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Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C κ carbides
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Carbides play a central role for the strength and ductility in many materials. Simulating the impact of these
precipitates on the mechanical performance requires knowledge about their atomic configuration. In particular,
the C content is often observed to substantially deviate from the ideal stoichiometric composition. In this work, we
focus on Fe-Mn-Al-C steels, for which we determined the composition of the nanosized κ carbides (Fe,Mn)3AlC
by atom probe tomography in comparison to larger precipitates located in grain boundaries. Combining density
functional theory with thermodynamic concepts, we first determine the critical temperatures for the presence
of chemical and magnetic disorder in these carbides. Second, the experimentally observed reduction of the C
content is explained as a compromise between the gain in chemical energy during partitioning and the elastic
strains emerging in coherent microstructures.
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I. INTRODUCTION

Fe-Mn-Al-C based steels have recently attracted close
attention because of their high strength and ductility [1,2]
along with a high corrosion resistance and a comparably
low mass density [3]. This combination of their properties
makes them also attractive for automotive applications. The
excellent mechanical performance of the Fe-Mn-Al-C steels is
mainly attributed to microstructure features that correlate with
deformation mechanisms and strongly depend on the amount
of Al in the material. High-Mn steels with a low-Al content
(<5 wt. %) typically undergo a microstructure refinement by
the activation of deformation twinning in the austenite phase,
which increases the strain-hardening rate [4,5]. When the Al
content in these steels (about 30 wt. % Mn and 1.3 wt. % C)
is higher than 6 wt. %, an annealing produces finely dispersed
nanosized κ carbides (Fe,Mn)3AlC in the austenitic matrix.
Experiments showed that these precipitates strengthen Fe-Mn-
Al-C steels, thereby making them interesting for applications.
For example, the large age hardenability of these alloys is
attributed to the homogeneous precipitation and dispersion of
κ carbides in the austenitic matrix [6–10].

Using specific heat treatments, a γ /κ regular microstructure
can be achieved, which strongly influences the ductility at am-
bient temperatures [11]. Further, κ carbides improve the creep
resistance of Fe-based alloys at high temperatures making
them attractive materials for manufacturing high-temperature
components such as gas turbine blades and vanes in aircraft
engines, aerospace, and power generating plants. The presence
of nanosized κ carbides therefore yields mechanical properties
of Fe-based alloys that are similar to Ni-based superal-
loys [12,13], provided the desired microstructure is achieved.
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The arrangement of κ carbides within the microstructure is
to a large extent determined by the E21 crystal structure of κ

carbide. It resembles a perovskite-type cubic structure with Al
atoms at the corners of the cube, Fe atoms at the face-centered
sites (corresponding to L12), and C atoms at the body-center
octahedral site (also called L′12). Therefore, the nominal com-
position is Fe3AlC. Experiments for high-Mn alloys indicate
that there can be a significant manganese content replacing the
Fe atoms, yielding a (Fe,Mn)3AlC composition [14]. While
different ordered E21 structures for varying Mn contents are
shown in Fig. 1, it is still unclear which Mn content would
correspond to thermodynamic equilibrium, how relevant the
ordering is, and how this affects the mechanical properties.

The orientation relationship between the regularly arranged
κ carbides and the γ matrix is reported to be (001)/(001)
in experiments [15]. The interfaces are coherent in case
of κ nanoprecipitates without indication of the presence of
misfit dislocations. Such a microstructure can, however, not
be understood if a completely stoichiometric composition is
assumed. As the density functional theory (DFT) calculations
performed in this paper show, a nominal E21 structure would
have its elastically hard axis in the (001) direction and the
resulting misfit of 9% with respect to the lattice constant of
the matrix material would be too large, to ensure coherent
interfaces. Indeed, electron microprobe experiments have
shown considerable deviations from the Fe3AlC stoichiometry.
In an experimental work conducted by Palm et al. [16], the off-
stoichiometric composition observed is Fe3+yAl1−yCz where y

may vary between −0.2 and +0.2 and z between 0.42 and 0.71.
Other experimental works have proposed an off-stoichiometric
composition of Fe3AlC0.5 [17–19]. All these observations
demonstrate in particular a depletion of C in κ carbides as
compared to the nominal E21 structure of Fe3AlC.

In spite of these experimental evidences of off-
stoichiometric C compositions of κ carbides, further measure-
ments that can resolve the properties of nanoprecipitates are
desired. In this study, we use atom probe tomography (APT)
for this purpose since it combines near-atomic resolution with
ppm chemical sensitivity [20]. At the same time, the theoretical
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FIG. 1. Crystal structures of (a) Fe3AlC, (b) Fe2MnAlC, (c) FeMn2AlC, and (d) Mn3AlC. Red, golden, green, and black balls represent Al,
Fe, Mn, and C atoms, respectively.

investigation of the C depletion is still limited. The main
focus of previous theoretical studies has been on perfectly
ordered κ carbides. In a previous investigation, DFT has been
employed to compare the properties of Fe3Al-L12 and ordered
Fe3AlC-E21 structures and to underline the role played by
C [21,22]. These studies have shown that the addition of C
atoms decreases the magnetic moment of the neighboring
Fe atoms and yields a heat capacity and elastic constants of
Fe3AlC-κ that are appreciably different from Fe3Al-L12 [21].
In similar spirits, the energetics and magnetic properties of
Fe3Al and Fe3AlX (where X = H, B, C, N, O) compounds
are investigated using DFT, among which Fe3AlC turns out to
be most stable when comparing cohesive energies [23]. The
reduction in magnetization of Fe3Al due to the addition of C
has been explained by relaxation effects induced by the C atom
in the Fe3Al structure [23,24].

The computation of the elastic constants of κ carbides has
revealed that these carbides are more rigid than the parental
Fe3Al-L12 structure [24]. In the same work, the issue of
different chemical configurations has been discussed for the
Fe-Mn sublattice by considering (Fe3−xMnx)AlC with integral
values for x from 0 to 3. In a subsequent work by the same
group [25], low-Mn concentrations in κ carbides have been
investigated which show absence of any kind of interaction
between substitutional Mn atoms thereby indicating a random
alloy system. A previous work further indicates the relevance
of point defects such as C vacancies (treated in the dilute limit)
for the thermodynamic stability of the relevant phases [22].
While these studies provided important insight into the
structure and thermodynamics, none of them fully explained
the above-mentioned C reduction of κ carbides. As we show
in this study, this is mainly due to the geometrical constraints
of a coherent interface to the matrix material.

In our first ab initio study of κ carbides [14], we have
already been able to reveal and explain the Al depletion in
these carbides by coherency strains. We have pointed out that
this effect alone is not sufficient, but that it occurs concurrently
with a reduced C content in these precipitates. In this work,
we now provide a deeper theoretical understanding of the
C concentration in off-stoichiometric κ carbides, which is
benchmarked against experimental data. This investigation
requires the careful application of various thermodynamic
concepts. One of them is the application of a constrained
paraequilibrium [26], which allows us to focus on C only. Fur-
ther, at operational conditions relevant for high-temperature
applications the chemical and magnetic order can break down.
We thus studied the impact of such magnetic and/or chemical
disorder on the stability of κ carbides.

II. METHODOLOGY

We perform calculations using DFT [27,28] as implemented
in the Vienna ab initio simulation package (VASP) [29–31].
The electron-ion interaction is described by using projector
augmented-wave (PAW) potentials [32,33]. The generalized-
gradient approximation (GGA) functional of Perdew, Burke,
and Ernzerhof (PBE) [34] has been employed. The Methfessel-
Paxton method [35] has been used for the Fermi surface
smearing with a 12 × 12 × 12 Monkhorst-Pack grid [36] in
a 1 × 1 × 1 five-atom unit cell for the κ carbides shown in
Fig. 1. A supercell (SC) size of 2 × 2 × 2 (40 atoms) has
been considered for the disordered and vacancy calculations
with a corresponding Monkhorst-Pack grid of 6 × 6 × 6. The
single-electron wave functions have been expanded by using
plane waves up to an energy cutoff of 500 eV. The energies are
converged to a precision of better than 1 meV/formula unit
(f.u.).

