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Peierls potential and kink-pair mechanism in high-pressure MgSiO3 perovskite:
An atomic scale study
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The motion of [100](010) screw dislocations via a kink-pair mechanism is investigated in high-pressure
MgSiO3 perovskite by means of atomistic calculations and an elastic interaction model for kink nucleation.
Atomistic calculations based on the nudged elastic band method provide the Peierls potential, which is shown
to be dynamically asymmetric and stress dependent. The elastic interaction model adjusted to match kink width
computed atomistically, is used to evaluate the critical nucleation enthalpy. We demonstrate that the kink-pair
mechanism in MgSiO3 perovskite is controlled by the nucleation of kinks along the [100] screw dislocation.
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I. INTRODUCTION

Convective flow in the deep Earth is responsible for heat
transport toward the surface and controls the global dynamics
of our planet. The lower mantle, which extends between 670
and 2900 km depths is the major component of the Earth’s
interiors and its dynamics is therefore of primary importance.
The (Al,Fe)-bearing magnesium silicate perovskite called
bridgmanite is nowadays considered as the dominant phase
of the mantle [1,2]. Convective flow and seismic properties
in the deep mantle are thus strongly linked to the physical
properties of bridgmanite under very high-pressure conditions
(30–120 GPa). With the recent progress in high-pressure
techniques, deformation experiments of magnesium silicate
perovskite (Mg-Pv) have been successfully undertaken in
lower mantle pressure and temperature conditions [3–7]. At
conditions of the uppermost lower mantle (P = 30 GPa,
close to 670 km depth), some of these studies highlighted
the presence of dislocations and the development of crystal
preferred orientations in the deformed samples [6,7]. A better
understanding of the deformation mechanism of Mg-Pv at
pressure and temperature conditions of the Earth’s mantle
remains, however, mandatory to evaluate the role of plastic
deformation in the development of convective flow.

One of the most efficient mechanisms to produce plastic
shear in crystalline materials is the motion of dislocations.
In order to move, a dislocation has to overcome the intrinsic
resistance of the lattice. Since the seminal work of Peierls and
Nabarro [8,9], the lattice friction due to the crystalline structure
is described either with the Peierls potential or through the
Peierls stress. The motion of a dislocation over the Peierls
potential is assisted by the conjugate effect of stress and
thermal activation. During this process, the dislocation does
not move as a straight line but through the nucleation and
propagation of kink pairs. A small segment of dislocation

*Corresponding author: philippe.carrez@univ-lille1.fr

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

line bulges over the Peierls potential. The further migration
of the kinks is then responsible for the glide of the whole
dislocation line [10]. Several models have been proposed
[11,12], including the line tension model [11,13–15] based on
line tension approximation, the kink-kink interaction model
[16], or more recently an elastic interaction model [17,18].
The basic problem is to compute the enthalpy �Hk that
has to be supplied by thermal activation to enhance the
formation of a kink pair under a given stress. �Hk consists
of three contributions: a positive increase of elastic energy
of the dislocation line �Eelas, a positive increase of Peierls
energy �WP coming from the lying of a part of the line
on the Peierls potential, and finally a negative contribution
resulting from the work Wτ done by the applied stress τ .
All models are thus based on the following Eq. (1) and
only differ by the treatment of the change in elastic energy
�Eelas [12].

�Hk = �Eelas + �WP − Wτ . (1)

The theoretical description of dislocation motion involving
the kink-pair mechanism has been successfully applied to
the understanding of elemental deformation processes [19] in
several materials, including body-centered-cubic (bcc) metals
[20–26] or covalent materials like silicon [27,28]. In those
materials, the lattice resistance arises from either the particular
structure of the dislocation core or from the covalent nature of
bonds [29]. In contrast to metals or semiconductors, ceramics
or minerals still suffer from a lack of theoretical effort to
understand their plastic behavior [30–32].

