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Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-
state calculations to be performed subject to physical constraints. It thereby broadens their applicability and
utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently
in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate
this, we comprehensively develop the connection between cDFT energy derivatives and response functions,
providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting
for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary
points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We
show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived,
in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a
condition number quantifying ill definition in multiple constraint cDFT.
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I. BACKGROUND

Constrained density functional theory (cDFT) [1] is a
generalization of density functional theory (DFT) [2,3] in
which external constraints are applied in order to simulate
excitation processes, to calculate response properties, or
to impose a physical condition that is not met by the
unconstrained approximate exchange-correlation functional.
Such constraints may be applied to expectation values of the
charge or spin density, their sums, differences, and moments
within predefined spatial regions [4–16]. They are necessarily
chosen on the basis of physical intuition and experience.
Constraining potentials that are nonlocal or orbital dependent
may also be introduced, moving beyond formal DFT [4].
cDFT enables individual excited states to be studied within the
well-established framework of ground-state DFT [4–7,17–19],
particularly those excited states which may be represented as
the ground state for some potential. While these excitations are
not guaranteed to match the neutral excitations of the system,
yielded by time-dependent DFT [20], for example, their
description may nonetheless benefit from physical conditions,
such as charge transfer, which may be absent from the
approximate functional but reintroduced using cDFT. As such,
cDFT offers important insights that are challenging to obtain
otherwise [5,11,17,21,22].

In practice, cDFT has proven to be a very efficient approach
for simulating neutral excitations in molecular systems, partic-
ularly in cases where a clear spatial delineation may be made
between charge (or spin) donor and acceptor regions [4–7,17–
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19,21–24]. cDFT is a significant asset, therefore, to the simula-
tion of exciton formation, where the incorrect long-ranged be-
havior of conventional local or semilocal exchange-correlation
functionals may be partially corrected by using appropriately
constructed constraints [19,23–26]. It has also been used to
calculate electron transfer [10,11,27–35], excitation energy
transfer [36,37], and exchange coupling parameters [14,15,38]
for use in model Hamiltonians, as well as Coulomb interaction
parameters for methods such as DFT+U [39–44]. Moreover,
cDFT has been shown to provide an effective correction for
the self-interaction error exhibited by approximate functionals
when calculating diabatic free-energy surfaces for electron-
transfer reactions [11]. As a promising antidote to static corre-
lation error in approximate functionals, cDFT has been used to
generate small, efficient basis sets for configuration interaction
calculations, by enabling the most relevant charge and spin
states to be straightforwardly sampled [22,45–48]. For a recent
comprehensive review of cDFT, we refer the reader to Ref. [1].

cDFT may yet play unforeseen roles in future first-
principles atomistic simulation. As the field moves increas-
ingly towards the automated construction and interrogation
of materials databases generated using high-throughput DFT
approaches [49,50], for example, it could be used in the
large-scale screening of candidate charge-transfer and energy-
transfer materials or, as we describe below, to screen for
the average local microscopic dielectric functions of complex
materials and interfaces.

In order for the great utility and potential of the cDFT
approach to be fully and routinely realized in the simulation
of charge-transfer excitations, and in degenerate or strongly
interacting systems, it must be efficiently automated, reliable,
and convenient for users. For this, robust optimization algo-
rithms for the Lagrange multipliers enforcing the constraint
functionals of cDFT are desirable, and indeed necessary in
cases of multiple simultaneous constraints being applied, such
as on charge and spin [1,4,9,10,18]. Additionally, automated
Lagrange multiplier updates at each ionic configuration
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are indispensable when performing geometry optimization
[4–7,17,18] or molecular dynamics [10,11,29,32,51] in
tandem with cDFT.

Critical to both the theoretical underpinning and viability of
cDFT optimization is the nature of the energy landscape with
respect to the Lagrange multipliers that determine the strength
of its constraining potentials. In particular, certainty about the
nature and uniqueness of any stationary points at which the
constraints are satisfied is a prerequisite to efficiently locating
them numerically. Wu and Van Voorhis (W-VV) [5] carried
out the pioneering and enabling work in this area, analyzing
the relevant derivatives, and their principal results have been
subsequently synopsized in numerous works [1,4,18,24,52]. It
was concluded by W-VV [5] on the basis of nondegenerate
perturbation theory that a nontrivial stationary point, for an
arbitrary constraint on the electron density, arises only at
a maximum of the total energy with respect to a cDFT
Lagrange multiplier, and that this solution is unique. This
is a central result in cDFT, suggesting the feasibility of its
routine automated optimization, which has been extended to
multivariate cases in Refs. [1,4].

II. INTRODUCTION AND MOTIVATION

In this work, we rigorously generalize the latter result,
building upon the foundation provided by W-VV’s cDFT
stationary point classification, first showing that the analysis
becomes inconclusive when electronic screening effects are
considered. Specifically, we find that while the cDFT energy
curvature1 formula derived by W-VV is appropriate for updat-
ing cDFT Lagrange multipliers during the density update step,
or inner loop, of self-consistent field DFT algorithms [4,53,54],
it is not applicable to the self-consistently relaxed total-energy
relevant to the global classification of cDFT solutions. Figure 3
illustrates the large discrepancy between the cDFT energy
curvatures calculated using W-VV’s formula (solid circles)
and those evaluated using finite differences (open squares),
hence the necessity to revisit the topic here.

In addition, Fig. 1 shows cDFT data that exhibit effects not
hitherto discussed in the relevant literature, to our knowledge,
namely multiple solutions, hysteresis, and energy discontinu-
ities, and thus further motivates this study. Here, the ONETEP

linear-scaling simulation code [55], as discussed in Sec. IV,
was used to carry out cDFT calculations on the hydrogen
molecule stretched to an internuclear distance of 3.2 a0, which,
using the PBE functional [56] with no spin-orbit coupling, lies
just beyond the Coulson-Fischer point at which an open-shell
singlet ground state becomes favored [57,58]. A constraint
was placed on the difference of spin magnetic moments
�M between the two hydrogen atoms, defined on the basis
of their isolated 1s valence pseudo-orbitals. The constraint
target was set to �Mc = 0 μB , and the Lagrange multiplier
Vc was defined such that increasing its value increased the
spin-dependent potential acting to decrease �M . It was found
that the unpolarized, closed-shell “CS” state is metastable,

1The “curvature” is used here as a convenient shorthand for the
second derivative. We do not imply the geometric curvature, which
equals the second derivative only at stationary points.
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FIG. 1. Multiple solutions and hysteresis in spin-constrained,
open-shell, stretched molecular hydrogen. Shown are (top) the
magnetic moment difference �M between constrained regions versus
the Lagrange multiplier Vc, (middle) the cDFT total energy W

versus Vc corresponding to a target moment difference �Mc =
0 μB , and (bottom) the DFT energy component EDFT versus �M .
“OS(−)” indicates data obtained using the open-shell ground state
with negative �M at (Vc = 0 eV), “OS(+)” the symmetry-related
open-shell solution with positive �M(Vc = 0 eV), with data adapted
from the latter, and “CS” the metastable closed-shell solution.
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starting from which any nonzero value of Vc initiates a collapse
to one of two symmetry-related, degenerate open-shell ground
states, “OS(−)” and “OS(+)” defined in the caption of Fig. 1.