We first study the occupation of the metal sublattice sites
since it has an impact on the C solvation energies in κ

carbide. To determine the equilibrium Mn content, κ carbides
(Fe3−xMnx)AlC with integer x are considered. For ordered
configurations, a single five-atom unit cell (refer to Fig. 1) is
used, which is periodically repeated. The chemical disorder of
the κ carbides has been simulated by the special quasirandom
structure (SQS) scheme [37] in a 2 × 2 × 2 SC. Two kinds
of SQS are generated: one with chemical disorder on the
Fe-Mn sublattice only (i.e., corresponding to the symmetry of
L12) and the other one with a random distribution of all metal
atoms (i.e., corresponding to the symmetry of fcc). In order to
generate these SQS, correlation functions of up to five-body
figures are used. The chosen SQS in our study have the lowest
correlation error in terms of the error-function introduced in
our previous work [38].

The stability of these κ carbides is investigated by com-
puting the Helmholtz free-energy difference between the
precipitates and the surrounding solid solution assuming that
the two phases are thermodynamically equilibrated:

�F (T ,V,x,y,z)

= ESC
κ [(Fe3−x+yMnx)Al1−yCz] − T Sκ (x,y,z)

− (3 − x + y)μFe − xμMn − (1 − y)μAl − zμC. (1)

The first term is the ground-state energy ESC
κ determined

in a DFT supercell (SC) calculation. The second term gives
the entropy contribution. Neglecting the vibrational entropy,
which is small compared to the configurational contribution,
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we express the entropy solely by the latter one:

Sκ (x,y,z) = −kB

(
(3 − x) ln

3 − x

3
+ x ln

x

3

+ y ln y + (1 − y) ln(1 − y)

+ z ln z + (1 − z) ln(1 − z)

)
, (2)

where kB is the Boltzmann constant, x, y, and z the content of
Mn, Fe antisites on the Al sublattice, and C in κ , respectively.
The third term in Eq. (1) balances the thermodynamic
exchange of atoms between the κ carbide and the γ matrix.
In the spirit of a grand-canonical ensemble, this exchange can
be described by taking/removing atoms from the chemical
reservoir, which is determined by the free energy of the γ

solution.
In this paper, the chemical reservoir is represented by

the chemical potentials μX of the involved elements X =
Fe, Mn, Al, C. They depend on the (experimentally given)
composition, temperature, and volume of the γ matrix and
are computed by DFT (see Appendix). An advantage of
using chemical potentials is that they provide a physically
intuitive tool to describe continuous changes in the chemical
composition of the considered alloys without being limited to
discrete stoichiometries imposed by finite-size supercells. This
is particularly useful for the constrained paraequilibrium [26]
discussed in the second part of the paper, where we enforce
an equality of chemical potentials between κ and γ for the
interstitial C atoms. We note that the ab initio derivation of μX

from DFT energies for a specific supercell ESC
γ [FexMnyAlz]

implies that the absolute value of the chemical potentials in
the matrix is dependent on the given pseudopotential (see
Appendix for details).

The energetically favored magnetic phase in the κ carbides
is determined by computing the free-energy difference in
Eq. (1) for ferromagnetic (FM), antiferromagnetic double-
layer (AFMD), and nonmagnetic (NM) phases. Since the FM
phase is found to be the T = 0 K ground state, it is used
in the calculations, if not stated otherwise. The γ matrix
is consistently treated in an antiferromagnetic (AFM) state.
Paramagnetic (PM) energies for κ carbides are again obtained
by a 2 × 2 × 2 supercell using the SQS scheme, which mimics
a random distribution of collinear local moments as closely as
possible for this SC. This procedure has been performed for
the chemically ordered as well as the disordered κ carbides.

The Curie temperature TC is estimated within our
study from the mean-field approximation of the Heisenberg
model [39]

kBTC = 2

3
Nmag

∑
i �=j

Jij , (3)

where Nmag is the number of magnetic atoms in the unit cell
and Jij are the magnetic exchange coupling constants between
sites i and j . Using mean-field approximation, the energy
difference �E per unit cell between the FM and PM states
can be expressed [40] as �E = N2

mag

∑
i �=j Jij and the above

equation transforms to

kBTC = 2

3

�E

Nmag
. (4)

It may be noted that the values of TC obtained using
Eq. (3) typically overestimate the experimental values [41],
but provide correct qualitative trends.

Single-crystalline elastic constants of the disordered κ car-
bides are determined using tetragonal and trigonal (rhombohe-
dral) cell-shape deformations [38]. Due to the fact that our SQS
supercells in general do not possess cubic symmetry, strains
have been applied along structurally equivalent directions,
the resulting stresses are used to calculate elastic constants
and these have been then averaged (for details see, e.g.,
Ref. [38]).

The theoretical investigations are supported by experimen-
tal investigations on the C content in κ carbide. For this
purpose, a high-Mn steel of the composition Fe-29.8Mn-
7.7Al-1.3C (wt. %) has been used, which was aged at 600 ◦C
for 12 weeks. The material had undergone a solid solution
treatment at 1100 ◦C for two hours and was subsequently oil
quenched prior to aging. A systematic repetition of various
aging treatments ensured that the present conditions yield a
thermodynamically stable partitioning of the chemical ele-
ments. Further details of alloy casting and thermomechanical
processing are reported elsewhere [6,14]. The sample was
etched with 1% Nital solution and characterized using a
field emission scanning electron microscope (SEM) Zeiss
XB 1540 equipped with an electron backscatter diffraction
(EBSD) detector. Needle-like atom probe tomography (APT)
samples from grain boundary and grain interior regions were
prepared via a standard FIB procedure by a dual-beam focused-
ion-beam (FIB) system (FEI Helios Nano-Lab 600i) [42].
A LEAPTM 3000X HR system (Cameca Instruments) was
employed for APT analysis with voltage pulsing at 200 kHz
pulse repetition rate, 0.005 atom/pulse detection rate and 15%
pulse fraction at 70 K.

III. RESULTS AND DISCUSSION

A. Experiment

As indicated in the Introduction, it is the main purpose of
the theoretical investigations in this paper to reveal the reasons
for the C off-stoichiometric compositions in κ carbides.
Previously, our own measurement [14] for a κ-containing
steel, namely, an Fe-29.8Mn-7.7Al-1.3C (in wt. %) alloy,
has given a value z = 0.61. With the present experimental
evaluation, we employ a much longer aging treatment to ensure
thermodynamic equilibrium.