Mg-Pv is a silicate with a complex crystal chemistry, that
is stable only at high confining pressure. Both aspects might
directly influence the Peierls potential and the energetics of
the kink-pair mechanism. Following recent experimental [6]
and numerical studies [33,34], we focus in this work on the
properties of screw dislocation of Burgers vector [100] gliding
in (010) of the orthorhombic Pbnm perovskite structure.
According to Eq. (1), the kink-pair mechanism depends on the
Peierls potential. Therefore, we begin with the determination
of the Peierls potential using atomistic calculations and nudged
elastic band (NEB) method [35]. Then, in conjunction with
atomistic calculations of the shape and enthalpy Hk of an
isolated kink, we rely on an elastic interaction model [18] to
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FIG. 1. (a) Mg-Pv crystal lattice viewed along [100] (Mg ions
appear in yellow, Si in blue, and O in red). (b) [100] screw dislocation
viewed in its (010) glide plane. The dotted line represents the
dislocation line.

compute the evolution as a function of stress of the critical
kink-pair nucleation enthalpy �H ∗

k .

II. METHODS AND MODELS

In this study, we focus on the pure magnesium-rich end
member (of composition MgSiO3) of bridgmanite, hereinafter
referred to as Mg-Pv. It exhibits an orthorhombic structure
that differs slightly from the ideal cubic perovskite [36]. The
arrangement of SiO6 octahedra in the unit cell is shown in
Fig. 1(a). Within the Pbnm space group, lattice parameters
of Mg-Pv at 30 GPa are a[100] = 4.6481 Å, b[010] = 4.7615 Å,
and c[001] = 6.7178 Å. Throughout this study, atomistic sim-
ulations are performed with the LAMMPS molecular dynamic
package [37]. Interactions between ions are described with
a rigid-ion pairwise potential, using the parametrization
proposed by Oganov and co-workers [38]. This potential
was initially evaluated for the quality of its representation
of structural, elastic, and thermal properties of MgSiO3,
including its accuracy to reproduce the equation of state of
Mg-Pv [38,39]. More recently, it has also been successfully
validated to model generalized stacking fault energies [40], and
dislocation core structures [34] in Mg-Pv. Here, we focus on
the screw dislocation of Burgers vector [100]. The atomic core
structure of this dislocation has been extensively described in a
previous work [34]; we briefly recall that the main spreading of
the core is found in (010) with a stable configuration centered
on a corner of two joined octahedron, as illustrated in Fig. 1(b).
In the following, we use b to refer to the length of the Burgers
vector 4.6481 Å, and a′ corresponds to the periodicity of the
Peierls potential in (010), i.e., the shortest lattice repeat along
[001] a′ = 6.7178 Å.

In order to account for the pressure on the system and
the use of charged potentials, all atomistic calculations rely
on fully periodic system to avoid spurious effects of free
surfaces. Dipole configurations of two opposite dislocations
are therefore used as described in Fig. 2. For the evaluation of
the Peierls potential, thanks to the periodicity along the screw
line, the system can be considered as two-dimensional (2D),
with the third dimension restricted to one Burgers vector length
along the line direction. However, a full three-dimensional
(3D) system is used to compute the kinked dislocation line as

X : [001]
Y : [010]

Z : [100]

X : [001]
Z : [100]

Y : [010]

b b
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FIG. 2. Schematic view of the simulation cells. (a) 2D system
used for NEB calculations of Peierls potential. Points (−) and (+)
represent the two opposite screw dislocations of the dipole axis
normal to the (010) glide plane (marked as a dotted line). As
sketched out, NEB calculations are performed between two equivalent
positions of dislocation (+) (see text for details). (b) 3D system
containing a dipole of kinked dislocations aligned in (010) glide
plane. The system is built so that periodic kinks are distant from lz/2.

in this case; the periodicity along the dislocation line is broken
by the presence of kinks.