The constraint proved capable of traversing between the two
energy basins associated with these states (the “CS” state lies
at the saddle point connecting them), insofar as that it caused
abrupt switching between states at a critical constraining
potential of Vc ≈ ±81.1 meV. The top panel of Fig. 1 shows
that multiple energy minima are possible for particular values
of the cDFT Lagrange multiplier Vc, that certain ranges of
the constraint target (in this case �Mc) may be inaccessible
to cDFT, and that its response diverges simultaneously with
an energy discontinuity at the transition between states. The
middle panel shows that the total energy W may exhibit
nondifferentiable cusps at such points, close to which cDFT
optimization is impracticable. The bottom panel shows the
DFT contribution to the total energy EDFT as a function of
the constrained quantity, and the two symmetry-related OS
energy basins in question. Geometrically, it is inevitable that
at least some solutions within the inaccessible interval con-
necting these two curves would, in principle, exhibit negative
curvatures. We will show that such solutions, unless metastable
like the CS state, are unstable due to anomalous response
function sign, and thus cannot be realized using cDFT.

Prompted by these results, in the following we provide
generalized energy curvature expressions which ensure that
the stable stationary points of nontrivial linear constraints in
the density may occur only at maxima of the total energy
with respect to their Lagrange multipliers, thereby cementing
the theoretical basis of automated cDFT optimization. Our
approach is general up to arbitrary orders in response and it
also lifts the assumption of orbital nondegeneracy made in
W-VV’s treatment. It also allows for the maximizability of the
cDFT energy to imply the uniqueness of such maxima only
when the unconstrained system is devoid of multiple electronic
minima, a specific counterexample of which is demonstrated
by Fig 1. The consistency of our analytical approach is
validated throughout this work by means of numerically
verified equalities, in some cases newly established, between
integrated linear-response functions and components of the
cDFT total-energy curvature. As such, this work represents a
timely, comprehensive treatment of density response from the
energy landscape perspective. We provide energy-curvature
relationships for each of the integrated response and inverse-
response functions, both interacting and noninteracting, which
we generalize to multiple constraints.

These response functions are by-products of cDFT La-
grange multiplier optimization, and they can be used, for
example, to calculate the average dielectric constant in a
particular region, which is of critical importance for supercell
convergence acceleration [19] and implicit solvation [59,60]
schemes. A formula for the cDFT optimization condition
number is provided, intended for identifying systems in which
extremization of the cDFT total energy is to be expected to
present challenges, and in which Newton’s method may be
apposite, as has previously been suggested within the cDFT
context in Refs. [1,4,10].

Given the broad span of the physical and mathematical
issues necessarily considered and revised, and to favor the
readability of the paper, it is organized into sections, as follows.

In Sec. III, we present and discuss the previously overlooked
role of dielectric screening in the energy derivatives in
self-consistent cDFT. In Sec. IV, we introduce the formal
connections between the Lagrange multiplier curvature of
the different contributions to the cDFT total energy and the
integrated electronic response function, both in the interacting
and noninteracting cases. These newly derived formulas are
then applied to globally characterize the stationary points of
cDFT, both in the single constraint (Sec. V) and multiple
constraint (Sec. VI) cases. In Sec. VII, we provide a synopsis
of our main findings and conclusions.

III. DIELECTRIC SCREENING OF CONSTRAINED DFT
ENERGY DERIVATIVES

We begin our analysis with the cDFT [1] constraint
functional as per the definition and notation introduced in
the founding paper on cDFT automation by W-VV [5].
We consider an electronic system treated using Kohn-Sham
density functional theory (DFT) [2,3], subject to an arbitrary
constraint on its electron density [see W-VV’s Eq. (1), Ref. [8],
and footnote2] of the linear form

C[ρ] = N [ρ] − Nc; N [ρ] =
∑

σ

∫
wσ

c (r)ρσ (r) dr. (1)

Here, ρσ (r) is the electronic density of spin σ , wσ
c (r) is an

arbitrary local weight function describing a spatial region of
particular interest in the system, and Nc is the target electron
number to be enforced on that region. In order to apply this
constraint, a term is added to the conventional DFT total energy
EDFT[ρ] to build the functional given by [cf. W-VV’s Eq. (4)]

W [ρ,Vc] = Ec[ρ,Vc] + EDFT[ρ], with (2)

Ec[ρ,Vc] = VcC[ρ], (3)

where Vc is the Lagrange multiplier. Minimizing W with
respect to the density via the Kohn-Sham orbitals φiσ ,
for a given Vc, under the condition that these orbitals are
orthonormalized for each spin, gives rise to the Kohn-Sham
equations [3] including a constraining potential Vcw

σ
c (r). This

minimization, which is equivalent to solving the constrained
Kohn-Sham equations, does not correspond to the free extrem-
ization δW/δφ∗

iσ = 0 invoked by W-VV since the functional
derivative cannot encode the orbital orthonormality constraint.
Rather, it instead corresponds to extremizing the Lagrangian

�[ρ,Vc] = W [ρ,Vc]

−
∑

σ

Nσ∑
ij

εijσ

(∫
φ∗

iσ (r)φjσ (r) dr − δij

)
. (4)

Here, we have assumed that the system is Kohn-Sham
insulating, for simplicity, with Nσ electrons per spin σ .

2A single, strictly local occupancy constraint is considered in
Ref. [5]. We retain these restrictions so as not to obscure the
fundamental aspects under consideration. These conditions are
typically lifted in practical cDFT calculations, bringing us into
multivariate optimization of constrained Kohn-Sham spin-density
functional theory, which may also be nonlocal or orbital dependent.

035159-3



DAVID D. O’REGAN AND GILBERTO TEOBALDI PHYSICAL REVIEW B 94, 035159 (2016)

Following application of the condition δ�/δφ∗
iσ = 0, we

may perform a unitary transformation among the resulting
equations. This also transforms the orbitals, yet it presents
no difficulties since �[ρ,Vc] is invariant under such
transformations for density functionals. Diagonalising the
matrix Lagrange multiplier εijσ , thereby, returns the Kohn-
Sham cDFT equations of W-VV’s Eq. (5) with eigenvalues
εiσ . Thus, we may succinctly write, at the physically relevant
minimum of W, the expression δW/δφ∗

iσ = Ĥσφiσ or indeed
its complex conjugate δW/δφiσ = φ∗

iσ Ĥσ , where Ĥσ is the
Kohn-Sham cDFT Hamiltonian for spin σ . Following W-VV,
we may next define the function W (Vc) as the evaluation
of W [ρ,Vc] using the density generated by the orthonormal
orbitals which solve the Kohn-Sham equations including
the constraining potential Vcw

σ
c (r) or, for the avoidance of

doubt concerning Kohn-Sham excited states, as the physical
minimum of the total energy for a given Vc.

A. Total-energy first derivative

We now begin to analyze the derivatives of W (Vc) required
for the location of cDFT solutions. Partial derivatives couple
only explicit dependencies, and are sufficient for optimizing
the Lagrange multiplier during the density update step, or inner
loop, of self-consistent field DFT algorithms [4,54]. In order
to determine the character of cDFT stationary points globally,
on the other hand, we must consider total derivatives, which
include orbital and density relaxation effects. In simulations
where a number of constraints are simultaneously applied,
their Lagrange multipliers are independent variables, so that
the Hessian of interest is the matrix of mixed second total
derivatives. These simulations are discussed in Sec. VI.

The first total derivative of the cDFT total energy with
respect to the Lagrange multiplier Vc is given by

dW

dVc
=

∑
σ

Nσ∑
i

Tr

[
δW

δφ∗
iσ

dφ∗
iσ

dVc
+ c.c.

]
+ ∂W

∂Vc

=
∑

σ

Nσ∑
i

Tr

[
(Ĥσφiσ )

dφ∗
iσ

dVc
+ c.c.

