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Modeling the creep properties of olivine by 2.5-dimensional dislocation dynamics simulations
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In this work we performed 2.5-dimensional (2.5D) dislocation dynamics simulations coupling climb with the
glide dislocation motion to model the creep behavior of olivine, one of the main component of the Earth’s upper
mantle. In particular, we present an application of this method to determine the creep strain rate in a material with
high lattice resistance, such as olivine. We show that by including the climb mechanism we reach steady state
creep conditions. Moreover, we find that a creep power law with a stress exponent close to 3 can be extracted
from our simulations and we provide a model based on Orowan’s law to predict the creep strain rates in the high
temperature and low stress regime. The model presented is relevant to describe the plastic flow of olivine in the
Earth’s mantle deformation conditions and can be useful to derive the high temperature creep behavior of other
materials.
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I. INTRODUCTION

Large scale flow in the Earth’s mantle involves plastic
deformations of rocks and their constitutive minerals. Due to
the extremely slow strain rate conditions in the Earth’s mantle
(∼10−14 s−1), it is very challenging to identify the fundamental
mechanisms controlling the plastic behavior of its constitutive
minerals. Thus, the development of a multiscale approach link-
ing the atomic scale properties and the microscopic elementary
mechanisms to the macroscopic behavior is needed [1]. One of
the key steps in this approach is the description of dislocation-
based intracrystalline plasticity. To this aim, discrete dislo-
cation dynamics (DD) has been developed to describe the
collective behavior of dislocations at the mesoscale, filling the
gap between atomic scale properties and plastic behavior at
the macroscopic scale [2,3]. At low homologous temperatures
(T < 0.4Tm), DD simulations have proved to give accurate
descriptions of many plasticity problems in metals [4,5],
semiconductors [6,7], as well as in an oxide, MgO [8], and
a silicate, olivine [9]. In this regime, the displacements of
dislocations, which are the main carriers of elemental plastic
deformation, is mainly controlled by the glide mechanism. On
the contrary, at high temperatures (T > 0.4Tm), as diffusion
processes become important, dislocations can also move via
the climb mechanism, which is a nonconservative dislocation
motion and requires the absorption or emission of point
defects [10,11]. This mechanism is generally not included in
classical DD formulations [2,3,12], since most of the previous
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DD studies have been focused on the low temperature regime.
In the last years however, some DD formulations have included
coupled glide and climb mechanisms to model the annealing
of dislocation loops [13,14]. Following a similar approach,
where the climb velocity is directly related to the flux of point
defects absorbed or emitted by dislocations, climb has been
incorporated in a two-dimensional (2D) DD code in order to
describe the Al mechanical behavior at elevated temperature
in micropillars [15], thin films [16] and single crystal [17], and
polycrystals [18]. Recently a new 3D formulation of the DD
method including climb has been proposed by Po et al. [19].
Although it is generally accepted that climb strongly affects the
dislocations microstructure and evolution at high temperature,
for example, allowing dislocations to bypass obstacles, or to
reduce the back stresses induced by dislocation pileups on
dislocation sources, the effect of climb on the creep behavior
is still poorly known in many materials.

In this work we focus on the creep behavior of olivine at
high temperature and ambient pressure, under low applied
stresses. Olivine (Mg,Fe)2SiO4 is the most abundant and
the weakest constituent of the Earth’s upper mantle in a
wide range of conditions. As a consequence, predicting its
mechanical behavior is of fundamental importance to model
the rheology of the upper mantle. At high temperatures, both
climb and cross slip processes may play an important role
on creep properties. However, their respective contributions
on the plasticity of olivine have not been clarified yet. The
potential role of cross slip will be addressed in a further study.
In particular, we employ 2.5-dimensional (2.5D) dislocation
dynamics simulations to investigate the interplay between
thermally activated glide and climb motion and to study
the effect of climb on olivine creep strain rates. Within this
approach we adopt a two-dimensional (2D) reference system.
Dislocations are approximated by parallel straight segments
and their dynamics is followed in a reference plane. In the
so called 2.5D dislocation dynamics, additional local rules
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are implemented to reproduce the relevant three-dimensional
dislocation mechanisms, as originally proposed to model fcc
metal plasticity [5,20]. Finally, in order to describe the climb
motion, the transport of matter through vacancy diffusion is
taken into account and directly related to the climb dislocation
velocity, similarly to Refs. [13,15]. To our knowledge, this is
the first time that dislocation dynamics simulations have been
employed to calculate the creep strain in a material character-
ized by high lattice friction, i.e., where dislocations in different
slip systems glide with thermally activated mobility laws.

