensured in the
direction of the MPS itself, the only nontrivial information
of Eq. (A18) is thus contained in the part of the tangent
space orthogonal to |�(A)〉. This is convenient, as P|�(A)〉 was
actually constructed as the projector onto the part of tangent
space orthogonal to |�(A)〉 in the first place. While this implies
that the E subtraction does not contribute, it is convenient to
keep it around, as it ensures that the individual terms in the
final expression are finite in the thermodynamic limit.

Applying the tangent space projection as in the previous
section to the state |�〉 = H |�(A)〉 gives rise to a tangent
vector of the form Eq. (A9), with

Bs = A′s
C − C ′As

R or Bs = A′s
C − As

LC ′, (A19)

where A′
C originates from applying PAC

(n) and C ′ from
applying PC(n). By writing |�(A)〉 itself in a compatible
gauge for every individual term, we obtain the diagrammatic
expressions

A′
C = . . .

AL AL AC AR AR

ĀL ĀL ĀR ĀR

H . . .
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and

C ′ = . . .

AL AL C AR AR

ĀL ĀL ĀR ĀR

H . . .

We can thus obtain A′
C and C ′ by acting with the effective

Hamiltonians HAC
and HC introduced in (9) and (10) in the

main text onto AC and C:

A′
C = HAC

A′
C, C ′ = HC C. (A20)

Even without subtracting the energy, the two choices of
B (which are related by the additive gauge transform with
X = C ′) will be finite in the thermodynamic limit. However,
the individual tensors A′

C and C ′ will have a divergent con-
tribution proportional to AC and C, respectively. Indeed, as
discussed in the main text for the case of nearest-neighbor
interactions, the effective Hamiltonians HAC

and HC have a
divergent contribution corresponding to the total energy times
the identity operator. It is thus by subtracting H → H̃ =
H − E (or h → h̃ = h − e for the local terms) that these
divergences are canceled. Appendix C provides a detailed
description of the construction of the effective Hamiltonian
for other types of interactions and illustrates explicitly that the
diverging contributions cancel exactly.

A variational extremum is characterized by |�(B)〉 = 0,
which leads to B = 0 for either gauge choice, as these choices
completely fix the gauge freedom. This gives rise to the
following simultaneous conditions:

A′s
C = As

LC ′ = C ′As
R, (A21)

As
C = As

LC = CAs
R. (A22)

However, because the gauge transformation that relates AL

and AR is unique up to a factor (for injective MPS), C and
C ′ have to be proportional, and we have actually obtained the
eigenvalue equations

A′
C = HAC

AC = EAC
AC, (A23)

C ′ = HC C = EC C. (A24)

As we are looking for a variational minimum, the
eigenvalues EAC

and EC should be the lowest eigenvalues
of the effective Hamiltonians HAC

and HC . Depending
on how we have regularized the divergent contributions,
these eigenvalues might be different. If we have completely
subtracted the energy expectation value from every term, we
then have EC = EAC

= 0.

4. Convergence and error measures

While neither VUMPS nor IDMRG or ITEBD directly use
the gradient itself, the Hilbert space norm of |�(B)〉 can be used
as an objective convergence measure to indicate how far the
current state is from the variational optimum. For either choice
of B, we obtain ‖|�(B)〉‖ = √

N‖B‖, with N the diverging
number of sites and ‖B‖ the 2-norm of the tensor B. Its square

is given by

‖B‖2 =
∑
s,α,β

∣∣Bs
α,β

∣∣2

=
∑

s

∥∥A′s
C − As

LC ′∥∥2

=
∑

s

∥∥A′s
C − C ′As

R

∥∥2

= ‖A′
C‖2 − ‖C ′‖2, (A25)

where the equalities follow from C ′ = ∑
s(A

s
L)†A′s

C =∑
s A′s

C(As
R)†. Note that none of these expressions are well

suited for numerically evaluating the norm close to conver-
gence, as they involve subtracting quantities that are almost
equal, especially when the state is close to convergence.

An alternative strategy for evaluating ‖B‖ is by using the
matrix notation for tensors (17) to write B[�] = A′[�]

C − ALC ′.
SinceAL is an isometry, we can extend it to a dD × dD unitary
matrix U = [AL NL], whereNL contains an orthonormal basis
for the (d − 1)D-dimensional null space of A†

L, i.e., A†
LNL =

0. As the 2-norm is unitarily invariant, we can write

‖B‖ = ‖B[�]‖ = ‖U †B[�]‖ = ‖N†
LB[�]‖ = ∥∥N†

LA
′[�]
C

∥∥.