Figure 2 shows the microstructure of the same alloy as
used in Ref. [14] after the prolonged aging. It clearly shows
two different morphologies of κ carbides, which are the bright
protruding phases after etching [Figs. 2(a) and 2(b)]. On the
one hand, there are nanosized κ precipitates in the grain
interior (GI), i.e., within the austenite matrix γ , regularly
aligned along specific directions [Figs. 2(b) and 2(c)], which
are orthogonal 〈001〉 crystallographic directions [6,15]. On the
other hand, a μm-scale lamellar structure mainly composed of
alternative coarse κ0 carbides and solute-depleted austenite γ0

is observed at regions next to grain boundaries (GB) between
γ grains [Fig. 2(a)]. Also, a small fraction (<1%) of ferrite α

is detected in these regions by EBSD (not shown here). This
κ0 + γ0 + α lamellar microstructure initiates at GBs and grows
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FIG. 2. Microstructure of a Fe-29.8Mn-7.7Al-1.3C (wt. %) alloy
aged at 600 ◦C for 12 weeks: (a) SE image showing the grain boundary
(GB) (κ0 + γ0 + α) phases and grain interior (GI) (κ + γ ) phases.
(b) Zoomed-in SE image at GI region highlighting the nanosized
GI κ precipitates. (c) APT analysis of GI (κ + γ ) phases where κ

precipitates are visualized in terms of iso-concentration surfaces at a
threshold value of 9 at. %.

into GI region. The chemical composition of GI κ carbide
as measured by APT is found to be Fe1.99Mn1.10Al0.91C0.60

and that of GB κ0 carbide to be Fe1.69Mn1.35Al0.95C0.87. These
chemical compositions confirm deviations from stoichiometric
C concentrations in κ carbides. The nanosized GI κ carbides
seem to be stabilized by the coherence constraint, showing
almost the same composition after 24 hours [14] and 12 weeks.
These GI precipitates are observed to barely coarsen after
prolonged aging maintaining an average size of approximately
20 nm. The larger GB κ carbides, in contrast to this,
represent a thermodynamically more stable state since they
grow on expense of the matrix phase in the grain interior.
The microstructure evolution upon aging has been thoroughly
studied and will be discussed elsewhere. Full coherency of
the GI κ/γ interface has been observed by high-resolution
transmission electron microscopy and no indication for a
segregation to this interface is found by APT measurements.
For the purpose of this study, however, most important is the
noticeable difference in the C concentrations in GI and GB κ

carbides with the former (GI) showing more C reduction than
the latter (GB).

B. Chemical and magnetic order

When investigating with ab initio simulations the C content
(z) of κ carbides (Fe3−x+yMnx)Al1−yCz, we represent the Mn
and Al contributions (x and y) in a 2 × 2 × 2 supercell. We
first discuss the Al contribution (i.e., fix the values x = 0 and
z = 1). Replacing one Al atom by Fe in the supercell, we
obtain y = 0.125, which is close to the reported experimental
composition [16]. We then obtain at T = 0 K an increase
of the free-energy difference between the carbide and the γ

matrix [see Eq. (1)] by approximately 1 eV as compared to the
stoichiometric composition of Fe3AlC. This energy increase
enters the temperature-dependent antisite formation energy
given by

F
f

AS(T ) = ESC
FeAl

− ESC
Fe3AlC − μFe(T ) + μAl(T ). (5)

The configurational entropy in the κ carbide is considered if
the antisite concentration is determined by

cFeAl = exp

[
−F

f

AS(T )

kBT

]
. (6)

Neglecting again vibrational contributions, the temperature
dependence of the defect formation energy originates solely
from the one in the chemical potentials μFe(T ) and μAl(T )
imposed by the γ matrix (see Appendix for details). It
takes care of the fact that with increasing temperature the
chemical potential decreases due to enhanced configurational
entropy.

Using Eq. (6), one can expect 0.001% of the Al atoms
to be replaced by Fe at 600 ◦C. As elastic effects are in the
focus of the present investigations, the lattice constant of the
κ carbide has also been constrained to that of the surrounding
Fe matrix. Even the decrease of the antisite formation energy
due to this strain (from 1 to 0.8 eV at T = 0 K) is too small to
yield an off-stoichiometric concentration higher than 0.01% at
elevated temperatures. The situation is different in the case of
Mn antisites on the Al sublattice if C vacancies are additionally
present at neighboring sites (see Ref. [14] for details). In this
case, an Al reduction of up to 10 at. % can be observed. For
the purpose of the present investigations, this effect is still not
decisive and it is justified to assume a filled Al sublattice, which
stabilizes the κ carbide and acts a thermodynamic driving force
for the partitioning of C. Using this assumption implies that the
volume fraction of κ vs γ is fixed during the thermodynamic
modeling and not subjected to an equalization of chemical
potentials (constrained paraequilibrium).

The equilibrium concentration of Mn in the κ carbide is
determined via Eq. (1), setting y = 0 and z = 1. Changing the
chemical potential changes the amount of Mn and the ther-
modynamically most stable carbide phase. The corresponding
phase diagram as function of μMn is shown in Fig. 3. The
obtained dependence allows us not only to connect to our
experimental alloy composition (red dashed-dotted line; see
Appendix for details), but also to investigate chemical and
thermodynamic trends. On the one hand, we constructed the
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FIG. 3. Free-energy differences for the κ carbide formation
according to Eq. (1) with varying Mn content x (given by the labels).
The results for T = 0 K (dotted lines) and for the experimental
annealing temperature of 600 ◦C (solid lines) are compared. The
color shading indicates the phase stability at 600 ◦C as a function
of the Mn chemical potential with respect to the reference potential
described in Appendix. The chemical potentials corresponding to
the composition of the experimental alloy (Fe-29.8Mn-7.7Al-1.3C
in wt. %) are for both temperatures shown as a red dashed-dotted
lines. For Fe2MnAlC, the ground-state energy of an ordered Mn
arrangement (thick green line) and of an SQS disordered structure
(thin green line) are compared.

T = 0 K phase diagram (dotted lines in Fig. 3) to see the
chemical effect on phase stabilities. On the other hand, we
generalized it to the annealing temperature of 600 ◦C (solid
lines in Fig. 3), where also the configurational entropies in the
γ matrix [via the T dependence of μX(T )] and the κ carbide
[via Eq. (2)] are taken into account.

We first note that the free-energy difference at T = 0 K
is negative in a large part of the plotted chemical potential
and in particular for μMn corresponding to the experimental
matrix composition. As can be seen from Eq. (1), a negative
sign implies that the formation of the κ carbide is exothermic.
For T = 600 ◦C (873 K) the free-energy difference becomes
at the experimental composition positive for all phases except
Fe2MnAlC, for which it is almost zero (−14 meV), implying
that Fe2MnAlC is thermodynamically stable. The κ carbide
formation out of the solute solution is only exothermic up to
approximately 625 ◦C; below this temperature the carbide will
grow on the expense of the γ matrix, as indeed experimentally
observed for the GB carbides. However, for the GI carbides,
the elastic coherency strain has an additional impact on C
partitioning as discussed below.

Regarding the Mn distribution, the results show that for
the exact experimental composition (red dashed-dotted line
in Fig. 3), Mn-free Fe3AlC and Fe2MnAlC are energetically
almost degenerate at T = 0 K, but that Fe2MnAlC is ener-
getically clearly preferred at 600 ◦C. In the latter case, this is
also true if one allows a slight variation of the composition
(green shaded area). The result is in good agreement with
the experimentally observed Mn content in GI κ carbide
(Fe1.99Mn1.10Al0.91C0.60). FeMn2AlC and Mn3AlC will only

FIG. 4. Free-energy difference of chemically ordered and disor-
dered Fe2MnAlC for different magnetic phases is shown as a function
of volume at T = 0 K. The energies have been rescaled such that the
ground-state configuration of Fe2MnAlC is taken as a reference.

form if the Mn chemical potential (Mn content) in the alloy is
substantially increased.

The stability of Fe2MnAlC at T = 600 ◦C is mainly caused
by configurational entropy in the κ carbide, which lowers the
energy of this phase with respect to Fe3AlC by approximately
0.15 eV [compare the relative positions of the maroon (x =
0) and green (x = 1) lines for T = 0 K (dotted line) and
T = 600 ◦C (solid line) in Fig. 3]. We have therefore also
investigated the impact of the (Fe-Mn) configuration in the Fe
sublattice on the DFT supercell energy ESC

κ [(Fe2Mn)AlC]
in Eq. (1). For this purpose, the results of a regular Mn
arrangement (periodic repetition of the unit cell) and an
SQS disordered structure are compared in Fig. 3 (thick and
thin solid lines for x = 1) and show a negligible difference.
A comparison over the whole volume range relevant for
subsequent considerations is performed in Fig. 4, where also
the impact of magnetic disorder is taken into account. The
differences of the order of maximum 25 meV/unit cell can be
translated into an order-disorder transition temperature TOD.
The latter is a result of the competition between formation
enthalpies (at T = 0 K) and configurational entropy given by
the expression

ESC
κ [SQS] − ESC

κ [ordered] = TODSκ (1,0,1), (7)

with the entropy Sκ defined in Eq. (2). Since the stoichiom-
etry in an order/disorder transition remains unchanged, any
contributions from chemical potentials [compare Eq. (1)]
cancel. Using this equation for a Mn concentration of x = 1,
one obtains a TOD of approximately 75 K. Therefore, any
chemical ordering will be lost at room temperature, which is
in agreement with observations in experiment, but has not been
considered in previous theoretical studies [24,25].