]

+
(∑

σ

∫
wσ

c (r)ρσ (r) dr − Nc

)
, (5)

where the trace symbol Tr denotes an integral over space since
the operators are all local, and c.c. represents the complex
conjugate of the preceding term. For any value of Vc, the
orbitals that generate the density minimizing �[ρ,Vc] are
unique up to unitary transformations, and we are free to
choose the set that diagonalizes the Hamiltonian. This allows
us to simplify the latter expression since it guarantees that the
orbital-coupling term

Tr

[
(Ĥσφiσ )

dφ∗
iσ

dVc

]
= εiσ Tr

[
φiσ

dφ∗
iσ

dVc

]

= εiσ

∫
φiσ (r)

∑
a �=i

φ∗
aσ (r) dr

×
∫

φ∗
aσ (r′) dvKS

σ (r′)
dVc

φiσ (r′)

εiσ − εaσ

dr′ (6)

evaluates to zero by virtue of the orthonormality of φiσ and φaσ

for a �= i. Here, v̂KS
σ is the Kohn-Sham potential, i.e., the total

effective potential which enters density functional perturbation
theory [61,62].

If focusing on the self-consistent field DFT inner loop as
per W-VV, we may neglect screening effects and, thereby,
assert that the change in total potential equals the external
perturbation δv̂external

σ , and then δv̂KS
σ = δv̂external

σ = ŵσ
c δVc,

from which dvKS
σ (r)/dVc = wσ

c (r) in the above expression.
More generally, however, an account of electronic screen-
ing of the perturbation is necessary, and such effects are
encapsulated in the inverse microscopic dielectric function de-
fined by ε−1

σσ ′ (r,r′) = dvKS
σ (r)/dvexternal

σ ′ (r′).3 For pure (density-
constrained rather than nonlocal) cDFT, we may write that

dvKS
σ (r)

dVc
=

∑
σ ′

∫
dvKS

σ (r)

dvexternal
σ ′ (r′)

dvexternal
σ ′ (r′)
dVc

dr′

=
∑
σ ′

∫
ε−1
σσ ′(r,r′)wσ ′

c (r′) dr′

≡ (ε−1wc)σ (r). (7)

For cDFT with nonlocal potentials, the symmetric form
(ε−1/2wcε

−1/2)
σ

(r,r′) may be used in place of the latter in
order to ensure that the potential remains Hermitian.

Screening effects notwithstanding, all cancels to zero in
the total derivative of W (Vc) except for the explicit constraint
contribution on the final line of Eq. (5), namely, ∂W/∂Vc = C,
which then evaluates to zero when the constraint is satisfied.

3We use a lunate epsilon ε for the microscopic dielectric function
in order to distinguish from it from the Kohn-Sham eigenvalues ε.
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FIG. 2. The cDFT total energy W and its constraint Ec, and
DFT, EDFT, components, as a function of the Lagrange multiplier
Vc, for a charge-constrained nitrogen molecule. The Vc values for
the data points at which Ec and W attain maxima are shown with
dashed vertical red and green lines, respectively. Inset: the left-hand
atom is constrained to lose charge with respect to its ground-state
population, using an on-atom population analysis combining s and p

orbitals. With respect to the ground-state density, charge depleted
regions are shown with a cyan charge-difference isosurface and
the charge augmented region is shown with an orange isosurface.
The unconstrained right-hand atom exhibits strong polarization and
depletion in the lone-pair region.
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Thus, the task of enforcing the constraint condition is trans-
formed into that of locating the stationary points of W with
respect to Vc. As an aside, this result mirrors W-VV’s Eq. (6),
which was derived in a slightly different way by invoking
δW/δφ∗

iσ = 0 rather than δW/δφ∗
iσ = Ĥσφiσ , the numerical

distinction between which is vanishing due to Kohn-Sham
orbital orthonormality. Finally, we note that the vanishing trace
in Eq. (5) may be partitioned into two contributions which
cancel, for any value of Vc, by means of the expression

δW

δφ∗
iσ

= δEc

δφ∗
iσ

+ δEDFT

δφ∗
iσ

= Vc
δC

δφ∗
iσ

+ δEDFT

δφ∗
iσ

⇒ 0 = VcTr

[
δC

δφ∗
iσ

dφ∗
iσ

dVc

]
+ Tr

[
δEDFT

δφ∗
iσ

dφ∗
iσ

dVc

]
. (8)

Thus, both the DFT energy EDFT and the constraint energy
Ec may individually contribute substantially to the derivatives
of W (Vc), as shown in Fig. 2. As a result, a stationary total
energy W with respect to the cDFT Lagrange multiplier does
not imply a stationary constraint contribution Ec alone, and
vice versa.

B. Total-energy second derivative by means of nondegenerate
perturbation theory

The second derivative or “curvature” of W (Vc) is required to
classify any stationary point, or points, at which the constraint
is satisfied. In cases where the second derivative vanishes,
higher derivatives may also be needed. We consider here
the self-consistent cDFT energy landscape, rather than the
unscreened problem specific to the inner loop of self-consistent
field DFT codes [4,53,54], and the resulting curvature differs
from that of W-VV’s treatment in magnitude and, potentially,
in sign. Following from Eq. (5) and applying the product rule
for differentiation where necessary, we may write that

d2W

dV 2
c

= d

dVc

∑
σ

Nσ∑
i

Tr

[
(Ĥσφiσ )

dφ∗
iσ

dVc
+ c.c.

]
+ dC

dVc

=
∑

σ

Nσ∑
i

Tr

[(
dĤσ

dVc
φiσ

)
dφ∗

iσ

dVc
+ c.c.

]

+
∑

σ

Nσ∑
i

Tr

[(
Ĥσ

dφiσ

dVc

)
dφ∗

iσ

dVc
+ c.c.

]

+
∑

σ

Nσ∑
i

Tr

[
(Ĥσφiσ )

d2φ∗
iσ

dV 2
c

+ c.c.

]

+
∑

σ

∫
wσ

c (r)
dρσ (r)

dVc
dr. (9)

This makes the contributions arising at second order in
perturbation theory explicit. These rather cumbersome terms
may be circumvented by noting that the eigencondition
Ĥσφiσ = εiσ φiσ holds continuously as we vary the parameter
Vc. As a result, the quantity expressed in Eq. (6) vanishes for
all Vc, and so we may write that

d

dVc
Tr

[
(Ĥσφiσ )

dφ∗
iσ

dVc

]
= 0. (10)

Thus, all terms in Eq. (9) numerically cancel except for the final
term dC/dVc. This may then be rewritten using nondegenerate
(only where applicable) first-order perturbation theory, after
the present Eq. (6), since

dC

dVc
= d

dVc

∑
σ

∫
wσ

c (r)ρσ (r) dr

=
∑

σ

Nσ∑
i

∫
wσ

c (r)φ∗
iσ (r)

dφiσ (r)

dVc
dr + c.c.

=
∑

σ

Nσ∑
i

∫
wσ

c (r′)φ∗
iσ (r)

∑
a �=i

φaσ (r) dr

×
∫

φ∗
aσ (r′) dvKS

σ (r′)
dVc

φiσ (r′)

εiσ − εaσ

dr′ + c.c.

=
∑

σ

Nσ∑
i

∑
a �=i

1

εiσ − εaσ

×
[(∫

φ∗
aσ (r)wσ

c (r)φiσ (r) dr
)

(11)

×
(∫

φ∗
iσ (r′)(ε−1wc)σ (r′)φaσ (r′) dr′

)]
+ c.c.

The latter expression reduces to W-VV’s Eq. (7) if
screening effects are neglected, that is, if we set ε−1

σσ ′(r,r′) =
δσσ ′δ(r − r′). Then, as noted by W-VV, the antisymmetry of
the summand implies both that contributions from a � Nσ

cancel to zero and may be omitted, and that the total is strictly
nonpositive. This condition holds in nondegenerate, linearly
responding cases of cDFT Lagrange multiplier optimization
carried out within the potential-update loop of self-consistent
field DFT codes, where W-VV’s result ensures the sign of the
energy curvature for any fixed Kohn-Sham potential.