The second equality follows from A†
LB[�] = 0 and the third

from the null space property of NL. We then obtain ‖B‖ as the
Frobenius norm of a single matrix, which can be calculated
accurately as a sum of strictly positive numbers. For further
reference, we reshape NL into a D × d × (d − 1)D tensor NL

and similarly introduce a (d − 1)D × d × D tensor NR via the
defining relations∑

s

(
Ns

L

)†
As

L = 0,
∑

s

(
Ns

L

)†
Ns

L = 1, (A26)

∑
s

As
R

(
Ns

R

)† = 0,
∑

s

Ns
R

(
Ns

R

)† = 1. (A27)

While the norm of the gradient provides a measure for
the quality of approaching the variational minimum, it does
not provide any information about the quality of the (u)MPS
approximation to the true ground-state itself. In the context of
(two-site) DMRG schemes, a popular measure is the truncation
error, as it is naturally accessible throughout the algorithm
(see, e.g., Refs. [12,52,53]). But also within VUMPS we can
compute this quantity by first writing the state |�(A)〉 in a
mixed canonical form with a two-site center block:

|�(A)〉 =
∑

n,α,β,sn,sn+1

(A2C)snsn+1
α,β

∣∣�α
L

〉|sn〉|sn+1〉
∣∣�β

R

〉
.

The two-cite center tensor Ass ′
2C = As

LAs ′
C = As

CAs ′
R = As

LCAs ′
R

(known as the two-site wave function ψss ′
in standard DMRG)

has an associated effective Hamiltonian HA2C
. We can compute

its lowest eigenvector Ã2C and compute its singular value
decomposition (by first reshaping it to a dD × dD matrix)
Ãss ′

2C = UsSV s ′
. The truncation error then corresponds to the

discarded weight

ερ =
dD∑

k=D+1

S2
k (A28)
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when truncating the inner bond dimension of this two-site
tensor to its original value D.

A more generic measure for the error in the vari-
ational approximation is given by the energy variance
〈�(A)|(H − E)2|�(A)〉 = ‖(H − E)|�(A)〉‖2. This quantity
is also used in the context of, e.g., variational Monte Carlo
and various other methods. We can systematically decompose
(H − E)|�(A)〉 into various parts: the projection onto |�(A)〉
is automatically zero by the definition of E. The projection
onto the tangent space is zero when we are at the variational
minimum. Next, we can project (H − E)|�(A)〉 onto the space
of all two-site variations, which is given by states of the form

|�(2)(B2)〉 =
∑

s

∑
n∈Z

(
. . . A

sn−1
L B

snsn+1
2 A

sn+2
R . . .

)|s〉 (A29)

In the case of nearest-neighbor Hamiltonians, this space
captures (H − E)|�(A)〉 completely, namely by choosing
Bst

2 = 〈st |h̃|s ′t ′〉As ′t ′
2C with A2C the two-site center tensor de-

fined in the previous paragraph and h̃ the local terms of the
Hamiltonian, with the current expectation value subtracted,
i.e., H − E = ∑

n h̃n,n+1. However, there is again an addi-
tive representation redundancy (gauge freedom) Bst

2 → Bst
2 +

As
LXt − XsAt

R , which enables us to choose representations
B satisfying, e.g., a left gauge condition

∑
s(A

s
L)†Bst

2 = 0
(∀t). The advantage of this representation is again that it
facilitates the calculation of the norm, as ‖|�(2)(B2)〉‖2 =
N‖B2‖2 with N the diverging number of sites. The projection
of (H − E)|�(A)〉 onto this space can be worked out similarly
as for the tangent space, and leads to the general result (for any
Hamiltonian)

Bst
2 = A′st

2C − As
LA′t

C or Bst
2 = A′st

2C − A′s
CAt

R (A30)

with A′
2C = HA2C

A2C a single application of the two-site
effective Hamiltonian. Using As

L(At
L)† + Ns

L(Nt
L)† = δs,t1, we

can rewrite the first form of B2 as

Bst
2 = Ns

L

∑
s ′

(
Ns ′

L

)†
A′s ′t

2C .

We now also apply (As
R)†At

R + (Ns
R)†Nt

R = δs,t1 to the
right-hand side and recognize A′s

C = A′st
2C(At

R)†. But since∑
s(N

s
L)†A′s

C = 0 at the variational minimum, we obtain at the
variational minimum

Bst
2 = Ns

L

[∑
s ′t ′

(
Ns ′

L

)†
A′s ′t ′

2C

(
Nt ′

R

)†]
Nt

R

and, in particular,

‖B2‖ =
∥∥∥∥∥
∑
s ′t ′

(
Ns ′

L

)†
A′s ′t ′

2C

(
Nt ′

R

)†∥∥∥∥∥. (A31)

We can also relate ‖B2‖2 to the truncation error defined in
the previous paragraph. For the truncation error arising in the
context of two-site DMRG schemes, the lowest eigenvector
Ã2C of the two-site effective Hamiltonian is used. When the
DMRG algorithm has converged, the rank D approximation of
Ã2C should again be the original two-site center tensor Ast

2C =
As

LCAt
R . But this means that we can construct NL and NR

exactly from the singular vectors corresponding to the (d −
1)D singular values that were truncated away, and thus that the

truncation error is given by ερ = ‖∑
st (N

s
L)†Ãst

2C(Nt
R)†‖2. This

definition is close to ‖B2‖2, except that the latter uses the tensor
A′

2C arising from applying the two-site effective Hamiltonian
once. As A2C and Ã2C are anyway close, we can think of A′

2C

as providing the leading order correction from A2C to Ã2C in
the sense of a Krylov scheme. Indeed, in the first iteration of the
Lanczos method, the eigenvector Ã2C would be approximated
in the form αA2C + βA′

2C . Since the first term drops out when
projecting onto NL and NR , the DMRG truncation error and
‖B2‖2 will be of the same order of magnitude.