A. Peierls potential calculation

The 2D system is built so that two dislocations of opposite
Burgers vectors ±[100] lie along the Cartesian Z direction
[Fig. 2(a)]. The glide plane (010) is normal to the Y direction.
To ensure the periodicity of the system along the X direction,
a tilt component equal to b/2 is applied to the Z axis [41]. The
NEB method, as implemented in LAMMPS [42–44], is used to
calculate the minimum energy path (MEP) of one dislocation
displaced along X from an initial stable configuration to the
next stable configuration. The initial and final positions of
the dislocation (+) are shifted by ±[100]/2 along X with
respect to the dislocation (−) coordinate (i.e., the dipole axis).
Initial and final configurations along the MEP are therefore
symmetrical with respect to the dipole axis. The MEP is
sampled using 24 images, bonded with a spring constant of
0.1 eV/Å. The initial and final configurations are generated by
applying the isotropic displacement field of a screw dislocation
to the atomic coordinates, and then relaxed. The intermediate
configurations are linearly interpolated from the initial and
final states. We use a force convergence criterion of 0.01 eV/Å
to minimize the states string.

NEB calculations are first performed using a constant-
volume approach (with initial cell lengths scaled on the
equilibrium lattice parameters of bulk Mg-Pv at 30 GPa of
pressure) so only internal energy E is of concern in the MEP
[45]. In order to minimize the fluctuations of the hydrostatic
pressure along the MEP, the system size is increased to
152 Å × 215 Å × b. Once the MEP is determined, all images
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are also rescaled according to the equation of state of Mg-Pv
[38] to compute the MEP in a constant-pressure approach.
Consistently with the use of a large supercell system, we
further verify that a constant-pressure approach leads to the
same MEP in which enthalpy H is now of concern.

Because the calculation involves a dipole configuration
embedded with periodic boundary conditions, periodic image
effects have to be taken into consideration [41,46–48]. Thus,
the contribution of elastic interaction of dislocations is sub-
tracted from MEP, using anisotropic elasticity theory [49,50].
This term typically amounts to less than 0.03 eV/b within our
system size.

B. Kink-pair calculation

The determination of formation enthalpy of a kink pair
requires a 3D simulation system, in which a kink pair can
be developed along the dislocation line. We use thus a setup
where the dislocation dipole is aligned in the glide plane, i.e.,
dislocation lines are along the Z direction and equally spaced
along X, as illustrated in Fig. 2(b). Moreover, the system is
built to ensure that the width between kinks belonging to the
same line is equal to half the length lz of the dislocation line.
Dimensions lx and ly are larger than lz in order to minimize the
elastic interactions between kinks of opposite lines. Without
applied stress, a kink pair of finite width should be unstable.
However, the use of periodic boundary conditions along the
kinked lines allows one to stabilize well developed kink
pairs localized every lz/2. Initial sharp nonrelaxed kinks are
introduced in the system by gathering straight dislocation lines
of length lz/2. The kinked dipole system is then minimized and
kink enthalpy Hk is obtained from the difference between the
kinked system and straight dipole. As for NEB calculations,
we ensure that both constant-volume and constant-pressure
approaches lead to similar results.
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FIG. 3. MEP associated with the glide of a straight screw
dislocation line (length b) of Burgers vector [100] in (010) at a
pressure of 30 GPa. Open symbols correspond to �E plotted with
respect to a linearly interpolated reaction coordinate. The Peierls
potential Vp (taking the elastic dipole interactions into account)
plotted as a function of the reduced dislocation position xc/a

′ is
shown as filled symbols.