Globally speaking, however, it appears that the sign of
the energy curvature cannot be inferred directly from the
symmetries of Eq. (11). The necessarily real-valued screened
weight function (ε−1wc)

σ
(r) may locally vary, even in sign,

with respect to wσ
c (r), in a complex, system-dependent

manner, typically causing an average net attenuation of
the constraining potential. Even if we may assume that
0 < (ε−1wc)

σ
(r) < wσ

c (r) holds everywhere, for a particular
system, and that the orbitals are filled according to the Aufbau
principle in Eq. (11), the form of this sum offers no guarantee
regarding the sign of d2W/dV 2

c .
On the other hand, experience and extensive literature (see

review [1]) yield observations that d2W/dV 2
c is negative for

density constraints applied to a wide variety of systems. As
now we go on to numerically confirm, Eq. (10) provides that
this curvature reduces, for ground states, to the interacting
density response function of the system, doubly integrated
with wσ

c (r). On this basis, we will show in Sec. V that any
solutions of non-negative curvature are metastable (e.g., the
“CS” state of Fig. 1) or unstable (e.g., the inaccessible region
in the vicinity of “CS”) with respect to small perturbations,
so that such curvatures cannot be directly computed and
plotted.
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The presence of the inverse microscopic dielectric function
in Eq. (11) renders it unsuitable for use in accelerating
the convergence of automated cDFT Lagrange multiplier
optimization. Even by using a finite-difference method for
Eq. (7), or indeed in the absence of screening effects, a
converged sum over unoccupied states at each cDFT Lagrange
multiplier optimization step is computationally demanding
and conceptually undesirable in DFT. To overcome these
drawbacks, in the following section we present an alternative
approach for characterizing cDFT energy curvatures, in the
framework of response theory.

IV. cDFT ENERGY CURVATURES FROM THE RESPONSE
FUNCTION PERSPECTIVE

As an alternative to classifying the cDFT energy land-
scape by means of summation over unoccupied states, in
what follows we express the relevant energy curvatures in
terms of more computationally convenient integrated response
functions, which depend only on the density or occupied states.
This section is intended to provide a comprehensive treatment
of the relationship between density response functions and
energies in cDFT. We extend our principal results to the
multivariate regime of multiple simultaneous constraints in
Sec. VI. These response functions are convenient by-products
of automated cDFT optimization, and they are experimental
observables in simulations where the constraining potentials
are those of physical fields. For a cDFT potential representing
a uniform electric field, for example, wσ

c (r) has a constant
gradient, and the integrated interacting response function
represents the high-frequency electric dipole-dipole polariz-
ability α∞. Another example is the microscopic dielectric
constant averaged over a region, which is an important
ingredient for supercell convergence acceleration [19] and
implicit solvation [59,60] schemes. The results provided below
allow such response functions to be calculated, and even
updated in self-consistent schemes.

A. Integrated interacting response function

The interacting linear-response function χσσ ′
(r,r′) mea-

sures the response in the density due to a small change in the
applied potential. Since, by definition,

dρσ (r) =
∫

χσσ ′
(r,r′)dvexternal

σ ′ (r′) dr′

=
∑
σ ′

∫
χσσ ′

(r,r′)wσ ′
c (r′)dV σ ′

c dr′, (12)

one further integration with wσ
c (r) allows us to define the

integrated interacting density response function as

χσσ ′ ≡
∫∫

wσ
c (r)χσσ ′

(r,r′)wσ ′
c (r′)dr dr′ (13)

= dNσ

dV σ ′
c

= d
∫

wσ
c (r)ρσ (r) dr

d
∫

wσ ′
c (r′)V σ ′

c dr′

∫
wσ ′

c (r′′) dr′′,

where we have made it explicit that dVc is the average change
in external potential over the subspace. For constraints defined
using more general measures of the density or density matrix,
such expressions may be generalized straightforwardly by

replacing the local weighting functions wσ
c (r) by nonlocal

projection operators.
The orthonormality preservation condition expressed in

Eq. (10) guarantees the simplification of Eq. (9) to Eq. (11)
for all values of Vc, and so provides that

d2W

dV 2
c

= dC

dVc
= dN

dVc
≡ χ = 1

2

∑
σσ ′

χσσ ′
, (14)

where the 1
2 is specific to collinear spins. Taking the constraint

contribution alone, on the other hand, we find that the second-
order response function survives since

d2Ec

dV 2
c

= d2(VcC)

dV 2
c

= d

dVc

[
C + Vc

dC

dVc

]

= 2
dN

dVc
+ Vc

d2N

dV 2
c

= 2χ + Vc
dχ

dVc
. (15)

Combining these two results, we deduce a general result for
the DFT energy component curvature, given by

d2EDFT

dV 2
c

= d2(W − Ec)

dV 2
c

= −χ − Vc
dχ

dVc
. (16)

In order to check the validity of our approach for analyzing
functional interdependencies and derivatives, and to numeri-
cally illustrate our analytical findings, we performed a cDFT
study on the nitrogen molecule shown in Fig. 2. This serves to
illustrate a case in which, if the constraint energy Ec vanishes
for a finite Lagrange multiplier Vc, the total energy W achieves
a maximum with respect to Vc. The total and constraint
energies W and Ec exhibit different negative curvatures, and
their the difference, the DFT component EDFT, necessarily
exhibits a positive curvature around the ground-state minimum
at Vc = 0 eV. For each value of the charge-constraining
Lagrange multiplier, well-converged BLYP [63,64] ground-
state energies and densities, with pseudized 1s states, were
calculated using the ONETEP linear-scaling Kohn-Sham DFT
code [55]. This code solves for the ground state by optimizing
a minimal set of nonorthogonal generalized Wannier func-
tions [65] in situ. Each of these functions is expanded in
an underlying variational plane-wave equivalent basis set and
truncated within a prescribed cutoff sphere, in this particular
case to a radius of 10 a0. This approach has been shown to offer
finite-difference linear-response properties with an accuracy
matching that of conventional plane-wave DFT [66]. The
constrained population was defined using the four 2s and 2p

valence pseudo-orbitals of the isolated atom.4 In the dimer, the
resulting unconstrained ground-state atomic occupancy was
approximately 6.5 e, due to overlap between pseudo-orbitals.
The charge of one of the nitrogen atoms was constrained, with
the target occupancy set to Nc = 6.0 e.

In Fig. 3, we note a very precise numerical correspondence
between the total-energy curvature, its constraint, and DFT
components, and their respectively predicted reformulations
in terms of first- and second-order integrated interacting

4The resulting constraint acts on the Kohn-Sham density matrix
rather than on the density. Our analytical findings extend to that case
with minor notational changes.
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FIG. 3. The numerically evaluated curvature (second derivatives)
of the cDFT total energy W and its constraint Ec, and DFT, EDFT,
components, with respect to the Lagrange multiplier Vc for the system
shown in Fig. 2. Dashed vertical lines have the same significance as
in Fig. 2. The Lagrange multiplier derivatives of the constrained
occupancy N , which correspond to the latter curvatures, are shown,
as well as the linear-response approximation to one of them (crosses).
Evaluated values of the unscreened sum-over-states perturbation
theory expression for d2W/dV 2

c , following W-VV, are also shown
(solid circles).

response functions χ = dN/dVc and dχ/dVc. This serves
to confirm that the orthonormality preservation condition of
Eq. (10) holds for all Vc. The failure of the linear-response
approximation 2χ = 2dN/dVc (shown with blue crosses) to
d2Ec/dVc is somewhat discouraging for the application of
root-finding algorithms on Ec in order to optimize the cDFT
potential, otherwise a plausible alternative or complement to
extremizing W .