Note, however, that ‖B2‖2 only captures the full energy
variance (per site) for nearest-neighbor Hamiltonians, whose
action on |�(A)〉 is completely contained within the space of
two-site variations as noticed above. In that case, we can see
that the only term that survives in A′

2C after projection onto NL

and NR is the local term, where h̃ acts on the two-site center
tensor. We can thus also write

‖B2‖ =
∥∥∥∥∥
∑
s ′t ′st

〈s ′t ′|h̃|st〉(Ns ′
L

)†
Ast

2C

(
Nt ′

R

)†∥∥∥∥∥. (A32)

We can also relate this to the truncation step in (I)TEBD, where
we would apply exp(−�t h̃) to every two-site block of the state.
The resulting truncation would lead to a discarded weight of
the order �t2‖B2‖2.

The considerations regarding the projection of (H −
E)|�(A)〉 onto the space of two-site variations can also be
used to devise a scheme for expanding the bond dimension of
the uMPS. This approach is presented in the next section.

APPENDIX B: DYNAMIC CONTROL
OF THE BOND DIMENSION

A characteristic feature of two-site implementations of
conventional MPS methods—such as, e.g., (I)TEBD or
(I)DMRG—is that the bond dimension D of the MPS is auto-
matically increased in every iteration and has to be truncated
in order to remain at a finite maximum bond dimension. This
truncation step lies at the basis of why such schemes for finding
ground states will never truly converge to the variational
minimum up to machine precision, as observed in the results.
Indeed, even in finite size simulations, two-site DMRG is
used to initialize the state and one-site DMRG to obtain final
convergence. However, the truncation step in two-site methods
has the advantage that the bond dimension can be dynamically
increased (or decreased) according to some quality constraint,
such as the magnitude of the smallest Schmidt value or the
discarded weight. Especially in the presence of symmetry,
this is important to automatically obtain the correct symmetry
sectors within the virtual MPS space.

The VUMPS algorithm presented in the main text is
variational from the start and therefore works at fixed bond
dimension D, i.e., it is a one-site scheme in DMRG terminol-
ogy. Alternative subspace expansion strategies for dynamically
increasing the bond dimension in such one-site schemes have
been proposed [22,66]. These methods use information from
acting with the global Hamiltonian onto the current state to
either add a tiny perturbation to the current MPS or to generate a
larger basis in which the effective eigenvalue problem is solved.
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We have developed a similar subspace expansion technique
that works for a uMPS in the thermodynamic limit. It is
based on projecting the full action of the Hamiltonian (H −
E)|�(A)〉 onto the space of two-site variations, as developed
in the previous section. There we have found the representation

Bst
2 = Ns

L

[∑
s ′t ′

(
Ns ′

L

)†
A′s ′t ′

C

(
At ′

R

)†]
At

R

+ Ns
L

[∑
s ′t ′

(
Ns ′

L

)†
A′s ′t ′

2C

(
Nt ′

R

)†]
Nt

R

= A′s
CAt

R − As
LC ′At

R + Ns
L

[∑
s ′t ′

(
Ns ′

L

)†
A′s ′t ′

2C

(
Nt ′

R

)†]
Nt

R.

Even when we have not yet reached the variational minimum,
the first term (on line 1) or the first two terms (on line 2) are
captured in the tangent space, and only the last term (on either
line) contains a new search direction. To capture it completely,
we would need to expand the bond dimension from value D to
dD. If we want to expand to a new dimension D̃ = D + �D,
we can use a singular value decomposition to compute the
rank �D approximation of

∑
s ′t ′(N

s ′
L )†A′s ′t ′

2C (Nt ′
R )† = USV . By

keeping only the largest �D singular values, U and V are left
and right isometries of size (d − 1)D × �D and �D × (d −
1)D, respectively. As remarked in the previous section, in the
case of nearest-neighbor interactions, the projection of A′

2C

onto NL and NR does not require the full two-site effective
Hamiltonian but reduces to the local term.

We do not directly update the current MPS, but rather write
it in an en expanded basis in a mixed canonical form with
matrices

Ãs
L =

[
As

L Ns
LU

0 0

]
, Ãs

R =
[

As
R 0

V †Ns
R 0

]
,

C̃ =
[
C 0
0 0

]
.