To complete the considerations on chemical order and to
emphasize the crucial role played by the chemical ordering in
the Al sublattice for the formation of κ carbides, we discuss
the free energies with chemical disorder in both Fe-Mn and
Al sublattices (Fig. 4). We find that the additional chemical
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disorder in the Al sublattice makes the formation of κ carbides
substantially less favorable. Using Eq. (7), the corresponding
order-disorder transition temperature is ≈1400 K. Further
calculations showed that these findings are qualitatively similar
for other compositions of κ carbide.

In the following, we extend the concept of disorder also
to the magnetic degrees of freedom. Experimentally, the
relevance of magnetic disorder for this carbide is inconclusive.
A few experimental works indicate κ carbides to be ferromag-
netic [43], in agreement with theoretical counterparts [24]. On
the other hand, some experiments suggest κ carbide not to be
magnetic [44]. In our theoretical approach, we compare the
ab initio free energies, according to Eq. (1), corresponding
to ordered (FM) and disordered (PM) spin configurations.
In order to evaluate the energy difference, we further add
another magnetically ordered structure (AFMD, yields a
vanishing net magnetization) and a completely nonmagnetic
(NM, unrealistic scenario of vanishing local atomic magnetic
moments) configuration for comparison.

The results for T = 0 K (Fig. 4) show that the FM phase in
chemically ordered κ carbide is energetically most favorable
and therefore indeed the correct choice for ground-state
ab initio calculations. However, some of the disordered
structures are energetically very close to the ground state.
In particular, the difference of the PM to the FM state is
approximately 75 meV/unit cell, which is smaller than that of
the AFMD and NM states. This indicates, on the one hand, a
low Curie temperature TC . Using Eq. (4), the Curie temperature
TC for a transition from chemically disordered FM to the PM
phase is approximately 60 K. Even a combined magnetic and
chemical disordering of an originally FM ordered state would
only require 90 K. This number is only an estimate because
Eq. (3) is based on a mean-field approximation and does
not distinguish between Fe and Mn atoms. Nevertheless, our
study supports those experiments [44] that do not observe any
macroscopic magnetic order in κ carbides at room temperature.
On the other hand, we observe very little difference between
structural properties (e.g., equilibrium lattice constant) of a
FM and a PM material in contrast to, e.g., a NM calculation
(see also Sec. III C). This justifies the application of the FM
approach, if a PM calculation is not feasible.

We can now investigate the stability of κ carbides as a
function of its composition [as given by Eq. (1)] to explain
the experimentally observed C off-stoichiometry in κ carbides.
Due to the computational effort, no thermodynamic excitations
such as lattice vibrations and magnetic entropy are taken into
account. Their impact on, e.g., vacancy formation energies
is typically small at room temperature [45]. Due to the low
order-disorder transition temperature, no chemical superstruc-
ture/ordering on the Fe-Mn sublattice can be expected.

In principle, also the magnetic disorder should be taken
into account. Due to the fluctuating moments in this phase,
however, the necessary relaxations, e.g., for a vacancy
calculation would require sophisticated approaches such as
the spin-space averaging (SSA) method [46]. This goes
beyond what is currently feasible for a complex alloy like
the κ carbides. Having in addition the limited impact of
magnetism on structural properties in mind (Fig. 4), we
restrict most of our calculations to the magnetic ground
state (FM).

TABLE I. Single-crystalline elastic constants (C11, C12, C44, B)
calculated for different chemical compositions and magnetic states
of κ carbide. The selections are identical with those shown in Fig. 5.
In the cases (a) and (b), a disordered configuration of Fe and Mn
is considered. For comparison, elastic constants of a cubic elastic
approximant [38,47] based on results obtained for ordered Fe2MnAlC
from Ref. [24] are shown. All values are in GPa.

Composition Magn. C11 C12 C44 B

(a) (Fe2,Mn)AlC FM 418 77 82 191
(b) (Fe2,Mn)AlC5/8 FM 282 167 94 205
(c) Fe3AlC FM 446 109 72 221
(d) Fe3AlC PM 439 90 96 206
Ref. [24]: Fe2MnAlC FM 436 80 92 199

C. Elastic properties

The κ carbides have so far been considered as an individual
bulk phase. However, the experimental findings provided
above clearly indicate that the C off-stoichiometry is strongly
related to the microstructure. The main difference between GI
and GB precipitates is the coherency to the matrix material. We
argue that next to configurational entropy also the strain caused
by the degree of coherency drives the C out of the carbide. The
coherency is related to the lattice parameter mismatch between
κ carbides and the γ matrix material. For the experimentally
observed orientation relationship (001)/(001), this misfit is
obtained from our DFT calculations to be in the stoichiometric
case as high as 9%. This value is too large to allow coherent
interfaces without misfit dislocations.

Synchrotron diffraction experiments (not shown here) have
indicated a reduction in the lattice misfit to 1.4% between
off-stoichiometric κ carbide and γ matrix in the grain interior.
In order to enforce a completely coherent interface without
misfit dislocations, as it is observed for GI carbides (at least
for the small channels of γ material [6]), a compromise of
the lattice constant of both phases is required. It will depend
on the volume fraction of the phases and the elastic energy
associated with a compression or elongation.

To get a deeper understanding of the elastic properties
of κ carbides, we determined its elastic tensor. According
to the investigations of the previous section, we first use the
composition Fe2MnAlC with chemical disorder and ferromag-
netic order for this purpose. The results are summarized in
Table I. A comparison of these elastic constants with those
of a cubic elastic approximant [38,47] based on the values
reported in Ref. [24] for an ordered, ferromagnetic unit cell
shows that the chemical disorder has only limited impact on
elastic properties of the studied κ carbide. The directional
dependence of the corresponding single-crystalline Youngs
modulus yields a significant anisotropy of the ferromagnetic
κ carbide. The hard 〈001〉 direction has an almost twice as
large Youngs modulus (394 GPa) as the soft 〈111〉 direction
(215 GPa). For our considerations, however, the area modulus
of elasticity [48,49], which provides the amount of energy
needed for coherent planar loading within a plane normal to
the vector n, is more relevant. The directional dependence
of these normal vectors n is visualized in Fig. 5(a), which
still shows an anisotropy. The Youngs modulus is highest for
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FIG. 5. Area modulus [48,49] of (a) a cubic-symmetry approximant of Fe2MnAlC with disorder Fe-Mn sublattice in FM state,
(b) Fe2MnAlC0.625, i.e., with reduced C content in FM state, (c) Fe3AlC, i.e., without Mn in FM state, (d) Fe3AlC in PM state. The
calculation (values in GPa) is based on the determined elastic constants C11, C12, and C44 summarized in Table I (visualization by the SC-EMA
software package [50–52]).

the {001} planes, i.e., the corresponding energy required for
epitaxial loadings within the planes that are relevant for the
κ/γ coherency is highest. This observation together with the
large misfit of 9% makes the stabilization of an (001)/(001)
very unlikely, in puzzling disagreement with experiment.