Calculated values for the unscreened sum-over-states
perturbation theory result for d2W/dV 2

c following W-VV,
corresponding to the omission of screening in Eq. (11), are
also shown in Fig. 3 (solid circles). For this, we generated
optimized conduction band states using the method described
in Ref. [67], with the conduction band Wannier function
cutoff radii set to 14 a0. This enabled us to numerically
confirm that unscreened perturbation theory does not generally
match the self-consistent total-energy curvature, nor that of
its constraint or DFT energy contributions individually. The
antisymmetry of the unscreened summand guarantees that
it monotonically decreases with an increasing number of
conduction band states, so that the difference between the
measured energy curvature and the unscreened sum-over-
states also monotonically increases with the number of states.

B. Integrated noninteracting response function
and dielectric function

In Figs. 4 and 5, we illustrate the relationship between
energy curvatures and integrated density response functions
with respect to the screened equivalent of the cDFT Lagrange
multiplier, that is, the average change in the Kohn-Sham
potential over the constrained region. This provides a test
of the magnitude and potential importance of dielectric
screening effects in the energy versus Lagrange multiplier
derivatives of self-consistent cDFT. The relevant weighted
measure of the screened potential, for pure density functionals
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FIG. 4. Results of the calculations shown in Fig. 3, where
derivatives are instead taken with respect to the change in Kohn-Sham
potential averaged over the constrained region, that is the �V

induced by a finite Vc, using the same weight function as used
to calculate the constrained occupancy N . The derivative dN/dV

corresponds to the average noninteracting charge response of the
constrained region, whereas dN/dVc is the interacting response.
Unlike the derivatives shown in Fig. 3, these noninteracting (i.e., bare
or independent-particle) derivatives demonstrate no equivalence. The
perturbation theory data points are as in Fig. 3.

and constraints, is given by

V σ =
(∫

wσ
c (r)vKS

σ (r) dr
)(∫

wσ
c (r′) dr′

)−1

. (17)

Then, whereas χ = dN/dVc is the integrated interacting
density response function, we may define χ0 = dN/dV

as its noninteracting (also known as independent-particle)
counterpart. If χσσ ′

0 (r,r′) = dρσ (r)/dvKS
σ (r′), then

χσσ ′
0 = dNσ

dV σ ′ = d
∫

wσ
c (r)ρσ (r) dr

d
∫

wσ ′
c (r′)vKS

σ ′ (r′) dr′

∫
wσ ′

c (r′′) dr′′

≈
∫∫

wσ
c (r)χσσ ′

0 (r,r′)wσ ′
c (r′) dr dr′, (18)

where the final approximation, a consequence of neglected
local-field effects, becomes an equality in the special case that
wσ

c (r)dvKS
σ (r) = wσ

c (r)dV for all r.
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Renormalized P.T.

FIG. 5. Following from Fig. 4, the correspondence between
energy curvatures and averaged noninteracting response functions
is recovered by using mixed interacting and noninteracting second
derivatives, which restores their consistency. The sum-over-states
perturbation theory (P.T.) data points following W-VV are again
shown (solid circles), together with the “renormalized P.T.” data
points (open black circles) described in the Appendix A.
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Figure 4 shows that replacing Vc by V does not preserve
any equivalence between energy curvatures and response func-
tions. Mixed derivatives with respect to Vc and V , the results
of which are shown in Fig. 5, are required for consistency of
screening. First, returning with the result dW/dVc = C for
orthonormal states, we find that

d2W

dV dVc
= dC

dV
= dN

dV
≡ χ0 = 1

2

∑
σσ ′

χσσ ′
0 , (19)

which is numerically confirmed via Fig. 5. Next, we have

d2Ec

dV dVc
= d2(VcC)

dV dVc
= d

dV

[
C + Vc

dC

dVc

]

= dC

dV
+ dVc

dV

dC

dVc
+ Vc

d2C

dV dVc

= 2
dN

dV
+ Vc

d2N

dV dVc
= 2χ0 + Vc

dχ0

dVc
(20)

since the derivatives with respect to the external and internal
potentials commute. Finally, for the DFT component of the
total energy, we deduce that

d2EDFT

dV dVc
= d2(W − Ec)

dV dVc
= −dN

dV
− Vc

d2N

dV dVc

= −χ0 − Vc
dχ

dV
= −χ0 − Vc

dχ0

dVc
. (21)

In practice, these mixed derivatives are calculated simulta-
neously with the previously detailed curvatures with respect
to Vc by monitoring the variation of the weighted, fully
relaxed Kohn-Sham potential of Eq. (17) in self-consistent
cDFT calculations. As before, we observe a precise agreement
between the numerically evaluated energy curvatures and
response functions. This confirms Eq. (19), namely, that the
averaged noninteracting (i.e., independent-particle) response
function of DFT may be expressed as a total-energy landscape
property. We return to discuss the unscreened sum-over-states
perturbation theory results shown in Figs. 4 and 5 in the
Appendix A.

The process of Lagrange multiplier optimization offers
ready access to the physical response properties of the
constrained region, which are not limited to those of the
target state. The simplest such quantity is the subspace inverse
dielectric constant (i.e., screening factor)

ε−1
σσ ′ ≡

∫∫
wσ

c (r)ε−1
σσ ′(r,r′)wσ ′

c (r′) dr dr′

×
( ∫

wσ ′
c (r′′) dr′′

)−1

. (22)

This may be calculated directly using the cDFT integrated
response functions since, by definition,

dvKS
σ (r) =

∫
ε−1
σσ ′(r,r′)dvexternal

σ ′ (r′) dr′

=
∫

ε−1
σσ ′(r,r′)wσ ′

c (r′)dV σ ′
c dr′

⇒ dV σ = ε−1
σσ ′dV σ ′

c . (23)

From this, it is clear that ε−1
σσ ′ is a property of the constrained

ground-state density and is not explicitly dependent on
unoccupied states. Next, we may apply the chain rule via
the the constrained property Nσ , introducing the notation
χ−1σσ ′′

0 = dV σ /dNσ ′′
, which provides that

ε−1
σσ ′ = dV σ

dV σ ′
c

=
∑
σ ′′

χ−1σσ ′′
0 χσ ′′σ ′

. (24)

The inverse of this quantity is the subspace-averaged dielectric
constant, neglecting local-field effects, given by

εσσ ′ = dV σ ′
c

dV σ
=

∑
σ ′′

χσσ ′′
0 χ−1σ ′′σ ′

. (25)

cDFT thus provides an efficient means of estimating the
dielectric constants of spatial regions, which are central in
implicit solvation [59,60], supercell convergence acceleration
of excitation energies [19], and in high-frequency optical
response, in terms of by-products of its optimization.

V. STABLE cDFT SOLUTIONS ARE ENERGY MAXIMA
WITH RESPECT TO THEIR LAGRANGE MULTIPLIER

The response function based approach to cDFT analysis
is used in this section to globally characterize its stationary
points. W-VV have shown that a non-negative total-energy
curvature with respect to the cDFT Lagrange multiplier is guar-
anteed in cases where nondegenerate perturbation theory is
applicable [5], in the absence of screening effects. This regime
may hold during cDFT optimization within the density-update
loop of self-consistent field codes, where the Kohn-Sham
potential is fixed [4,54]. More generally, or physically, the
Kohn-Sham potential is relaxed self-consistently for each Vc,
and sum-over-states perturbation theory becomes inconclusive
as discussed in the text surrounding Eq. (11). We provide
a general, nonperturbative proof that stable cDFT solutions
always occur at energy maxima with respect to their Lagrange
multiplier. We then extend this proof to the multivariate cDFT
regime in Sec. VI.