II. METHOD

The description of the individual and collective behavior
of dislocations is essential to determine the plastic flow of
crystalline solids. Discrete dislocation dynamics is a well-
established simulation technique aimed at reproducing such
behavior at the mesoscale. This method is based on continuum
elasticity theory that provides the description of the elastic
strain field induced by dislocations, their reciprocal interac-
tion, and the interaction of these line defects with an external
stress field [10]. Moreover, in DD simulations it is possible to
take into account the relevant atomistic processes controlling
dislocation motion and reactions by including local rules [2,3].
Several 2D- and 3D-DD codes have been developed. 3D-DD
simulations have the advantage of taking into account the
topology and the evolution of curved dislocation lines in the
three-dimensional crystal lattice. However 3D-DD simulations
are computationally expensive and only a small amount of
plastic strain can be simulated. In some cases a good insight
of the relevant physical mechanisms governing dislocation
motion can be achieved by using a 2D system, especially when
accurate information regarding the fundamental atomistic
mechanisms are lacking, as for the climb case. Here a so called
2.5D-DD code has been used, as proposed by Gómez-Garcı́a
et al. [5,21], where local rules have been implemented to
overcome the artifacts introduced by the 2D description and to
reproduce as closely as possible the 3D dislocation evolution.
This code has been extended to include dislocation climb,
similarly to Ref. [15]. In this section we briefly recall the main

features of the 2.5D-DD code, for more details see Refs. [5,21],
and we discuss the modifications introduced in order to model
olivine and to implement climb.

Olivine [(Mg,Fe)2SiO4] is an orthorhombic silicate with
lattice parameter a = 4.76 Å, b = 10.21 Å, and c = 5.98 Å
[22]. Numerous experiments have been carried out on both
olivine (which usually contains approximately 10% of iron)
and its iron-free endmember forsterite (Mg2SiO4) in order
to characterize the slip geometry and activity in different
experimental conditions [23–26]. The commonly observed
dislocations have Burgers vector equal to the two shortest
lattice vectors a [100] and c [001], while [010] dislocations
have very scarcely been observed. Generally, a prevalence
of [001] slip activity has been observed at low temperature
(below 1000°C) and high differential stress, while, in the
high temperature regime, plasticity is mostly dominated by
[100] dislocations. Both type of defects exhibit a marked
crystallographic orientation and several slip planes have been
identified by different authors. In particular, [001] dislocations
glide on (001), {110} , and (010) planes and are characterized
by long screw segments [25–28], while [100] dislocations
mostly glide on (010), (001) planes and are characterized
by long straight edge segments [26,29]. At high temperature
cross slip and climb are believed to play a role in olivine
plasticity. Evidences of cross slip have been found above
1000°C [28,29], while climb is considered to be important
above 1300°C [30]. Here we focus on the temperature range
between 1400 and 1700 K, relevant for Earth’s upper mantle
deformation, and on the [100](001) slip system, which is
expected to dominate in the high temperature regime. In order
to validate our methodology by comparing the 2.5D- with the
3D-DD simulations performed in multislip condition at low
temperature [9], we performed DD simulations by including
the description of a second slip system, the [001](100),
expected in the low temperature regime. The reference plane
employed in our simulations is (010) and the simulation area
is a square of size Lx = Ly . In Fig. 1(a) the simulation
box and the two slip systems are sketched. For the sake
of simplicity we considered two sets of infinite, straight
edge dislocations, perpendicular to the reference plane. Their
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FIG. 1. (Color online) (a) Sketch of the 2D simulation box. Double slip conditions are used; the loading axis is parallel to the [101]
direction, so that the two slip systems are homogeneously loaded. (b) Stress vs strain curves obtained by 2.5D-DD simulations performed in
constant strain rate conditions. The flow stress decreases with the increasing temperature and with the decreasing strain rate values.
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TABLE I. Parameters used to define the glide mobility law for
[100] and [001] dislocations as taken from Ref. [9].

b = [100] b = [001]

τP (MPa) 7170 ± 894 1730 ± 41
p 0.2936 0.5988
q 0.8475 1.1506
ν0 (m/s) 1.65×103 2.75×103

lc (nm) 1.22 1.95
�H0 (eV) 5.7 5.4

Burgers vector lies in the reference plane and defines the slip
direction. Here we took the two slip directions inclined by
45° with respect to the x and y axis. The climb direction
also lies in the reference plane and is orthogonal to the slip
direction. Elastic interactions are calculated by using isotropic
elasticity theory. All the simulations were performed by using
the elastic constants of olivine: Poisson ratio ν = 0.25 and
shear modulus μ = 80 GPa. Influence of lattice friction and
interactions with point defects on dislocation velocities are
taken into account via the mobility laws defined for glide and
climb. In olivine, dislocations exhibit marked crystallographic
orientation; this reflects a high glide resistance, probably due
to an extended core structure [31]. In high lattice resistance
materials, it is commonly assumed that glide is controlled by
a thermally activated kink-pair mechanism. Then, the velocity
of a dislocation of length L can be given by an Arrhenius rate
equation [32]:

vg = b
L

lc
νD

b

lc
exp

(
−�H (τ ∗)

kBT

)
, (1)

where b is used in the following to indicate the magnitude of
the Burgers vector, lc is the critical length for kink nucleation,
νD is the Debye frequency, kB is the Boltzmann constant, T

is the temperature, and �H (τ ∗) is the activation enthalpy of
kink-pair formation which depends on the effective resolved
shear stress τ ∗. At each dislocation position τ ∗ = τapp + τint

is calculated as the sum of the applied stress and the
elastic interaction stress induced by all the other dislocations,
projected along the slip direction. The activation enthalpy is
parametrized by following the formalism of Kocks et al. [32]:

�H (τ ∗) = �H0

[
1 −

(
τ ∗

τP

)p]q

, (2)

where τP is the Peierls stress, p and q are empirical parameters,
and �H0 is the total activation enthalpy. The glide mobility
has been defined by using the parameters reported in Ref. [9]
and shown in Table I, where the velocity for [100] and [001]
dislocations has been obtained by fitting experimental data
from various sources, see Ref. [9] and references therein. In
3D-DD simulations, where dislocation lines are discretized
into finite segments, L is effectively the length of dislocation
line segments parallel to directions with high lattice friction.
In a 2D framework, all dislocation lines are normal to the
reference plane and supposed straight with some ideal length
L. Here L was set equal to 1 μm, which is approximately the
average segment length estimated from 3D-DD simulations of
olivine in plastic deformation conditions closed to the one we

investigate in the present study [9]. Contrary to fcc metals,
junction formation in olivine is a rare event, as predicted by
Durinck et al. [9]. For this reason we eliminated the possibility
for dislocations to react and form junctions. The strongest
interaction expected in olivine is dipole formation. In our
simulations we allowed dislocations involved in a dipole to
mutually annihilate when the dipole height is smaller than
a critical distance ra = 10b. Our results are however rather
insensitive to the value of this parameter. Hence ra can be
eventually increased to speed up the simulations when a
large simulation area is used. A multiplication rule is used to
reproduce the general observation that the dislocation density
ρ increases linearly with the plastic strain ε: dρ/dε = m,
where m is a constant [5]. Here the value m = 2×1015 m−2

has been taken to reproduce the dislocation density evolution
of 3D-DD simulations [9,33]. In Fig. 1(b) we show the
stress-strain curves obtained by our 2.5D-DD simulations at
constant strain rate in double slip conditions. The box has been
loaded along the y axis so as to induce the same Schmid’s
factors on the two slip systems. This corresponds to the
so-called [101]c orientation in olivine where the loading axis is
at 45° between [100] and [001]. The linear box size Lx = Ly is
6.4 μm and the initial dislocation density is 2.6 × 1012 m−2. As
we can see in Fig. 1, the flow stress increases with decreasing
temperature and with increasing values of the applied strain
rate. These results well reproduce the flow stress behavior
obtained with 3D-DD simulations as reported Ref. [9]. The
strongest interactions observed in our 2D simulations are the
repulsive and attractive interactions between dislocations with
the same and opposite Burgers vector, respectively. This is in
agreement with the 3D case, where elastic interactions between
[100] and [001] dislocations were shown to be weak [9].
Due to this result and since at elevated temperature olivine
plasticity is dominated by [100] dislocations, we decided to
adopt single slip conditions to address the influence of climb
on high temperature plasticity.

The climb motion occurs through the absorption/emission
of point defects by the dislocations. Even though both
vacancies and interstitials can contribute to climb, the vacancy
concentration is generally larger than the interstitial one due to
their lower formation enthalpy. Here we assume that climb is
controlled by vacancy diffusion and that the dislocation line is
saturated with jogs. Assuming steady state conditions, the net
flux of vacancy from and to the dislocation core is calculated
by solving the diffusion equation and an analytical expression
of the climb velocity vc can be derived [10,11]:

vc = η
Dsd

b

[
exp

(
τ ∗
c �

kBT

)
− c∞

c0

]
, (3)

where Dsd is the vacancy self-diffusion coefficient, � is the
vacancy formation volume, and η is a geometrical factor
which depends on the geometry of the flux field. Assuming
a cylindrical symmetry around the dislocation η is given by