A reduction of the C content is expected to yield a smaller
misfit. The question is, however, how it influences the elastic
properties. The challenge of corresponding calculations of the
elastic tensor is to ensure a cubic crystal structure of the
2 × 2 × 2 supercell. A tetragonal distortion would not only
increase the numerical effort significantly, it is also in conflict
with the physical expectation for an infinitely large system.
The only reasonable choice that fulfills this constraint is the
presence of three C vacancies. The resulting area modulus of
elasticity is shown in Fig. 5(b). It reveals that some of the
elastic constants are softer, as expected from the high-vacancy
concentration, while the bulk modulus is hardly changed
(Table I). More important is the observation that 〈001〉 has now
turned into the elastically soft direction, therewith resolving
the before mentioned puzzle.

Due to the central importance of the elastic properties for
the upcoming investigations, we also investigated the impact of
the assumptions formulated at the end of Sec. III B. Figure 5(c)
allows a comparison of the area modulus for Fe2MnAlC with
the Mn-free version, while Fig. 5(d) shows the results of a fully

paramagnetic calculation. In both cases, a close similarity to
the results for the FM Mn-containing version shown in Fig. 5(a)
is obtained. For the area modulus as well as the bulk modulus,
the maximum changes are of the order of 10%. This justifies
our choice for the chemical and magnetic degrees of freedom.
In addition, we note that the area modulus does not show
a strong anisotropy, if the C content is reduced [Fig. 5(b)].
We therefore consider in the upcoming calculations the bulk
modulus instead of the area modulus.

D. Vacancy formation energy

Due to the coherency strain, we expect a driving force
for C to leave the κ carbide and dissolve in the matrix. A C
depletion (as describe in Sec. III E) is expected if the C vacancy
formation is exothermic, or if the energy loss is small enough
to be compensated by a gain in configurational entropy at finite
temperature. We have therefore investigated the corresponding
vacancy formation energy for species X, according to the
expression

E
f

X-Vac(V ) = ESC
X-Vac(V ) − ESC

Fe3AlC(V ) + μX(T ) (8)

analogous to Eq. (5) where μX(T ) is obtained at 600 ◦C
as defined in the Appendix. The volume dependence of the
supercell energies entering Eq. (8) is shown in Fig. 6, where
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FIG. 6. Volume dependence of the energy contributions to the
formation energies of C, Fe, and Al vacancies in FM κ carbide
according to Eq. (8). The energies are rescaled such that the perfect
Fe3AlC (filled symbols) at its equilibrium lattice constant is taken as
a reference. The vertical dashed line marks the compromising volume
between κ carbide and γ matrix, if both have a volume fraction of
50% (compare with Fig. 8).

the energies of the perfect carbide (filled symbols) should
be compared with the energies of the defect structures (open
symbols). Since these defect energies are for Fe and Al
vacancies for most volumes substantially higher than those
of Fe3AlC, their vacancy formation is unlikely. The situation
is different for the case of C. At the equilibrium volume of κ

carbide, for example, the red symbols are below the green
symbols, i.e., the C vacancy formation energy is negative
(−290 meV). Hence, the removal of a single C atom from
an otherwise perfect κ carbide is an exothermic process. The
origin of the negative formation energy lies largely in the
large configurational entropy in the γ matrix, where the C
concentration is low. The consequences of this driving force
will be discussed in the next subsection.

Second, there is a remarkable volume dependence of the
C vacancy formation energy, yielding a substantial reduction
to even more negative values under volumetric compression.
This reduction is a consequence of the large negative vacancy

formation volume of approximately 7 Å
3
, which allows the

system to efficiently release strain energy by creating C
vacancies. As a consequence, the formation of C vacancies
is more feasible in κ carbides that are formed as coherent
precipitates in the Fe matrix than in incoherent particles as
formed near grain boundaries.

As discussed at the end of Sec. III B, the calculations
are performed for Mn-free κ carbide. This is mainly due to
the fact that we would otherwise need to treat the Fe-Mn
sublattice as a disordered alloy, which results in a huge
increase in the number of configurations to be considered for
the calculation of (multiple) vacancies. While we showed in
Sec. III C that the effect on the elastic energy is small, we have
also tested the impact for the chemical part of the vacancy
formation. We realize that the difference in formation energies
of a C vacancy in Mn-free (Fe3AlC) and Mn-containing
(Fe2MnAlC) κ carbides can be up to 0.24 eV. We have further

FIG. 7. Schematic picture of C partitioning between κ carbide
and γ matrix: assuming an equal C distribution in the as-cast state
(dashed line), there is a chemical driving force for C to accumulate
in Al-ordered regions. Since this imposes an elastic energy penalty,
the decomposition will remain incomplete.

considered the impact of magnetism on the vacancy formation
energies, by performing a fully paramagnetic calculation
for a single chemical configuration. These calculations are
extremely challenging and prone to errors, but the obtained
deviations from the FM calculation are in the same order of
magnitude as the chemical difference. It is therefore clear
that the upcoming calculations cannot aim at a quantitative
reproduction of the experimental results since the numerical
effort to achieve this accuracy would be enormous. However,
the general mechanisms for the C partitioning discussed in the
following are not affected by these approximations.

E. Partitioning between κ and γ

Given that the combination of configurational entropy and
the coherency constraint results in negative vacancy formation
energies, it is clear that the commonly applied concepts of
dilute point defects cannot be used for this study. Rather,
since the concentration changes are well above a few percent,
thermodynamic concepts developed for alloy decomposition
become appropriate. In this sense, we discuss the problem as
an incomplete C partitioning between κ carbide and γ matrix
as shown in Fig. 7, i.e., we have in upcoming considerations the
following physical picture in mind: After casting, C and Al are
homogeneously distributed in the sample. During annealing
the onset of Al ordering occurs along with a chemical driving
force for C to enter these regions and form κ carbide (which
is an exothermic process). The Al ordering, which is used
in this work to define the region of κ carbide, is volume
conserving, while the C partitioning is not. Since the coherency
condition prevents any release of elastic energy by plastic
relaxation via misfit dislocations at the interface, partitioning
unavoidably increases the misfit and thus the elastic energy.
This mechanism prevents a complete filling of the Al-ordered
region (i.e., the κ carbide) with C.

These considerations show that the required energy mini-
mization also needs to take the chemical and elastic energy of
the γ matrix into account. In principle, we should determine
the volume-dependent C solubility in a disordered Fe-Al-Mn
matrix. As mentioned in Sec. III B, Mn has been removed
from the considerations, but even the treatment of Al disorder
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in the γ matrix would result into a large configuration space.
Two limiting cases can be considered instead: (i) the γ matrix
consists of Fe and C only, or (ii) the γ matrix is itself an
ordered Fe-Al phase. For reasons that will be discussed below,
we only use the first scenario.

The optimization of the composite consisting of κ precipi-
tate and γ matrix does not only affect the C concentrations, but
also the coherent lattice parameters. We express the latter by
Vκ+γ , the coherent volume per unit cell, which is an intensive
thermodynamic variable. It captures both the hydrostatic
change of lattice constants of cubic nanoprecipitates and the
volume change in a tetragonal distortion, if the coherency
is only assumed for the in-plane lattice constant (biaxial
strain) and the normal component is relaxed. Therefore, the
Helmholtz free energy of the composite of κ precipitate and γ

matrix is given by

F tot(T ,V,cκ ,cγ ) = vκF
κ (T ,V,cκ ) + vγ F γ (T ,V,cγ ), (9)

where vκ and vγ are volume fractions of κ and γ , respectively,
and cκ and cγ are their corresponding C concentrations. It
can be split into an elastic, a chemical, and a configurational
part. In the case of the κ carbide (expressions for γ matrix are
similar), the definition of the first two terms is given by

Eelas(V,cκ ) = Eκ (V,cκ ) − Eκ (Vκ (cκ ),cκ ),

Echem(Vκ (cκ ),cκ ) = Eκ (Vκ (cκ ),cκ ) − Eκ (Vκ (cexpt),cexpt).