With these initial tensors, we can now start a new iteration
of VUMPS. Note that we can straightforwardly update the
environments used to construct the effective Hamiltonians into
this expanded basis, which is necessary if we want to use them
as initial guess.

APPENDIX C: EXPLICIT CONSTRUCTION
OF EFFECTIVE HAMILTONIANS

In this section, we describe how to efficiently apply the
effective Hamiltonians HAC

and HC onto the center site tensor
As

C and bond matrix C and how the necessary individual terms
are explicitly constructed. Such a procedure is needed for solv-
ing the effective eigenvalue problems (23a) and (23b) by means
of an iterative eigensolver. The case of systems with nearest-
neighbor interaction has already been discussed in Sec. II B.
In the following, we consider the cases of Hamiltonians with
long-range interactions in Sec. C 1 and general Hamiltonians
given in terms of matrix product operators (MPOs) in Sec. C 2.

1. Long-range interactions

Consider Hamiltonians with long-range interactions of
the form H = ∑

j∈Z hj , where hj is itself an infinite

sum

hj =
∑
n>0

f (n) ojoj+n (C1)

and operators oi act on a single site i and commute when acting
on different sites [oi,oj ] = 0, i �= j . Without loss of generality,
we restrict to a single pair of (bounded) operators o, which
commute when acting on different sites [oi,oj ] = 0, i �= j

[67]. The generalization to Hamiltonians containing several
terms of that form is straight forward. Furthermore, we assume
distance functions f (n) that are bounded in the sense of∑

n>0 |f (n)| < ∞, such that ‖hj‖ < ∞, and that can be well
approximated by a sum of K exponentials, i.e.,

f (n) ≈
K∑

k=1

ckλ
n−1
k , (C2)

with |λk| < 1 and n > 0. In practice, for an infinite system
we fit f (n) with a suitable number of K exponentials over
a distance N large enough, such that f (N ) and the largest
residuals are below some desired threshold.

Examples of Hamiltonians that fall in this class are the
transverse field Ising (TFI) model or XXZ model with power-
law interactions [68–70], as well as the famous Haldane-
Shastry model [42,43] for which the ground state is exactly
known. Similar to the case of nearest-neighbor interactions in
Sec. II B, the effective Hamiltonians factorize into a number
of terms which can all be applied efficiently. For HAC

, these
are five terms, out of which four are already familiar from
the case of nearest-neighbor interactions. Two of these are the
left and right block Hamiltonians HL and HR with infinitely
many local contributions from hj acting on sites strictly left
or right of the current center site, and the other two are the
terms containing interactions between the center site and the
left and right block respectively, i.e., where hj partially acts on
AC . For long-range interactions, we have one additional term,
containing infinitely many interaction terms between the left
and the right block only without involving the center site, i.e.,
where oj acts to the left of the current center site, and oj+n acts
to the right.

To construct all these terms, we start by defining the operator
transfer matrices

T
[o]
L =

∑
st

ost Ā
s
L ⊗ At

L, T
[o]
R =

∑
st

ost Ā
s
R ⊗ At

R. (C3)

The current energy density expectation value e =
〈�(A)|h|�(A)〉 can thus be written as

e = (1|T [o]
L

[∑
n>0

f (n)(TL)n−1

]
T

[o]
L |R)

= (L|T [o]
R

[∑
n>0

f (n)(TR)n−1

]
T

[o]
R |1) (C4)

or, using (C2),

e =
∑

k

ck(1|T [o]
L

[∑
n�0

(λkTL)n
]
T

[o]
L |R)

=
∑

k

ck(L|T [o]
L

[∑
n�0

(λkTR)n
]
T

[o]
L |1). (C5)
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Since |λk| < 1, the geometric series converge and we can
perform them explicitly. We proceed by defining(

O
[k]
L

∣∣ = (1|T [o]
L [1 − λkTL]−1,∣∣O[k]

R

) = [1 − λkTR]−1T
[o]
L |1). (C6)

These terms can again either be calculated recursively by
explicitly evaluating the geometric sums term by term until
convergence, or more efficiently by iteratively solving the
following systems of linear equations:(

O
[k]
L

∣∣[1 − λkTL] = (1|T [o]
L ,

[1 − λkTR]
∣∣O[k]

R

) = T
[o]
L |1), (C7)

using iterative methods.
We represent these terms by the diagrams

O
[k]
L = O

AL

ĀL

[11 − λkTL]−1

O
[k]
R = [11 − λkTR]−1

AR

ĀR

O

and collect all such terms into single left and right environment
contributions

(OL| =
∑

k

ck

(
O

[k]
L

∣∣ |OR) =
∑

k

ck

∣∣O[k]
T

)
(C8)

and further

(hL| = (OL|T [o]
L , |hR) = T

[o]
R |OR). (C9)

We can then write for the energy density

e = (hL|R) = (L|hR). (C10)

Comparing with (C4), we have thus defined

(hL| = (1|T [o]
L

[∑
n>0

f (n)(TL)n−1

]
T

[o]
L ,

|hR) = T
[o]
R

[∑
n>0

f (n)(TR)n−1

]
T

[o]
R |1).