We have shown that the curvatures of the total energy
with respect to the cDFT Lagrange multiplier Vc are equal to
integrated density response functions. Next, we will show that,
similarly, the curvatures with respect to the cDFT occupancy
N , for a particular target Nc, are equal to the inverses of
these response functions. The occupancy N is not a free
parameter, and so, in order to analyze these curvatures, it is
convenient to initially take derivatives with respect to the cDFT
target occupancy Nc, subject to the condition that N = Nc

for a suitable Lagrange multiplier Vc(Nc). Echoing Eq. (5),
assuming that the ground state is located for all Vc,

dW

dNc
=

∑
σ

Nσ∑
i

Tr

[(
δW

δφ∗
iσ

dφ∗
iσ

dVc
+ c.c.

)
dVc

dNc

]
+ ∂W

∂Nc

=
∑

σ

Nσ∑
i

Tr

[(
(Ĥσφiσ )

dφ∗
iσ

dVc
+ c.c.

)
dVc

dNc

]
− Vc

= − Vc(Nc) ⇒ d2W (Nc)

dN2
c

= − dVc

dNc
. (26)
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Since the constraint N = Nc is satisfied for each Nc, the
constraint energy always vanishes and EDFT(N ) = W [Vc(Nc)]
along the curve. Thus, we may write, for the occupancy
curvature of the DFT contribution, that

d2EDFT(N )

dN2
= d2W [Vc(Nc)]

dN2
c

= −dVc

dN
= −χ−1. (27)

As previously established by W-VV for the unscreened
case [5], the combination of Eqs. (14) and (27) provides that
the curvature of the total energy with respect to Lagrange
multiplier is directly related to the curvature of the DFT energy
with respect to the occupancy, namely,(

d2W

dV 2
c

)−1

=
(

dN

dVc

)−1

= χ−1

= dVc

dN
= −d2EDFT

dN2
. (28)

We may extend Eq. (28) to the general cDFT total-energy
W , no longer subject the constraint that the target occupancy is
attained, by freeing the target Nc after optimization of Vc. This
has no bearing on EDFT, by definition, and so Eq. (27) holds
irrespective of whether the constraint is satisfied. For W (Vc)
with N not necessarily equal to Nc, it is sufficient to add the
curvature of the now nonvanishing constraint energy term Ec,
given by

d2Ec

dN2
= d2(VcC)

dN2
= d

dN

[
Vc

dC

dN
+ C

dVc

dN

]
(29)

= 2
dVc

dN

dC

dN
+ C

d2Vc

dN2
= 2

dVc

dN
+ (N − Nc)

d2Vc

dN2
.

The total-energy curvature is provided by the sum

d2W

dN2
= d2EDFT

dN2
+ d2Ec

dN2

= dVc

dN
+ (N − Nc)

d2Vc

dN2
. (30)

Then, by combining Eqs. (27) to (30) and by applying the
constraint condition N = Nc, we arrive at our central result
that, valid for all cDFT stationary points as defined,(

d2W

dV 2
c

)−1

= 1

2

d2Ec

dN2
= −d2EDFT

dN2
= d2W

dN2
. (31)

This is numerically confirmed via Figs. 3 and 6, and the
inaccuracy of linear-response approximations in Fig. 6 (shown
with crosses), except at N = Nc, is clear.

Next, let us consider the possibility of simulating a stable
constrained ground state at a given value of Vc, which may be a
cDFT solution but is not necessarily so. Stability implies that
the energy is minimized with respect to the density, locally
at least, and put more precisely, that the energy is locally
strictly convex. Mathematically, this condition is represented
by a positive-definite matrix d2W/dρσ ′

(r′)dρσ (r), evaluated
at a fixed Vc, where the coordinate pairs {σ,r} form the basis
vectors. Separating the DFT and constraint energy terms, the
stability of constrained ground states is then determined by

d2W

dρσ ′ (r′)dρσ (r)

∣∣∣∣
Vc,ŵc

= d2EDFT

dρσ ′ (r′)dρσ (r)
, (32)
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FIG. 6. Numerically evaluated second derivatives of the cDFT
total energy W , its constraint Ec and DFT EDFT components, with
respect to the constrained occupancy N , for the system shown in
Fig. 2 and occupancy target Nc = 6 e. Dashed vertical lines show
the occupancy at which W (green) and Ec (red) are maximized.
The corresponding occupancy derivatives of the Lagrange multiplier
(averaged inverse screened response functions) are shown, as well as
their noncorresponding linear-response approximations (crosses).

so that the latter is also positive definite. The underlying DFT
energy landscape therefore alone determines the stability of
constrained ground states and, thus, while cDFT may relocate
the minima of W within the simply connected domains of
stability of the unconstrained DFT problem, it cannot deform
those domains. This is a consequence of the linearity of Ec in
the density and thus its vanishing contribution to the fixed-Vc

curvature of W . The constraint may, however cause abrupt
transitions of energy minima across disconnected domains, as
observed in the “OS(−)” to “OS(+)” transition of Fig. 1 (albeit
in the more general case of a spin-dependent constraint).

In order to analyze the sign of the quantity expressed
in Eq. (31), we may focus on the DFT energy curvature
with respect to the subspace occupancy d2EDFT/dN2. Let us
suppose that stable ground states are observed, in a particular
constrained system, as Vc is continuously varied within an
interval. The local special case of Eq. (26) provides that
dEDFT/dρσ (r) = −vexternal

σ (r) = −wc(r)Vc. Combining this
with the general properties of a positive-definite matrix, i.e.,
that its inverse is positive definite and that its diagonal elements
are positive, we find that

0 <

(
d2EDFT

dρσ2

)−1

(r,r) =
(

− dvexternal
σ

dρσ

)−1

(r,r)

= −χσσ (r,r) = − dρσ (r)

dvexternal
σ (r)

= − dρσ (r)

wσ
c (r)dVc

. (33)

Following from this, we may multiply by [wσ
c (r)]2, allowing

wσ
c (r) to take zero (but not at all r) and negative values, as

is necessary, for example, when constraining the difference in
charge between two regions. Then, integrating over all space,
we arrive at the result

0 >
∑

σ

∫ [
wσ

c (r)
]2 dρσ (r)

wσ
c (r)dVc

dr = dN

dVc
= χ. (34)

Thus, Eq. (33), which states that the local part of the interacting
response function is negative about stable ground states, is
generalized in Eq. (34) to the cDFT response function for an
arbitrary weight function, irrespective of its profile or even its
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sign. Recalling Eq. (14), we arrive at the sought-after result
that d2W/dV 2

c < 0 over stable ground states. We note that this
result is valid up to arbitrary order in response, it is general
to degenerate and nondegenerate systems, and it accounts for
screening.

Conversely, let us briefly suppose that d2W/dV 2
c �

0 for some value of Vc. Then, by virtue of Eq. (14),
we have dN/dVc � 0 and, combining Eqs. (33), (34),
and the non-negativity of [wσ

c (r)]2, there exist r and σ

for which wσ
c (r) �= 0 and 0 � (d2EDFT/dρσ2)

−1
(r,r). Then,

(d2EDFT/dρσ dρσ ′
)−1(r,r′) may not be positive definite since

it has a nonpositive diagonal element. Therefore, its inverse
(d2EDFT/dρσ dρσ ′

)(r,r′) may also not be positive definite,
and this guarantees that the state is unstable with respect to
spin-density perturbations. Then, only metastable states such
as the CS state depicted in Fig. 1 may be observed in practice.
There are two ways in which cDFT inflection points may
arise, that is, cases where d2W/dV 2

c = dN/dVc = 0. First,
the constraint may couple pathologically to the density or not
couple to it at all. Trivial examples of this are constraints
where, for all σ and r, wσ

c (r) = 1 or wσ
c (r)ρσ (r) = 0, which

result in a vanishing response χ . Second, the state may be
degenerate on a line or higher surface, and the constraint may
be contrived so as not to break this degeneracy.