The chemical part covers the change of the concentration at
equilibrium cubic volume as obtained from the Murnaghan
equation of state [53,54]. The elastic part covers the volume
deformation (hydrostatic or biaxial). The reference is the
homogeneous C distribution (see Fig. 7) with a concentration
determined by experiment cexpt at its respective equilibrium
volume Vκ (cexpt).

The C concentrations are not independent, but are coupled
due to the fact that the total number of C atoms during the
partitioning must be conserved:

cκvκ + cγ vγ = cexpt. (10)

The C concentrations cκ and cγ are both defined with respect to
the octahedral sublattice that corresponds to the body-centered
positions in Fig. 7, i.e., one per four metal atoms. If the C
concentration in this sublattice is 100 at. % (complete filling
of this sublattice), then the C concentration per unit cell would
be 20 at. % (the other 80 at. % are metal atoms). Since
the experimentally determined C concentration per unit cell
(averaged over κ and γ ) is only 9 at. %, the sublattice C
concentration is cexpt = 9/20 = 45 at. %.

The possibility to occupy only one sublattice limits the
number of configurations and has thus a strong impact on
the configurational entropy. This is taken into account by
including the number of available sublattices (sγ = 4 and
sκ = 1). Therefore, the overall expression for the free energy
of the individual phases σ (= κ or γ ) in Eq. (9) is

Fσ (T ,V,cσ ) = Eelas(V,cσ ) + Echem(Vσ (cσ ),cσ ) + kBT sσ

×
[
cσ

sσ

ln
cσ

sσ

+
(

1 − cσ

sσ

)
ln

(
1 − cσ

sσ

)]
.

(11)

FIG. 8. Volume per unit cell of unstrained FM κ carbide (Vκ ) and
AFM γ -Fe (Vγ ) as well as the virtual coherent composite (Vκ+γ ).
The points correspond to calculations with an integer number of
C atoms in the 2 × 2 × 2 supercell, while the dashed lines are
linear interpolations. For a certain number of C atoms in γ , the C
concentration in κ depends via Eq. (10) on the volume fraction vκ .
Vκ+γ is a result of a minimization of Eq. (9).

The particle conservation (10) enables us to express cγ in
terms of cκ . Under these circumstances, Eq. (9) simplifies,
i.e., F tot(T ,V,cκ,cγ ) = F tot(T ,V,cκ ), implying that we have
to perform the minimization only over a single concentration
cκ . Before doing so, we consider the minimization with respect
to the volume V in order to obtain Vκ+γ for different concentra-
tions cκ . For this purpose, the Murnaghan equation of state is
applied to the energy-volume curve for an integer number of C
atoms in 2 × 2 × 2 supercells. This procedure is performed for
both phases separately. If several C configurations are possible,
an averaging of the energies has been performed. Each C atom
removed from the supercell of κ determines a concentration
cκ and a corresponding concentration cγ as given by Eq. (10).
Since cγ cannot be represented by a 2 × 2 × 2 supercell and
since Vegards law is fulfilled, a linear interpolation is employed
for each V in order to determine Fγ (T ,V,cγ ). Subsequently,
the equilibrium coherent volume Vκ+γ is obtained by the
minimization of the total free energy [Eq. (9)] of the κ-γ
composite with respect to the volume V , which is common
for both the phases. The results for Vκ+γ are again linearly
interpolated.

The procedure is repeated for various volume fractions of
the phases, which enter Eq. (10). Figure 8 shows the resulting
Vκ+γ together with the unstrained equilibrium volumes of the
individual phases. The plot indicates once again that the C
concentration in the γ matrix depends on the volume fraction
vκ for a given concentration cκ due to Eq. (10). The lower
the C concentration in κ carbide, the more similar the lattice
constants of the unstrained phases get.

Assuming coherency of the carbide in all three dimensions,
the common volume per unit cell of the composite Vκ+γ

will be closer to that of the κ phase than of the γ phase
because the former is stiffer and has the larger bulk modulus.
Nevertheless, the κ carbide shows a significant adaptation of
its lattice constant, too. The impact of the volume fraction on
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Vκ+γ is small and can be safely neglected. A larger volume
fraction vγ (larger impact on Vκ+γ ) is compensated by a higher
C concentration (i.e., increasing Vγ ) of the γ matrix. Further,
Vκ+γ shows hardly any concentration dependence since the
effects of Vκ and Vγ cancel each other. Therefore, the value

of Vκ+γ ≈ 49 Å
3
/unit cell can be safely used as a universal

parameter of the system.
After the volume optimization, we now perform the energy

minimization with respect to C concentration. In principle,
there are two procedures possible and both are compared for
a volume fraction vκ = 0.5 and the annealing temperature of
T = 600 ◦C. First, one can introduce temperature-dependent
chemical potentials for C [see Eq. (A11)], which we now treat
as formally independent in both phases and which have both
been plotted in Fig. 9(d) with a common x axis [cκ and cγ

are coupled by Eq. (10)]. The thermodynamic equilibrium is
then determined by the intersection point of these two lines.
We note that exactly the same result is obtained, if the particle
conservation (10) is used and the Helmholtz free energy is
directly minimized.

The dependence of the free energies on cκ is shown in
Figs. 9(b) and 9(c). Similarly to Fig. 8, DFT data points
can only be provided for the individual phases, while an
interpolation (polynomial fit) is used for the composite. The
free energy F tot(T ,V,cκ ) in Fig. 9(c) (solid line) illustrates that
starting from the homogeneous distribution, the partitioning of
C atoms yields first a gain in energy before it increases again
when too many C atoms are transferred into the carbide. The
minimum energy is achieved at an equilibrium sublattice C
concentration in the κ carbide of approximately 55 at. %.

The interplay of the different energy contributions in
Eq. (11) that yield to this minimum are analyzed in Figs. 9(a)
and 9(b). As indicated in Fig. 7, the elastic energy of the
κ carbide increases and the chemical energy decreases with
partitioning, i.e., with increasing cκ . However, both changes
are mainly linear, which does not result in a minimum.
Therefore, to make their curvature more apparent, we have
plotted in Fig. 9(b) only the nonlinear (nl) contribution to
the free energies, while the linear contribution (tie line)
cκF

σ (T ,V,1) + (1 − cκ )Fσ (T ,V,0) has been subtracted. The
minimum that becomes now present is caused by defect-defect
interactions and configurational entropy. These effects are
apparently stronger in the γ matrix than in the κ carbide. While
the nonlinearities cause the presence of a minimum, its actual
position is largely determined by the slopes of the chemical
and elastic energy contributions. If, for example, the strong
increase of the elastic energy with partitioning were ignored,
then the position of the equilibrium sublattice C concentration
in the κ carbide would be approximately 88 at. %, far above
the experimental value.

As expected, the free-energy minimum coincides with
the condition of equal chemical potentials in thermodynamic
equilibrium, i.e., at the intersection point of the two chemical
potentials. The steeper slope of μ

γ

C − μ0
C as compared to μκ

C −
μ0

C indicates also in this case that defect-defect interactions and
configurational entropy are more significant in the γ matrix.