(C11)

With these definitions at hand, we can write the left and
right block Hamiltonians as

(HL| = (hL|
∞∑

n=0

[TL]n, |HR) =
∞∑

n=0

[TL]n|hR). (C12)

These equations are exactly the same as Eq. (14) for the case
of nearest-neighbor interactions, but with different (hL| and
|hR). We can thus evaluate the geometric sums recursively or
by solving a linear system iteratively, as explained in Sec. II B.
Note that we again start by applying an energy shift (hL| →
(h̃L| = (hL| − e|R)(1| and similar for |hR), such that (h̃L|R) =
(L|h̃R) = 0.

We are now ready to formulate the action of HAC
onto As

C

as

A s
C = HLAs

C + As
CHR + OL

t

os
tA

t
C +

t

os
tA

t
C OR +

k

ckλk O
[k]
L As

C O
[k]
R

AC = HL

AC

+

AC

HR + OL o

AC

+ o

AC

OR +
k

ckλk O
[k]
L

AC

O
[k]
R

(C13)

The additional factor of λk in the sum in the last term arises due to As
C adding an additional site between the left and right operators

o. Similarly, the action of HC onto C becomes

C ′ = HLC + CHR +
∑

k

ckO
[k]
L CO

[k]
R ,

C ′ = HL

C

+

C

HR +
∑

k

ck O
[k]
L

C

O
[k]
R (C14)

In (C13), the first two terms can be applied in O(dD3),
the second two in O(d2D2) + O(dD3) and the last term in
O(KdD3) operations, and in (C14) the first two terms in
O(D3) and the last term in O(KD3) operations. In general, we
have to perform 2(K + 1) iterative inversions involvingO(D3)
operations and collect K terms to arrive at the necessary terms

for (C13) and (C14), where the solutions from the previous it-
eration can be used as starting vectors to speed up convergence.

If there are additional simple single or nearest-neighbor
two-site terms present in the Hamiltonian, appropriate terms
as described in Sec. II B can be added. For a pseudocode
summary for obtaining the necessary explicit terms of HAC

and
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TABLE V. Pseudocode for obtaining the explicit terms of the effective Hamiltonians HAC
and HC for systems with with long-range

interactions and their applications onto a state.

Algorithm 5 Explicit terms of effective Hamiltonians with long range interactions and their application onto a state
Input: operator o defining (C1), parameters ck and λk defining (C2), current uMPS tensors AL, AR in left and right gauge,

left dominant eigenvector (L| of TR, right dominant eigenvector |R) of TL, desired precision S for terms involving infinite
geometric sums

Output: Explicit terms of effective Hamiltonians HAC and HC , updated AC and C
1: function HeffTerms(H = {o, {ck}, {λk}},AL,AR,L,R, S) Calculates explicit terms of effective Hamiltonians

2: Calculate O
[k]
L and O

[k]
R by iteratively solving (C7) for each λk to machine precision

3: Calculate single environment contributions OL and OR from (C8) and hL and hR from (C9)
4: Calculate HL and HR by iteratively solving (14) or (preferably) (15), to precision S

5: HAC ← {o, {ck}, {λk}, {Ok
L}, {Ok

R}, OL, OR, HL, HR}
6: HC ← {{ck}, {Ok

L}, {Ok
R}, HL, HR}

7: return HAC , HC

8: end function
9: function ApplyHAC(AC ,HAC ) Terms of HAC from HeffTerms(H,AL,AR,L,R, S)

10: Calculate updated AC from (C13)
11: return AC

12: end function
13: function ApplyHC(C,HC) Terms of HC from HeffTerms(H,AL,AR,L,R, S)
14: Calculate updated C from (C14)
15: return C
16: end function

HC for Hamiltonians with long-range interactions, and their
applications onto a state, required for solving the effec-
tive eigenvalue problems using an iterative eigensolver, see
Table V.

2. General Hamiltonians given in terms of MPOs

Consider the Hamiltonian H given in terms of an infinite
matrix product operator (MPO) [23,34,71–75] with four-index
MPO elements Wab

ss ′ with a,b = 1, . . . ,dW and s,s ′ = 1, . . . ,d

and we call dW the MPO bond dimension. In terms of the oper-
ator valued matrices Ŵ ab = ∑

ss ′ W
ab
ss ′ |s〉〈s ′|, the Hamiltonian

can then be written as

H = ŵL

⎡
⎣∏

j∈Z

Ŵ[j]

⎤
⎦ ŵR

= . . . W W W W W . . .

where Ŵ[j ] contains operators acting on site j only and ŵL and
ŵR are operator valued boundary vectors.