Combining these arguments, we conclude that the stability
of ground states over an interval of Vc both implies and requires
that d2W/dV 2

c remains negative and finite at constrained
ground states within that interval. In practice, this means that
intervals of positive curvature are not numerically observable
because unstable or metastable states cannot be sampled in a
continuous manner. It is, however, possible, as demonstrated
in Fig. 1, to observe numerical discontinuities in the otherwise
concave total energy W , for fixed Nc, when the response, and
hence energy curvature, diverges at a phase transition. Such
transitions occur at vanishing values of the quantity expressed
in Eq. (31), i.e., at inflection points of EDFT(N ). For this, it
is necessary for χσσ (r,r) to diverge for some σ and r where
wσ

c (r) �= 0, by virtue of Eqs. (28), (33), and (34).

VI. MULTIPLE CONSTRAINTS, THE cDFT CONDITION
NUMBER, AND THE EXTENSION TO SELF-CONSISTENT

FIELD CDFT

In this section, we consider, in detail, the extent to which our
principal results may be generalized to multiple constraints,
and thereafter to self-consistent field cDFT. For the former, it
is helpful to consider a vector Lagrange multiplier Vc, acting
upon a vector of constraint functionals C = N − Nc, yielding
Ec = Vc · C. The multivariate generalization of Eq. (28) is the
equation

(
d2W

dV2
c

)−1

=
(

dN
dVc

)−1

= χ−1

= dVc

dN
= −d2EDFT

dN2
, (35)

where the negative exponent denotes matrix inversion, and the
matrix is symmetric due to the symmetry of χ (r,r′) under
coordinate exchange in Eq. (13). We may also consider the

noninteracting analog of Eq. 35, viz.,(
d2W

dVdVc

)−1

=
(

dN
dV

)−1

= χ−1
0 . (36)

Similar expressions may be derived for the second derivatives
of EDFT and Ec. For example, Eq. (21) becomes, noting that
the final object is a rank-three tensor,

d2EDFT

dVdVc
= −χ0 − Vc · dχ0

dVc
. (37)

The dielectric function may also be straightforwardly gener-
alized in order to describe the coupling of dielectric screening
between constrained subspaces. In the spin-degenerate or
spin-averaged case, it takes the particularly simple matrix form

ε = dVc

dV
= 1

2
χ0 · χ−1. (38)

The behavior of multivariate cDFT optimization depends
on the nature of the energy landscape with respect to Vc, and
it may be complicated by the presence of multiple extrema or
by surfaces which are elongated in some directions relatively
to others. The curvature of the energy landscape, about a
particular value of Vc, is characterized by the eigenvalues
of the Hessian matrix χ . These must be identical for optimal
extremization of W [Vc] by simple conjugate gradients. More
generally, the positive-valued condition number k, defined by

k2 =
∑
IJ

([
d2W

dV2
c

]
IJ

)2 ∑
KL

([
d2W

dV2
c

]−1

KL

)2

, (39)

where capitalized letters index constraints, gives a measure
of the spread of the Hessian eigenvalues. The optimization
problem is said to be ill conditioned if k is much larger than one.
Then, conjugate gradients may be expected to perform poorly,
and Newton or quasi-Newton methods may be considered. We
may rephrase k as

k2 =
∑
IJ

([
dN
dVc

]
IJ

)2 ∑
KL

([
dVc

dN

]
KL

)2

=
∑
IJ

([χ]IJ )2
∑
KL

([χ−1]KL)2

=
∑
IJ

([(
d2EDFT

dN2

)−1]
IJ

)2 ∑
KL

([
d2EDFT

dN2

]
KL

)2

,

(40)

through which it is clear that W [Vc] has the same condition
number as EDFT[Nc]. If optimizing Vc during the density
update step of self-consistent field DFT codes [4,54], the
corresponding condition number k0 may be calculated using
the fixed-potential equivalent of Eq. (40). Both k and k0 are
amenable to evaluation by finite differences. If the response
χ or inverse response χ−1 matrices are singular, k diverges,
the problem is said to be ill posed, and its definition must
be reconsidered. We refer the reader to Ref. [68] for a more
general discussion of condition numbers in the context of
electronic structure.

The connection between the stability of constrained states
and the negativity of d2W/dV 2

c , as demonstrated in Sec. V, is
here generalized to the multivariate case. More precisely, the
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stability of multiply constrained ground states both implies
and requires that the matrix d2W/dV2

c has strictly negative
diagonal elements. If the matrix is strictly diagonally domi-
nant, furthermore, stability implies and requires that W (Vc) is
strictly concave locally. To see this, let us assume that stable
ground states are observed as Vc is varied within some simply
connected volume. Then, taking the diagonal matrix elements
of d2W/dV2

c individually, while following Eqs. (33) and (34)
for each constraint labeled I , we find that

0 >
∑

σ

∫ [
wσ

cI (r)
]2 dρσ (r)

wσ
cI (r)dVcI

dr =
[

dN
dVc

]
II

. (41)

Combining this with Eq. (35), we deduce that the diagonal
matrix elements of d2W/dV2

c are all negative. This is a neces-
sary but not sufficient condition for d2W/dV2

c to be negative
definite locally. However, it becomes a sufficient condition for
negative definiteness if the symmetric matrix is also diagonally
dominant [69]. Diagonal dominance is a physically reasonable,
albeit system-dependent, condition related to the extent of
nonlocality in χ (r,r′). If it holds, stability implies that W (Vc)
is strictly concave locally. Additionally, if wσ

cJ (r)wσ
cI (r) > 0

for all I , J , σ , and r [such as if wσ
cI (r) > 0 for all I and σ ],

then

0 >
∑

σ

∫
wσ

cJ (r)wσ
cI (r)

dρσ (r)

wσ
cI (r)dVcI

dr, (42)

and the Hessian is a strictly negative matrix, but that alone does
not imply its negative definiteness. Conversely, if d2W/dV2

c
does not exhibit all negative diagonal elements, as is possible
if it is not negative definite, for example, then [dN/dVc]II � 0
for one or more values of I . Then, by the non-negativity of
[wσ

cI (r)]2 for all I , σ , and r, the state is unstable, as previously
shown in the single-constraint case. Thus, we conclude that if
a ground state subject to multiple linear, nontrivial constraints
is stable with respect to perturbations, and hence locatable by
numerical cDFT optimization, this implies and requires that
the associated Hessian matrix d2W/dVc has a strictly negative
diagonal, and that it is negative definite in the event that it is
diagonally dominant. If it is not strictly diagonally dominant,
however, we cannot rule out the possibility of stable ground
states occurring at saddle points of the self-consistent W (Vc).