III. RESULTS

A. Peierls potential

The energy barrier that the dislocation has to overcome,
resulting from NEB calculation, is shown in Fig. 3. In Fig. 3,
the MEP is plotted as a function of the linearly interpolated
coordinate and also as a function of the dislocation position.
To serve as reaction coordinate, the dislocation position has
been determined for each of the 24 images according to
the following procedure: for each image, we extract from
the atomistic configuration the disregistry φ(x) in the glide
plane (Fig. 4). All disregistries are then fitted according to the
following equation:

φ(x) = b

2
+ b1

π
arctan

(
x − x1

ζ1

)
− b2

π
arctan

(
x − x2

ζ2

)
,

where bi , xi , and ζi are adjustable parameters. The only
restriction is on bi , for which b1 + b2 has to be equal to the
magnitude of the Burgers vector b. The reaction coordinates
is then defined by the coordinate of the dislocation center
xc = b1x1+b2x2

b
.

FIG. 4. Atomic screw disregistries φ(x) (top panel) and Burgers
vector densities dφ(x)

dx
(bottom panel) plotted as a function of the

distance to the core center in (010). The five core configurations
correspond to the positions of the dislocation along the MEP shown
in the inset. Disregistry functions φ(x) are computed according to Mg
and Si sublattices.
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FIG. 5. Minimum energy path �E for a straight screw dislocation
of line length b plotted as a function of an applied stress ranging from
0 to 4.2 GPa.

Once �E has been corrected of the dislocation position
along the MEP and the elastic dipole interactions, the resulting
barrier (continuous thick line in Fig. 3) corresponds to the
Peierls potential Vp felt by the dislocation under zero stress. We
further check that the dipole configuration investigated here
does not lead to system size effect on Vp. Indeed, compared to
a 114 Å × 161 Å × b system, the Peierls potential extracted
from a 152 Å × 215 Å × b configuration changes by less than
0.02 eV/b. Vp appears thus to be asymmetric with respect
to the dislocation position with a maximum of 1.17 eV/b at
halfway of the path.

Figure 4 shows the evolution of the dislocation core
structure as it crosses the energy barrier. It can be seen
that the dislocation does not move as a whole but rather
evolves through the displacement of fractional dislocations.
Following Refs. [34,40], we use the terminology fractional
because the stable core configuration, although compact, is
associated with a Burgers vector density displaying two peaks
in (010) [see core configuration (1) or (5) on Fig. 4]. When the
dislocation stays out of its equilibrium position, the fractionals
are decoupled as illustrated by the Burgers vector density
(2) or (4). At the saddle point of �E, the Burgers vector
density shows a clear dissociation of the dislocation core, with
two fractional dislocations located exactly in the two adjacent
Peierls valleys.

To further analyze the possible dependence of the Peierls
potential with respect to an applied shear stress, we also
perform NEB calculations using the same setup on which we
add a fixed strain component εyz (Fig. 5). We apply positive or
negative strain εyz to promote glide along either [001] or [001̄].
Practically, it means starting either from the core configuration
(1) (Fig. 4) and applying εyz > 0 or from core (5) (Fig. 4) and
applying εyz < 0. It turns out that whatever the sign of the
applied strain, the dislocation glide always involves climbing
the potential along the highest slope (i.e., the left side slope
of Fig. 3). Extracting the maximum slope of �E (Fig. 5) and
plotting it as a function of the applied stress, we find a linear
relationship between the two quantities (Fig. 6) suggesting
that the Peierls stress τP should not strongly depend on the
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FIG. 6. Critical stress required to overcome the Peierls potential
as a function of applied stress τ . These critical stresses are taken as
the maximum of the derivative of �E.

applied stress. This is further verified by isolating VP from
�E using the relationship �E = VP + a′bτ . The evolutions
of Vp as a function of the various applied stresses are shown in
Fig. 7. One can notice that VP is stress dependent and always
asymmetric. Indeed, the maximum of VP changes by 0.2 eV/b.
However, as evidenced in Fig. 6, whatever the applied stress,
the Peierls stress (scaling on the highest slope of VP ) remains
rather constant. From Fig. 6, one can estimate a Peierls stress
τP of 4.9 GPa according to the scaling of the maximum of
d�E/dx with τP − τ .