An example for such an MPO decomposition for the
transverse field Ising (TFI) Hamiltonian with exponentially
decaying long-range interaction,

HTFI = −J
∑

j

∑
n>0

λn−1XjXj+n − h
∑

j

Zj

with λ < 1 given by

Ŵ =
⎡
⎣ 1 0 0

−JX λ1 0
−hZ X 1

⎤
⎦,

ŵL = [−hZ X 1], ŵR = [1 − JX − hZ]T , (C15)

where X and Z are Pauli matrices. For the TFI Hamiltonian,
we thus have dW = 3 and the limit λ = 0 corresponds to the
nearest-neighbor interaction case.

In order to efficiently apply the effective Hamiltonians HAC

and HC , it is necessary to determine the left and right (quasi)
fixed points L[W ]

a and R[W ]
a of the MPO transfer matrices

T
[W ]
L/R

ab =
∑
ss ′

Wab
s ′s Ā

s ′
L/R ⊗ As

L/R, (C16)

where—similar to MPS tensors—L[W ]
a and R[W ]

a are collec-
tions of dW matrices of dimension D × D, with a = 1, . . . ,dW .
These two objects are in fact the thermodynamic limit versions
of the objects defined in Eq. (190) and (191) in Ref. [12].

Typically, MPO representations Ŵ ab of (quasi)local Hamil-
tonians (such as, e.g., Eq. (C15)) are of Schur form [75],
such that the MPO transfer matrix contains Jordan blocks and
that the dominant eigenvalue is one and of twofold algebraic
degeneracy. Such MPO transfer matrices therefore technically
do not have well defined fixed points. We can, however, find
quasifixed points L[W ]

a and R[W ]
a , that are fixed points up to a

term contributing to the energy density expectation value in
one of the dW elements of L[W ]

a and R[W ]
a . An application of

T
[W ]
L/R

ab
onto both quasifixed points will therefore accumulate

an additional term contributing to the extensive global energy
expectation value. Similar to the terms in Eq. (14) or Eq. (C12)
in the previous cases involving infinite geometric sums, we can
however safely discard these diverging contributions, which
is equivalent to setting the energy expectation values of the
semi-infinite left and right half of the system to zero (see
below).

In the following, we briefly reiterate the procedure of
Ref. [75] to systematically determine L[W ]

a and R[W ]
a from given

Ŵ ab and As
L/R . The obtained solutions will of course contain

the results of Secs. II B and C 1 as special cases.
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Without loss of generality we assume Ŵ ab to be of lower
triangular form, i.e., Ŵ ab = 0,∀b > a. Furthermore, we as-
sume the typical case of any nonzero diagonal elements being
proportional to the identity, i.e., Ŵ aa = λa1, where λa � 1 and
usually λ1 = λdW

= 1, as is, e.g., the case in (C15) [76]. By
defining the result of the action of the MPO transfer matrix as

(YLa| =
∑
b>a

(
L

[W ]
b

∣∣T [W ]
L

ba
, (C17)

|YRa) =
∑
b<a

T
[W ]
R

ab∣∣R[W ]
b

)
, (C18)

the system of fixed point equations can be written as

(
L[W ]

a

∣∣ = (
L[W ]

a

∣∣T [W ]
L

aa + (YLa|, (C19)∣∣R[W ]
a

) = T
[W ]
R

aa∣∣R[W ]
a

) + |YRa). (C20)

Notice that due to the lower triangular structure of Ŵ ab, the
terms (YLa| and |YRa) only contain contributions from (L[W ]

b>a|
and |R[W ]

b<a) and we can solve (C19) and (C20) recursively,
starting with a = dW for L[W ]

a and with a = 1 for R[W ]
a , which

initially amounts to (L[W ]
dW

| = (1| and |R[W ]
1 ) = |1). Terms with

T
[W ]
L/R

aa = 0 are particularly simple and simply reduce to the
identification (L[W ]

a | = (YLa| and |R[W ]
a ) = |YRa).

Terms with T
[W ]
L/R

aa = λaTL/R where λa < 1, now result in
solutions of the form

(
L[W ]

a

∣∣ = (YLa|[1 − λaTL]−1, (C21)∣∣R[W ]
a

) = [1 − λaTR]−1|YRa), (C22)

equivalent to terms such as (C6) stemming from infinite
geometric sums of (weighted) MPS transfer matrices.

Equivalently, terms with T
[W ]
L/R

aa = TL/R then result in rela-
tions of the form

(
L[W ]

a

∣∣[1 − TL] = (YLa|, (C23)

[1 − TR]
∣∣R[W ]

a

) = |YRa), (C24)

which in general do not have a formal solution, since the left-
hand sides of these equations live in the subspace orthogonal to
the dominant eigenspaces of TL/R , while the right-hand sides
generally do have contributions in the dominant eigenspace.
We can, however, discard these contributions by projecting
onto the complementary subspace, and then obtain (L[W ]

a | and
|R[W ]

a ) by solving the following systems of equations (see also
Appendix D):

(
L[W ]

a

∣∣[1 − TL + |R)(1|] = (YLa| − (YLa|R)(1|, (C25a)

[1 − TR + |1)(L|]∣∣R[W ]
a

) = |YRa) − |1)(L|YRa). (C25b)

We have encountered exactly the same type of equations
in (15) when evaluating infinite geometric sums of transfer
matrices, after a constant shift in energy to remove diverging
terms. The MPO formalism thus automatically yields these

contributions in a form where the sums have already been
explicitly performed.