Finally, we consider the energy landscape associated with
cDFT Lagrange multiplier optimization within the fixed-
potential inner loop of self-consistent field (SCF) DFT codes.
For this, let us first assume that stable minimum energy
eigenstates are observed, for a given fixed DFT contribution
v̂DFT

σ to the Kohn-Sham potential, as Vc is varied within some
simply connected volume. Again, we may analyze the diagonal
matrix elements of d2W/dV2

c individually, but in this case
dvKS

σ (r) = dvexternal
σ (r) = wσ

cI (r)dV σ
cI , for each I , and for all

σ and r. Then, Eq. (33) may be modified for a fixed DFT
potential to give

0 <

(
d2EDFT

dρσ2

)−1

v̂DFT
σ

(r,r) = − dρσ (r)

wσ
cI (r)dVcI

∣∣∣∣
v̂DFT

σ

, (43)

whereupon Eq. (41) may be similarly adapted, yielding

0 >
∑

σ

∫
wσ

cI (r)dρσ (r)

dVcI

∣∣∣∣
v̂DFT

σ

dr =
[

dN
dVc

]v̂DFT

II

. (44)

The identity d2W/dV2
c = dN/dVc remains valid for a fixed

v̂DFT
σ since it relies only on the orthonormality of Kohn-

Sham eigenstates. Thus, the diagonal elements of d2W/dV2
c

are individually negative, and the guarantee of strict local
concavity of W (Vc), for any given v̂DFT, is again conditional
on a symmetric diagonally dominant [69] d2W/dV2

c . If
the matrix does not exhibit a strictly negative diagonal,
conversely, then [dN/dVc]II � 0 for one or more values
of I , and there exist r and σ for which wσ

c (r) �= 0 and

0 � (d2EDFT/dρσ2)
−1

(r,r) at fixed v̂DFT
σ . Then, the non-self-

consistent (d2EDFT/dρσ dρσ ′
)(r,r′) cannot be positive definite,

and the state is unstable. We conclude that for a minimum-
energy eigenstate, given a fixed DFT potential and subject to
one or more linear, nontrivial constraints, to be stable with
respect to perturbations and hence locatable by SCF-type
cDFT optimization, it implies and requires the associated
fixed-v̂DFT Hessian matrix d2W/dV2

c to have a strictly negative
diagonal, and for it to be negative definite in the event that
it is diagonally dominant. This generalizes the results of
Refs. [1,4,5] beyond the first-order nondegenerate perturbative
regime, extending their validity to systems which exhibit
nonlinear response or orbital degeneracy.

VII. CONCLUSION AND SUMMARY

Constrained DFT is a flexible, potent approach that
broadens the scope and flexibility of DFT-based atomistic
simulation. A growing number of software implementations of
cDFT are now appearing [1,10,24,26,29,51,70–75], including
linear-scaling implementations designed for application to
large systems [18,52]. It is inherently parallelizable, and
thus potentially suitable for use in combination with high-
throughput materials screening infrastructures [49,50]. Funda-
mental developments will be required to bring cDFT into the
realm of such very routine use. For transferability and com-
parability between codes, for example, the standardized, auto-
mated selection of population analysis and targeting schemes,
ideally but not necessarily based on energy considerations,
would surely be beneficial. Methods based on promolecule
densities [45] or self-consistent Wannier functions [76] are
promising possibilities in this direction. The key findings and
conclusions of this work are the following:

(i) For any self-consistent energy second derivative with
respect to a constrained expectation value, there is an equiv-
alent integrated linear response or inverse-response function
which is more convenient to calculate. This provides a basis for
future quasi-Newton or preconditioning approaches for cDFT.

(ii) A negative-diagonal self-consistent cDFT Hessian is
implied by the local stability of the system with respect to
perturbations about the point of evaluation. A Hessian lacking
this property cannot be observed by finite differences, and
so may be excluded in automation. This generalizes W-VV’s
result to the self-consistent cDFT problem, the nonlinear-
response regime, and to degenerate orbitals.

(iii) Concave regions in the DFT energy versus spin-
density landscape cannot be explored using cDFT.

(iv) Integrated response and dielectric functions may be
evaluated as by-products of cDFT optimization, without sums
over empty Kohn-Sham eigenstates.
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(v) Existing cDFT optimization schemes based on the
self-consistent field approach, which update the cDFT La-
grange multipliers with fixed DFT potentials, may be readily
adapted for the self-consistent gradients required in direct-
minimization DFT.

(vi) cDFT does not change the domains of stability of
the underlying DFT energy landscape, it moves the solutions
around, or between, these domains. When there are two
or more such domains in cDFT, it is possible to observe
multiple solutions, hysteresis, and energy discontinuities at
such transitions.

We expect that this work may facilitate the advanced
automation of cDFT Lagrange multiplier optimization, par-
ticularly in the high-throughput, molecular dynamics, and
linear-scaling regimes. Our general framework for treating
energy landscapes in terms of integrated response functions
now enables the extension of cDFT to new areas of atomistic
and continuum simulation.
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APPENDIX: APPROXIMATE CONNECTION OF THE cDFT
NONINTERACTING RESPONSE FUNCTION TO

UNSCREENED SUM-OVER-STATES
PERTURBATION THEORY

In this appendix, we investigate how the noninteract-
ing linear-response function defined by χ0 = dN/dV =
d2W/dV dVc in Eq. (19) relates to the unscreened sum-over-
states perturbation theory expression given by Eq. (7) of
Ref. [5]. The latter is obtained by replacing (ε−1wc)

σ
by wσ

c in
Eq. (11). It yields the linear response of the targeted density N

to a change in the subspace-averaged Kohn-Sham potential V

with all other aspects of the Kohn-Sham potential kept fixed.
Its evaluation for two values of Vc, close to those at which Ec

and W assume maxima, is shown in Fig. 5 (solid circles). The
proximity of these data points to d2Ec/dV dVc is perhaps not
entirely coincidental, but they sit rather far from their most
closely related quantity dN/dV . The difference between the
sum-over-states expression and dN/dV is subtle since both are
noninteracting response functions with the same integration.
It arises due to complex spatial fluctuations in vKS

σ (r) both
within and without the weighted region in the case of dN/dV ,
in contrast to the effective δvKS

σ (r) = wσ
c (r)δV implied in the

sum-over-states expression. More precisely, dN/dV is the
complete noninteracting linear-response function, whereas the
sum-over-states is the noninteracting linear-response function
truncated at first order in perturbation theory.

Referring to Eq. (11), the dN/dV calculated using self-
consistent cDFT simplifies to the perturbation theory expres-
sion in the case that both dvKS

σ (r)/dV σ = wσ
c (r) and the

change in the average weighted Kohn-Sham potential V σ is
wholly responsible for the change in subspace occupancy N ,
with all other degrees of freedom fixed. The first condition and
Eq. (17) together imply that

1 ≡
∫ (

dV σ

dvKS
σ (r)

)(
dvKS

σ (r)

dV σ

)
dr

=
(∫

wσ
c (r′) dr′

)−1 ∫ [
wσ

c (r)
]2

dr, (A1)

which would be readily satisfied only if wσ
c (r) were an abrupt

three-dimensional unit step function.
The second condition is more unrealistic since we may

directly vary the Lagrange multiplier Vc when constraining
DFT, but not, at least directly, the average subspace Kohn-
Sham potential V σ . As Vc is varied, self-consistent changes
in vKS

σ (r) outside of the weighted region may substantially
mitigate the charge transfer due to changes within it. Such
effects are absent at first order in perturbation theory, and so
it may be expected to typically overestimate the magnitude
of the noninteracting response dN/dV , a situation which is
exemplified in Fig. 5.

Since the differences in definition between the nonin-
teracting linear and sum-over-states response functions are
related, albeit not entirely, to effects outside of the weighted
region, they cannot be reconciled. An approximate reconciling
renormalization may be made, however, by downscaling one
of the two functions wσ

c (r) in the unscreened analog of
Eq. (11) (one applies the perturbation, the other measures
the charge) by a factor of

∑
σ (

∫
wσ

c (r) dr)/(
∫

dr′). This
scaling mimics the compensating background changes in the
Kohn-Sham potential in the realistic cDFT calculation, by
reducing or “redistributing” the change in potential wσ

c (r)δV σ

in proportion to the system volume. The result of this renormal-
ization, suitably adapted for orbital-based population analysis
(based on orbital count, with the advantage that the rescaling
is not extensive with respect to the volume of the vacuum
region), is shown in open black circles in Fig. 5. We find
that the unscreened sum-over-states expression is thus brought
into fair, but not exact, agreement with the nonperturbative
noninteracting response dN/dV . A further downscaling by a
factor of the integrated inverse microscopic dielectric function,
given by Eq. (22), is then required to approximately match
the unscreened sum-over-states perturbation theory and self-
consistent cDFT total-energy curvatures.
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