The free-energy calculations so far presented in this section
use the assumption that the coherency constraint implies
an isotropic change of the lattice constant of both phases

FIG. 9. Dependence of thermodynamic potentials on the C
concentration in κ carbide. The calculations have been performed
at T = 600 ◦C for equal volume fractions of κ and γ . (a) The elastic
part of the free energy for the κ carbide for hydrostatic (red lines)
and biaxial (blue line) strain along with chemical part (red dotted
line). Either an average over different C configurations (solid line)
or the selection of the low-energy C configuration (dashed lines) has
been done. (b) The nonlinear (nl) contribution to the free energies
for the individual phases, as explained in the text. Solid lines are
fits to third-order polynomials. (c) The total Helmholtz free energies
according to Eq. (9), using the same color code as in part (a). (d) The
temperature-dependent chemical potential of both phases according
to Eq. (A11) are renormalized by a reference potential μ0

C. For more
details, the reader is referred to the text.

(hydrostatic strain). For the regular microstructure shown
in Fig. 2 with almost cubic κ carbides, this seems to be
a reasonable approximation. To quantify the impact of this
assumption, we have also considered the other extreme case
of a biaxial coherency strain for the κ carbide caused by
the two-dimensional interface. In this case, the volumes Vκ

represent the choice of the in-plane lattice constant, while a
full relaxation in the third dimension is allowed. Apart from
this, the procedure is identical to the case of hydrostatic strain:
for a fixed number of C atoms in a 2 × 2 × 2 supercell, we have
first determined the energy of the κ phase for different in-plane
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FIG. 10. Computed equilibrium C concentrations in κ carbide
and γ matrix as a function of respective volume fractions at different
temperatures including the experimental annealing temperature of
600 ◦C (873 K).

lattice constants. Subsequently, we combine the information
with the hydrostatic energies of the γ phase for the same
lattice constants in order to obtain the total energy of the κ-γ
composite [Eq. (9)]. The minimization of this total energy with
respect to the in-plane lattice constant determines the coherent
in-plane lattice constant of the κ-γ composite.

The change in the elastic energy of the κ carbide as
compared to the case of hydrostatic strain is shown in Fig. 9(a)
(blue dashed line). Since the chemical part remains unaffected,
only one of the cases is shown (red dotted line). Although
there are quantitative modifications, the overall shape has not
been changed of the elastic contribution. Accordingly, the
free energy in Fig. 9(c) has also the same behavior, but the
position of the minimum is noticeably shifted. We should note
a difference between the red solid and the blue dashed lines in
Figs. 9(a) and 9(c): in the former case an average of the energies
for various C distributions in the supercell has been performed.
In the latter case, however, only those configurations with
the lowest energy have been selected. The red dashed line,
i.e., the elastic energies corresponding to the lowest-energy
configurations for hydrostatic strain, proves that the resulting
energy differences are small.

The volume fraction vκ used in our calculations cannot
be rigorously determined by experiment since only a part of
the microstructure shows the employed coherency conditions.
Furthermore, it is experimentally known to depend on the
aging times. To evaluate the relevance of this choice, we have
therefore determined the dependence of the equilibrium C con-
centration in κ carbide on vκ . The volume fraction enters the
free-energy expression (9) and the particle conservation (10).
The minimization of the resulting free energies is shown in
Fig. 10. We learn that the C concentration in κ carbide increases
when decreasing the volume fraction of κ , however, it never
becomes equal to the stoichiometric concentration of 20 at. %
per unit cell. This can be explained by an increase of the elastic
strain in the κ carbide with the increase in the volume fraction
of the surrounding γ matrix. The driving force for C to leave κ

carbide becomes even stronger at finite temperatures, e.g., the

experimental annealing temperature of 600 ◦C (873 K), shown
in Fig. 10. The C concentration in κ carbide (γ matrix) over a
range of volume fractions systematically decreases (increases)
with increase in temperature. If we just assume a volume
fraction of κ carbide between 35 vol. % and 50 vol. %, i.e., if
we average the C content in κ carbide, we obtain a value of
approx. 12 at. % per unit cell, which is in reasonable agreement
with the concentration predicted by APT (∼14 at. % per unit
cell).

Our theoretical approach explains the incomplete parti-
tioning of C atoms observed in microstructures containing
κ carbide and an austenitic matrix as an effect of the
elastic coherency strain caused by a completely filled κ

carbide. In addition, these findings explain the discrepancy
in C concentrations of GI and GB κ carbides observed in
experiments. The total free energy of the GI κ carbide and the γ

matrix composite as described in Eq. (9) has three major energy
contributions. While the chemical part favors the partitioning
of C, the elastic energy and configurational entropy act against
such an ordering. In contrast to the coherent GI κ carbides,
for which the elastic strain energy becomes particularly high,
the GB κ carbides are incoherent and hence the elastic
energy contribution is substantially smaller. Therefore, the
configurational entropy is in this case the only driving force for
a homogeneous distribution of C and the chemical contribution
will stabilize κ carbides for a large temperature range. In other
words, a minimization of the total energy of a composite
formed by GB κ carbide and the γ matrix (with no elastic
energy contribution) will yield a higher C concentration in the
κ carbide than in the GI κ carbides.

A complete theory should also provide the thermodynamic
limit for the κ carbide volume fraction. However, the κ carbide
is not only defined by its C content, but also by the presence
of an ordered L12 Al superstructure. The impact of Al is not
captured in our limiting case, in which the γ matrix is treated
as pure Fe. In this approach, not the C partitioning, but the
amount of Al defines the volume fraction of κ carbide and any
removal of Al would not be chemically balanced.

We have indicated above that another limiting case would
be to treat the γ matrix also as an L12 phase with a Fe3Al
composition. In this case, the κ carbide and the γ matrix
would not be distinguishable phases anymore, but would
only differ in the C content. Instead of considering F tot in
Fig. 9(c), the consideration of Fκ only would in this limit
be sufficient. Assuming this scenario, we find the mixing
energy of this phase to be negative [see Fig. 9(b)], hence,
the phase separation into regions with low- and high-C
concentrations is energetically unfavorable (endothermic). A
thermodynamically consistent determination of the κ carbide
volume fraction therefore requires the complete consideration
of the chemistry and the ordering in the κ carbide and the γ

matrix, which is beyond the feasibility of this paper.

IV. CONCLUSIONS

In this work, we have investigated chemical configurations
in their different sublattices of κ carbides employing combined
DFT and APT. Our research on the metal sublattices was
motivated by the fact that disorder effects are inevitable in
high-temperature applications of κ carbides, e.g., gas turbine
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blades. Regarding magnetism, our calculations show an
ordered ferromagnetic phase to form the ground state for these
carbides. Since the computed Curie temperature of ∼60 K is
well below the room temperature, κ carbides will be param-
agnetic in all technologically relevant temperature regimes.
The computed small energy difference between chemically
ordered and disordered phases yields a low order-to-disorder
transition temperature of ∼75 K for the Fe-Mn sublattice.
Since at temperatures below the order-disorder temperature
substitutional diffusion of the Mn atoms is negligible, the
formation of the ordered phase is kinetically forbidden.

Regarding the C sublattice, APT found deviation from
expected stoichiometric L′12 perovskite composition. Moti-
vated by our experimental observation, the off-stoichiometric
κ carbides have been studied via DFT. It turned out that not
only the depletion of the C content in the carbide, but in
particular its incorporation in the γ matrix is decisive for this
process. The latter has been treated without Al since an ordered
Al sublattice would not lead to a phase separation between κ

and γ and a completely disordered arrangement would go
beyond the scope of this work. Under such circumstances,
carbon depletion in κ carbides is predicted to occur especially
when the κ carbide is under volumetric strain imposed by
the surrounding matrix. Thus, the minimization of the elastic
coherency strains is found to be an important mechanism for
the off-stoichiometry in κ carbides, which is manifested by the
lower C concentration in coherently stressed grain interior κ

carbides than the incoherent grain-boundary κ carbides.
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APPENDIX

1. Determination of chemical potentials
in the matrix material

We determine the chemical potential of the γ matrix via
DFT total-energy calculations for a supercell ESC[FexMnyAlz]
that is constructed such that it closely matches the experimental

composition of our material. More precisely, we employ a
chemically disordered 2 × 2 × 2 supercell (SC) created with
the special quasirandom structure (SQS) scheme with x, y,
and z being the total number of Fe, Mn, and Al atoms
(ignoring the impact of C). The cell is fully relaxed. We
choose antiferromagnetic (AFM) ordering, which is found to
be the magnetic ground state for the chemically disordered
structures, instead of the PM state, which is more realistic at
finite temperatures.