B. Kink-pair nucleation enthalpy

Knowing the Peierls potential, now we compute the critical
kink-pair nucleation enthalpy �H ∗

k using the elastic interac-
tion model [12,17]. In our formulation, the shape of the bow
out of the kink-pair mechanism is prescribed to be trapezoidal
(Fig. 8). Therefore, the bow out will be described by three
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FIG. 7. Evolution of the Peierls potential VP (x) felt by the screw
dislocation of Burgers vector [100] as a function of applied stress. As
explained in the text, VP is extracted from the evolution of �E after
removing the work of the applied stress τ . It is interesting to note that
the Peierls stress τP appears rather insensitive to τ .
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geometrical parameters: a kink-pair height h, a projected
kink length l, and a separation distance between kinks w.
As demonstrated in Ref. [51], the trapezoidal description
leads to a kink-pair geometry consistent with line tension
description and has the advantage that the elastic energy
difference �Eelas between the bow-out configuration and the
straight dislocation can be written using the elastic energy
formula of each piecewise straight planar dislocation [10]. In
particular, �Eelas [Eq. (1)] involves a change in self-energies
�Eself of the various segment of the bow out [Eq. (2)] plus a
change of the interactions energies �Eint [Eq. (3)].

According to Refs. [10,18], �Eself and �Eint can be written
as

�Eself = μb2

4π

[
2
l2 + h2/(1 − υ)√

l2 + h2
ln

(√
l2 + h2

eρ

)

+w ln

(
w

w + 2l

)
− 2l ln

(
2l + w

eρ

)]
(2)

and
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FIG. 8. Kink-pair shape calculated within a periodic supercell of
length 40b. Blue and yellow circles correspond, respectively, to the
center location of the positive and negative dislocation disregistries.
The solution of the kink-pair model is shown as a dotted line. It is
worth noticing that minimizing Eq. (5) with respect to the projected
kink length l leads to a kink shape in excellent agreement with the
atomistic calculation.

�Eint = μb2

2π

[√
h2 + (l + w)2 −

√
l2 + h2 − w + (w + 2l) ln

(
2(w + 2l)√

h2 + (l + w)2 + l + w

)

+ l ln

(√
h2 + (l + w)2 + l + w√

l2 + h2 + l

)]
+ μb2

4π

1

l
√

l2 + h2
[l2 + h2/(1 − υ)]

[
w ln

(√
h2 + (l + w)2 + √

l2 + h2√
h2 + (l + w)2 − √

l2 + h2

)

+ 2(w + l) ln[
√

l2 + h2(l + w) + l
√

h2 + (l + w)2] − 2(w + l) ln[(
√

l2 + h2 + l)]

− 2(w + l) ln[
√

l2 + h2 +
√

h2 + (l + w)2]

]
, (3)

where b is the length of the Burgers vector, μ the shear
modulus, υ the Poisson’s ratio, and ρ a cut-off length
controlling the core energies of dislocation segments. In the
following, μ and υ are respectively taken as 179 GPa and 0.27
for Mg-Pv at a pressure of 30 GPa [40].

The work done by the applied stress Wτ is simply τbh(l +
w) and the difference in Peierls energy of the kink pair with
respect to the straight line is given by

�WP = 2

√
l2 + h2

h

∫ x0+h

x0

VP (x)dx + w[VP (x0 + h)

−VP (x0)] − 2lVP (x0), (4)

where x0 is the equilibrium position of the infinite straight
dislocation under an applied stress τ .