Such a situation typically occurs only for the final terms
in the recursive solution of the fixed point equations, i.e., for
(L[W ]

1 | and |R[W ]
dW

). A concrete evaluation (see below) of the
discarded terms in these cases shows that they correspond
to contributions to the energy density expectation value, i.e.,
discarding these terms is equivalent to a constant shift in
energy, such that the energy density is zero and we have
(L[W ]

1 |R) = (L|R[W ]
dW

) = 0. After applying T
[W ]
L/R once onto the

quasifixed points, we thus have for the first element of L[W ]

and the last element of R[W ],

(YL1| = (
L

[W ]
1

∣∣ + (YL1|R)(1|,
|YRdW

) = ∣∣R[W ]
dW

) + |1)(L|YRdw
),

(C26)

i.e., the fixed point relations only hold up to an additive
diagonal correction for these elements. These corrections
correspond to the energy density expectation value

e = (YL1|R) = (L|YRdw
) (C27)

and they can in fact be used for its evaluation.
As a concrete example, for the long-range TFI Hamiltonian

given by MPO (C15), we obtain

(
L

[W ]
1

∣∣[1 − TL] = −h (1|T Z
L − J (1|T X

L [1 − λTL]−1T X
L ,(

L
[W ]
2

∣∣ = (1|T X
L [1 − λTL]−1,(

L
[W ]
3

∣∣ = (1|,

and

∣∣R[W ]
1

) = |1),∣∣R[W ]
2

) = −J [1 − λTR]−1T X
R |1),

[1 − TR]
∣∣R[W ]

3

) = −h T Z
R |1) − J T X

R [1 − λTR]−1T X
R |1).

Having determined the left and right quasifixed points of the
MPO transfer matrices, it is now particularly easy to calculate
the action of the effective Hamiltonians HAC

onto As
C as

A′s
C =

∑
abt

W ab
st L[W ]

a At
C R

[W ]
b

A′
C = L[W ] R[W ]W

AC

(C28)
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and, equivalently, the action of HC onto C as

C ′ =
∑

a

L[W ]
a C R[W ]

a

C ′ = L[W ] R[W ]

C

(C29)

which can be performed inO(ddWD3) + O(d2d2
WD2), respec-

tive O(dWD3) operations. In total we also have to perform an
iterative inversion for each diagonal element of Ŵ .

This framework is very flexible, general, and powerful,
once a routine for determining quasifixed points of general
MPO transfer matrices has been implemented. The effective
Hamiltonians of Secs. II B and C 1 are contained within
as special cases. A pseudocode summary for obtaining the
necessary explicit terms of HAC

and HC for Hamiltonians given
in terms of an MPO, and their applications onto a state, required
for solving the effective eigenvalue problems using an iterative
eigensolver, is presented in Table VI.

APPENDIX D: GEOMETRIC SUMS
OF TRANSFER MATRICES

We wish to evaluate terms involving infinite geometric sums
of the form

(y| = (x|
∞∑

n=0

T n |y) =
∞∑

n=0

T n|x). (D1)

Such expressions typically arise in situations where one sums
up contributions of successive applications of T onto some
fixed virtual boundary vector x, with the initial contribution
being the boundary vector x itself. This is reflected in the above
expression by summing from n = 0 and using the definition
T 0 = 1.

We assume a spectral decomposition of the transfer matrix
given by

T =
D2−1∑
j=0

λj |j )(j |, (D2)

where the left and right eigenvectors are mutually orthonormal,
i.e., (j |k) = δjk . Note that T is in general not Hermitian and
thus (j | �= |j )†.

For a generic injective normalized state, T has a unique
eigenvalue of largest magnitude given by λ0 = 1, whereas all
other eigenvalues are contained in the unit circle (|λj>0| < 1).
We divide into dominant and complementary subspaces and
get for powers of T :

T n = |0)(0| +
D2−1∑
j=1

λn
j |j )(j |. (D3)

We can safely perform the geometric sum for all eigenvalues
|λj>0| < 1, while λ0 = 1 contributes a formally diverging term

∞∑
n=0

T n =
∞∑

n=0

|0)(0| +
D2−1∑
j=1

∞∑
n=0

λn
j |j )(j | (D4)

= |N||0)(0| +
D2−1∑
j=1

(1 − λj )−1|j )(j |. (D5)

The interpretation of this diverging contribution depends on
the situation. By using the projectors