The energy of the supercell is used to define corresponding
chemical potentials

ESC[FexMnyAlz] = xμFe + yμMn + zμAl. (A1)

In this context, it is important to note that the absolute value
of the supercell calculation in (A1) depends on the employed
pseudopotential in the ab initio calculations and has thus no
direct physical meaning. Consequently, this also applies to the
derived μX values. Therefore, whenever we want to provide
absolute values for chemical potentials, we do this with respect
to a suitably chosen reference point μ0

X. The latter is in our
work given by the thermodynamically most stable bulk phase
of the elementary compound, i.e., we consider the formation
energy of FexMnyAlz from the pure elements instead of the
absolute energy (A1). We use AFM fcc Fe, AFM fcc Mn, and
NM fcc Al for this purpose, although the actual choice does
not change any results in the paper.

We further note that the use of a DFT energy ESC in
Eq. (A1) corresponds to the limit T = 0 K. The extension to
finite temperatures is in this work limited to the configurational
entropy

Fγ [FexMnyAlz](T ) = ESC[FexMnyAlz]

+ kBT
(
x ln

x

s
+ y ln

y

s
+ z ln

z

s

)
,

(A2)

with s = x + y + z being the total number of atoms in the
supercell (s = 32 for our SC). This yields the equation

Fγ [FexMnyAlz](T ) = xμFe(T ) + yμMn(T ) + zμAl(T ).

(A3)

We can now determine the values of the chemical potentials
by DFT supercell calculations with modified composition.
For example, the chemical potential of C in the matrix is
determined from the following equation:

Fγ [FexMnyAlzC] = Fγ [FexMnyAlz] + μC(T ), (A4)

where ESC[FexMnyAlzC] is the total energy obtained by full
relaxation (i.e., atomic positions and supercell shape and size).
The notion of adding a single C atom into an otherwise C free
supercell corresponds to the dilute limit (concentration 1/33
in our SC).

The situation is slightly different for the metal atoms. Here,
one has to avoid point defect creation (vacancies, interstitials)
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since their formation energy enters the energy balance. This
is achieved by replacing one atom type by another. If, for
example, one Fe atom in the SC is substituted by a Mn or an
Al atom, one gets

Fγ [Fex−1Mny+1Alz]=Fγ [FexMnyAlz] − μFe(T ) + μMn(T ),

(A5)

Fγ [Fex−1MnyAlz+1]=Fγ [FexMnyAlz] − μFe(T ) + μAl(T ).

(A6)

We note in passing that the above equations are strictly
accurate only in the thermodynamic limit, i.e., for infinitely
large supercells. For finite supercells, discretization errors are
unavoidable and could be reduced by replacing the first-order
differences in Eqs. (A5) and (A6) by higher-order ones. For
example, going to second order yields

Fγ [Fex−1Mny+1Alz] − Fγ [Fex+1Mny−1Alz]

2
= μMn(T ) − μFe(T ), (A7)

Fγ [Fex−1MnyAlz+1] − Fγ [Fex+1MnyAlz−1]

2
= μAl(T ) − μFe(T ). (A8)

The price one has to pay for the higher accuracy is that for
each set of equations, twice as many DFT calculations have to
be performed. Since the second-order contribution was found
to be small for the present system and cell size, we used
throughout this study the first-order scheme only.

In order to obtain the chemical potentials for the com-
position Fe3.6Mn1.8AlC0.2, DFT calculations for the SQS
cell Fe18Mn9Al5, and the SCs with modified stoichiometries
Fe18Mn9Al5C, Fe17Mn10Al5, and Fe17Mn9Al6 have been con-
sidered in Eqs. (A3)–(A6), respectively. To be more precise,
the energy of the defect structures has been obtained after
averaging over the energies of the various configurations. The
corresponding pseudopotential-dependent chemical potentials
obtained are μFe(600 ◦C) = −8.299 eV, μMn(600 ◦C) =
−9.138 eV, μAl(600 ◦C) = −4.274 eV, and μC(600 ◦C) =
−9.631 eV, while the temperature-independent reference
potentials are μ0

Fe = −8.208 eV, μ0
Mn = −8.995 eV, μ0

Al =
−3.743 eV, and μ0

C = −9.089 eV.
The above approach is applied throughout the first part of

the paper, where we considered the γ matrix as a reservoir
for the formation of κ carbides and vacancies therein. For the
second part, where we consider the C partitioning between the
two phases (i.e., κ and γ ), the C chemical potential is treated
in a constrained paraequilibrium approach allowing to limit
the computational effort.

2. Determination of chemical potentials for C

To ensure the particle conservation in Eq. (10), we introduce
a Lagrange multiplier μC and rewrite Eq. (9):

F tot(T ,Vκ+γ ,cκ ,cγ ) = vκF
κ (T ,Vκ+γ ,cκ )

+ vγ F γ (T ,Vκ+γ ,cγ )

+μC(cexpt − cκvκ − cγ vγ ). (A9)

The minimum of the total free energy is obtained by minimiz-
ing with respect to the two concentrations cκ and cγ and the
Lagrange multiplier μC. The concentration minimization, i.e.,
∂F tot/∂cσ = 0, is again discussed in two steps. For T = 0 K,
i.e., without considering configurational entropy, one obtains
the energies

μκ
C(cκ ,T = 0 K) := ∂F κ/∂cκ = μC(T = 0 K) and

μ
γ

C(cγ ,T = 0 K) := ∂F γ /∂cγ = μC(T = 0 K). (A10)

Thus, the Lagrange multiplier is the C chemical potential,
which in paraequilibrium must be equal in both phases. Due
to the finite size of the supercells, the computed free energies
are not a continuous function of the C concentration but can be
only computed for a discrete set of concentrations (see Fig. 9).
To perform the derivative, we therefore use a third-order
polynomial fit to the free energies. For finite temperatures, the
derivative of the chemical and elastic energies is unchanged
and taking also the configurational entropy into account one
gets a separate expression for each of the two phases:

μκ
C(cκ ,T = 0 K) + kBT [lncκ − ln(1 − cκ )] = μκ

C(T ) and

μ
γ

C(cγ ,T = 0 K) + kBT [lncγ − ln(1 − cγ )] = μ
γ

C(T ).
(A11)

The chemical potentials μκ
C(T ), μ

γ

C(T ) are labeled by a
superindex to indicate the independence of the two equations,
although there is only one Lagrange multiplier, i.e., μκ

C(T ) =
μC(T ) = μ

γ

C(T ) which needs to be fulfilled.
To obtain the equilibrium off-stoichiometric C concentra-

tions in each phase, we rearrange Eq. (A11) so as to express the
(explicit) concentrations in terms of this chemical potential:

cσ (μC) = 1

1 + exp
[
μσ

C(cσ ,T = 0 K) − μC(T )
]/

kBT
.

(A12)

The above derivation goes beyond the dilute limit and therefore
yields a Fermi rather than a Boltzmann distribution [55]
as, for example, used in Eq. (2). Within this approach, the
concentration in one phase is in principle independent of that
in the other phase and the coupling only occurs via the chemical
potential μC. In order to specify the value of μC, however, one
needs to use the third minimization condition of Eq. (A9),
namely, ∂F tot/∂μC = 0, which reproduces the incorporated
particle conservation (10).
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[21] D. Connétable and P. Maugis, Intermetallics 16, 345 (2008).
[22] R. Besson, A. Legris, D. Connétable, and P. Maugis, Phys. Rev.
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