The metastable configuration of the kink pair corresponds
therefore to a saddle point of �Hk [Eq. (1)] with respect to
the three parameters h,l,w. Nevertheless, there remains an
undefined parameter ρ which does not influence the physics of
the nucleation but may have an effect on the absolute critical
nucleation enthalpy �H ∗

k . We thus parametrize the cut-off
length ρ based on the atomistic calculation of 2Hk for an
isolated kink of full height a′. Indeed, in the limit of τ → 0,

the enthalpy of one isolated kink follows [18]:

2Hk = �H ∗
k (τ = 0)

= μb2

2π

[
l2 + a′2/(1 − υ)√

l2 + a′2 ln

(√
l2 + a′2

eρ

)

− l ln(l/eρ) + l ln

(
2l

l + √
l2 + a′2

)
+ l −

√
l2 + a′2

]

+ 2

√
l2 + a′2

a

∫ a′

0
VP (x)dx. (5)

Therefore the cut-off length ρ can be adjusted in such a way
that by minimizing the previous equation with respect to l, we
match the value 2Hk computed atomistically in the following
section.

C. Atomistic calculation of isolated full height kinks

Full height a′ kinks are calculated using 3D systems of
length lx and ly increased, respectively, to 423 and 295 Å.
Figure 9 shows how the excess enthalpy H evolves as a
function of kinked line length lz. Single isolated kink enthalpy
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FIG. 9. Convergence of the enthalpy of kinked dislocation dipole
with respect to the system size lz. After applying the relevant elastic
correction, 2Hk converges to an asymptotic value of 18.90 eV. For
each cell length lz, results are shown for two different system sizes:
315 Å × 219 Å × lz and 423 Å × 295 Å × lz.

Hk can further be evaluated from Fig. 9 by taking into account
the kink-kink interaction Wint along the dislocation line.

In the framework of a trapezoidal kink pair, the kink-kink
interaction energy W 0

int between two oblique kinks separated
by w can be evaluated by developing the elastic energy
[Eq. (2) + Eq. (3)] of the kink pair to the first power in
1/w. It follows that W 0

int corresponds to a negative kink-kink
interaction given by Eq. (6). As expected, W 0

int(w) is also a
function of the projected kink length l and reduces to the
classical expression −μb2a′2

8πw
1+υ
1−υ

[10], in the case of an abrupt
kink (i.e., l = 0).

W 0
int(w) = μb2

4πw

[
a′2

2
+ l2

+

(
l2 + a′2

1−ν

)(
a′2√

l2+a′2+l
− 2

√
l2 + a′2 + l

)
√

l2 + a′2

]
.

(6)

Finally, the integration of the infinite periodicity along
the dislocation line lz leading to Wint = ln(4)W 0

int(lz/2), our
atomistic results converge to 2Hk = 18.90 eV as shown Fig. 9.

Kink shapes can also be analyzed by computing the
disregistry in (010) glide plane (Fig. 8). For the largest
separation distance investigated here, we check that both kinks
are well developed with a projected size l around 20 Å. The
kink pair corresponds to two opposite kinks of mixed character
close to 20◦. Kink lengths or characters do not seem to strongly
depend on kink sign, in agreement with the fact that both kinks
are widely spread over the Peierls potential.

D. Prediction of the elastic interaction model

The cut-off length ρ appearing in the elastic interaction
formulation is parametrized according to the previous results.
ρ has to be chosen in such a way that minimizing Eq. (5)
according to l leads to a critical configuration of isolated kink
which coincides with the results of atomistic calculations. The
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FIG. 10. Saddle-point enthalpy �H ∗
k as a function of stress τ .

The inset panel displays the evolution of the activation volume for the
kink-pair nucleation as a function of τ . In both figures, the trend line
corresponds to an adjustment of the data with respect to �H ∗

k (τ ) =
2Hk[1 − (τ/τP )p]q with p = 0.65 and q = 1.56.

best agreement is found for a value of 0.2b. According to
the elastic model, the isolated kink shows a projected length
l = 4.11b and its critical enthalpy 2Hk corresponds to 18.91
eV; both length and energy are thus in quantitative agreement
with the atomistic calculations.