P = |0)(0|, Q = 1 − |0)(0| (D6)

onto the dominant and complementary subspaces we define
the projected transfer matrix

T =
D2−1∑
j=1

λj |j )(j | = QT = T Q = T − P. (D7)

We realize that the spectral decomposition of (1 − T )−1 has
a component of |0)(0|

(1 − T )−1 = |0)(0| +
D2−1∑
j=1

(1 − λj )−1|j )(j | (D8)

and therefore identify the second term in (D5) as
D2−1∑
j=1

(1 − λj )−1|j )(j | = Q(1 − T )−1Q. (D9)

For the geometric sum, we then obtain
∞∑

n=0

T n = |N||0)(0| + Q(1 − T )−1Q (D10)

with a diverging contribution from P . Plugging into (D1), we
finally get

(y| = |N| (x|0) (0| + (x|Q(1 − T )−1,

|y) = |N| |0) (0|x) + (1 − T )−1Q|x).
(D11)

Usually, it is not necessary to calculate the full matrix
expression of

∑
n T n, but to just act with it onto some (x| or |x).

The diverging contributions can typically be safely discarded,
as they correspond to a constant (albeit infinite) offset of some
extensive observable (e.g., the Hamiltonian). The action of the
finite remaining part can be calculated efficiently by iteratively
solving the linear system of equations of the type A�y = �x or
�y†A = �x†

(y|(1 − T ) = (x|Q, (1 − T )|y) = Q|x) (D12)

with inhomogeneities �x = Q|x) and �x† = (x|Q. One can then
efficiently compute |y) and (y| by employing an iterative
Krylov subspace method such as BICGSTAB [77] or GMRES [78].
For such methods only the implementation of an (left or right)
action of (1 − T ) onto a vector is necessary, which can be done
efficiently with O(dD3) operations. If the transfer matrix is in
left or right canonical form, we recover the linear systems in
Eqs. (15) and (C25):

(y|[1 − TL + |R)(1|] = (x| − (x|R)(1|,
[1 − TR + |1)(L|]|y) = |x) − |1)(L|x). (D13)
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TABLE VI. Pseudocode for obtaining the explicit terms of the effective Hamiltonians HAC
and HC for general Hamiltonians in MPO form

and their applications onto a state.

Algorithm 6 Explicit terms of effective Hamiltonians in MPO form and their application onto a state
Input: MPO Ŵ defining the Hamiltonian, current uMPS tensors AL, AR in left and right gauge, left dominant eigenvector

(L| of TR, right dominant eigenvector |R) of TL, desired precision S for iterative solution of linear system of equations
Output: Explicit terms of effective Hamiltonians HAC and HC , updated AC and C

1: function HeffTerms(H = Ŵ ,AL,AR,L,R, S) Calculates explicit terms of effective Hamiltonians

2: L[W ] ←CalcLW(Ŵ ,AL,R, S)

3: R[W ] ←CalcRW(Ŵ ,AR,L, S)

4: HAC ← {Ŵ , L[W ], R[W ]}
5: HC ← {L[W ], R[W ]}
6: return HAC , HC

7: end function
8: function CalcLW(Ŵ ,AL,R, S) Calculates left quasi fixed point of MPO transfer matrix T

[W ]
L

9: (L
[W ]
dw

| ← (11|
10: for a = dw − 1, . . . , 1 do
11: Calculate (YLa| from (C17)

12: if T
[W ]
L

aa
== λaTL then

13: Calculate (L
[W ]
a | by iteratively solving (C21) to machine precision

14: else if T
[W ]
L

aa
== TL then

15: Calculate (L
[W ]
a | by iteratively solving (C25a) to precision S

16: else if T
[W ]
L

aa
== 0 then

17: (L
[W ]
a | ← (YLa|

18: end if
19: end for
20: return L[W ].
21: end function
22: function CalcRW(Ŵ ,AR,L, S) Calculate right quasi fixed point of MPO transfer matrix T

[W ]
R

23: |R[W ]
1 ) ← |11)

24: for a = 2, . . . , dw do
25: Calculate |YRa) from (C18)

26: if T
[W ]
R

aa
== λaTR then

27: Calculate |R[W ]
a ) by iteratively solving (C22) to machine precision

28: else if T
[W ]
R

aa
== TR then

29: Calculate |R[W ]
a ) by iteratively solving (C25b) to precision S

30: else if T
[W ]
R

aa
== 0 then

31: |R[W ]
a ) ← |YRa)

32: end if
33: end for
34: return R[W ].
35: end function
36: function ApplyHAC(AC ,HAC ) Terms of HAC from HeffTerms(H,AL,AR,L,R, S)
37: Calculate updated AC from (C28)
38: return AC

39: end function
40: function ApplyHC(C,HAC ) Terms of HC from HeffTerms(H,AL,AR,L,R, S)
41: Calculate updated C from (C29)
42: return C
43: end function
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