For each value of stress τ , we use Eqs. (1)–(4) and rely on
the procedure proposed by Ref. [18] to search for the saddle-
point configuration h∗,l∗,w∗ and the corresponding critical
nucleation enthalpy �H ∗

k . Figure 10 shows the evolution of
�H ∗

k as a function of τ . It is worth noticing that at each stress,
the critical nucleation enthalpy is computed with respect to
the stress-dependent Peierls potential VP as shown Fig. 7.
As the applied stress increases, �H ∗

k decreases very rapidly
from 2Hk down to zero for τ = τP . �H ∗

k (τ ) follows the
general parametric form proposed by Kocks and co-workers
[52]. Regarding the critical kink-pair geometry, we find that
the height h∗ of the critical bulge decreases continuously with
the increasing stress. In the meantime, we observe a strong
evolution of both the size of the kinks l∗ and their equilibrium
width w∗. At 0.1τP , the kink size l∗ is equal to 3b, while
the width is now w∗ = 3b. We lose the trapezoidal shape
around 0.25τP . Above, the critical bulge corresponds to a
shadow triangle (i.e., w∗ below b) with kink size reincreasing.
In any case, the activation volume h∗b(w∗ + l∗) decreases
continuously as shown in Fig. 10.

IV. DISCUSSION

A. Asymmetry of the Peierls potential

Generally, an asymmetric Peierls potential is expected on
the basis of geometrical considerations resulting from crystal
chemistry or lattice. Low symmetry crystals meet such require-
ment but it could also happen in the case of higher symmetry
crystals where different displacements of dislocation involve
different rearrangements of atoms as in bcc metals along
the twinning or antitwinning directions [53–55]. As Mg-Pv
crystallizes in a low symmetry orthorhombic structure, it is
not surprising to find an asymmetric Peierls potential (Fig. 3
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FIG. 11. MEP for dislocation glide along [001] and [001̄].
Whatever the way, paths involve the climb of the highest slope. The
two paths reach the same maximum energy, associated to the core
configuration (3) in Fig. 4.

or Fig. 7). However, for geometrical considerations, such
asymmetry leads necessarily to different Peierls stresses as the
dislocation is forced to move along one or opposite direction.
Again, one of the best examples of such situation is given by
the occurrence of twinning/antitwinning in bcc metals [53–55].
We further show here that, whereas the Peierls potential of
[100] screw dislocation in (010) is highly asymmetric, we
find a unique Peierls stress τP whatever the sign of applied
stress. This result confirms recent atomistic calculations [34]
showing that the stress level at which a [100](010) screw
dislocation core starts to move is insensitive to the sign of
the applied stress. There is therefore an apparent discrepancy
between an asymmetric potential and a single Peierls stress.
The underlying reason is that the asymmetry in the potential
is not related to geometrical considerations but that instead, it
is linked to the motion of the dislocation itself. For the sake of
clarity, let us consider that we apply εyz to move a dislocation
initially located in (1) (Fig. 4) to location (5). NEB calculation
based on configurations extracted from the dislocation gliding
leads to the Peierls potential (Fig. 3) reported in Fig. 11. From
the final state [dislocation in position (5)], applying now −εyz,
the dislocation moves backwards to position (1). During this
second step, the computed Peierls potential shown in Fig. 11 is
strictly the mirror of the first one with respect to the dislocation
path. It means that whatever the sign of the applied stress, we
find a single Peierls stress τP of 4.9 GPa close to the value
reported in Ref. [34] and corresponding to the highest slope
of VP .

The origin of this dynamically asymmetric potential can be
related to the gliding process. From the atomistic point of view,
the two paths involve indeed different atomic displacements
but the same dissociation mechanism.

During the motion of the straight dislocation, we observe
in Fig. 4 that the first event corresponds to the motion of
the leading fractional dislocation. This first event corresponds
to a limited stage during which the system has to provide
not only extra energy or enthalpy for the fractional motion
but also the necessary energy associated with the increase of

unstable stacking fault ribbon. At the end of this step, the
trailing fractional moves and closes the stacking fault ribbon
extended over one lattice valley. This last process, involving
also a fractional displacement, is now helped by the closure of
the unstable stacking fault leading thus to the asymmetry. The
crossing point of the two MEPs (Fig. 11) corresponds exactly
to the maximum value of �E and to the dissociated state of
the dislocation [position (3) in Fig. 4].

B. Activation enthalpy for kink-pair mechanism

The activation enthalpy for the kink-pair mechanism in-
volves both nucleation and migration of kinks. It is, however,
common to find that only one of the two processes acts as a
limiting factor. In the case of Mg-Pv, we show that the kinks
are widely spread over the Peierls potential. Our calculations
show that, without stress, the kink length l is around 20 Å.
Under stress, the critical configuration for kink-pair nucleation
always involves individual kinks with lengths larger than 3b

(i.e., 15 Å). Such widely spread kinks should therefore bear
low migration enthalpy barrier. This assumption can be verified
considering the well-known Frenkel-Kontorova model [56].

The kink-pair shape shown in Fig. 8 can be accurately
reproduced by x/a′ = 2

π
arctan[exp(πz

λb
)] where λ can be

viewed as a measurement of the kink size. Here we find λ ≈ 4.
As using the Frenkel-Kontorova model, Hk scales with 2/πλ

whereas Hm (the migration enthalpy) evolves with exp(−πλ),
one can easily show that Hm in our case is one order of
magnitude lower than Hk . The kink-pair mechanism in Mg-Pv
can thus be assumed to be controlled by the nucleation of the
kink pair.

C. Implications for the plastic behavior Mg-Pv

Our calculations confirm that Mg-Pv can be considered as a
high lattice friction material with τP /μ > 2.510−2. For com-
parison, at similar high-pressure conditions, the normalized
Peierls stress for bcc tantalum [57] never exceeds 10−2. At
a pressure of 30 GPa, the Peierls stress τP = 4.9 GPa found
in this study is consistent with the few available experimental
data for Mg-Pv strength under pressure. Indeed, the strength
of Mg-Pv is expected to be lower than 10 GPa [3,5], measured
in polycrystalline aggregates. One can also note that we agree
well with the 5.8 GPa value reported in Ref. [4]. Nevertheless,
we show here that the critical stress for plastic flow should
strongly depend on temperature as is reflected by the evolution
of �H ∗

k (τ ). In conjunction with Orowan’s equation, one
generally assumes that �H ∗

k scales linearly with kT [29].
We can predict that, for typical laboratory strain rate, the flow
stress will drop by about 20% at room temperature.

Following the derivation of line tension model given in
Ref. [18], we also verify that the kink enthalpy Hk at zero
stress can be approximated by the following equation:

Hk = μb3

2

√
τP /μ, (7)

where Hk only depends on the shear modulus and on the
Peierls stress. When dealing with a high lattice friction material
under high hydrostatic pressure, it is therefore not surprising
to find Hk around 9.45 eV [Eq. (7) approximates Hk to
9.32 eV]. Considering that Hk defines the upper limit of
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the temperature range in which Mg-Pv deforms through a
kink-pair mechanism, we demonstrate that the Peierls stress
remains a useful quantity to characterize deformation mecha-
nisms even at relatively high temperature.

V. CONCLUSION

We develop a numerical scheme to study the glide of
[100](010) screw dislocation in Mg-Pv, based on atomistic
calculations and an elastic interaction model for kink-pair
mechanism. The Peierls potential is shown to be dynamically
asymmetric and characterized by a Peierls stress of 4.9 GPa.
Atomistic calculations of kink pairs show that kinks are widely

spread over the Peierls potential with an enthalpy Hk scaling
with the Peierls stress. Our results demonstrate that in this high
lattice friction material, the kink-pair mechanism is controlled
by the nucleation event of kink pairs.
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