2π
ln(R/rc) , where R and rc are the radius of the two cylindrical
surfaces around the dislocation core through which the vacancy
flux is calculated. rc is the core radius and R can be taken as half
of the average dislocation distance. Since R and rc appear in the
logarithmic term in Eq. (3), setting 10 < R/rc < 1000 does
not affect significantly the value of the climb velocity. Hence
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we imposed R/rc to be constant and equal to 100. c(R) = c∞
is the vacancy concentration at a distance R far from the
dislocation, while c0 = exp (−�Hf

kBT
) is the equilibrium vacancy

concentration in a bulk at a given temperature T , with �Hf

being the vacancy formation enthalpy. The self-diffusion
coefficient can be also written as Dsd = c0 exp (−�Hm

kBT
), with

�Hm being the vacancy migration enthalpy. The two terms in
the parentheses in Eq. (3) represent the two driving forces for
climb. The first is the Peach-Kohler force in the climb direction.
In fact, in the exponential term, τ ∗

c is the effective stress for
climb, which is given by the sum of the applied and the internal
stress projected along the climb direction. Here the stress is
taken to be positive when it tends to favor vacancy emission
and negative when it tends to favor vacancy absorption. The
second term is called a “chemical force” because it arises from
a gradient in the vacancy concentration. In supersaturation
conditions when c∞ > c0 this term becomes important and
dislocations can climb even in absence of a mechanical force.
The comparison of Eq. (3) with atomistic simulations on
iron [34,35] and with phase field simulations on aluminum [36]
lead to a remarkable agreement, further validating the use
of such an expression to model climb with DD simulations.
Unlike simple metals, vacancy diffusion in a multicomponent
material involves different ionic species. Since in olivine the Si
diffusion coefficient is much smaller than all the other diffusing
species, we assumed that the climb process is controlled by Si
diffusion. This is further justified by experiments on both pure
forsterite and olivine where the measured activation enthalpy
for creep and the Si self-diffusion enthalpy have comparable
values [37–39]. As we can see in Eq. (3), the climb velocity
depends on the average vacancy concentration in the bulk c∞.
In principle, this quantity is a function of the spatial coordinates
and depends on the distribution of dislocations that act as
sources or sinks of vacancies. In this work we assumed that
far from the dislocations the vacancy concentration is constant
and equal to the equilibrium concentration in a bulk (c∞ = c0).
By inserting c∞ = c0 and Dsd = Dsd

Si in Eq. (3), we can write
the climb velocity for olivine as

vc = η
Dsd

Si

b

[
exp

(
τ ∗
c �

kBT

)
− 1

]
, (4)

with � = 72.4 Å
3
, vacancy formation volume for a Shottky

defect (Mg,Fe)2SiO4 estimated from the unit cell volume of

olivine, and Dsd
Si = D0 exp (−�H sd

Si
kBT

), self-diffusion coefficient
of silicon taken from diffusion experiments carried out on
dry forsterite at ambient pressure, where the values D0 =
2.51×10−7 m2/s and �H sd

Si = 4.25 eV have been mea-
sured [38]. �H sd

Si = �H
f

Si + �Hm
Si is the activation enthalpy

for Si self-diffusion which is given by the sum of the enthalpy
for the formation �H

f

Si and the migration �Hm
Si of a Si

vacancy. We adopted this value for the Si diffusion coefficient
because it is comparable with the one measured in iron-bearing
olivine, see Ref. [40], where �H sd

Si = 4.03 ± 0.31 eV was
measured, and it falls in the middle of the range of experi-
mental values of activation enthalpy reported in literature; for
example, �H sd

Si = 5.48 ± 0.42 eV was found in Ref. [37] and
�H sd

Si = 3.02 ± 0.16 eV in Ref. [41].
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FIG. 2. (Color online) Ratio of the glide over the climb velocity
in olivine as a function of the temperature and the applied stress. The
glide velocity is always significantly larger than the climb velocity.

The difficulty of running simulations that simultaneously
treat the glide and the climb motion arises from the different
time scales that characterize the two mechanisms. In fact, by
plotting the ratio between the glide and the climb velocities,
vg and vc, according to Eqs. (1) and (4), respectively, we can
observe in Fig. 2 that glide is always two or three orders of
magnitude faster than climb. It is interesting to notice that while
the ratio between the glide and the climb velocity in olivine
significantly increases with the increasing stress, it mildly
varies with temperature. Also, the two mobility laws approach
each other at very low stress and intermediate temperature,
below 1400 K, as we can see in Fig. 2. This indicates that climb
could play an important role even at intermediate temperatures.

In order to perform creep simulations and to resolve both
glide- and climb-related events, we adopted a scheme close
to the one used in Ref. [15]. First, the creep stress is applied
and dislocations move by glide only using a small time step
dtg . When the plastic strain saturates, i.e., the dislocations
reach a quasiequilibrium configuration, a larger time step
dtc is used and dislocation are allowed to move by climb.
In particular, the plastic strain �ε produced at each glide
step is monitored; when �ε is lower than a critical value
�εcrit over a large enough number of steps Ntest we switch
to dtc and dislocations are moved by climb according to
Eq. (4). When a climb displacement of one Burgers vector is
achieved by at least one dislocation, the time step is switched
back to dg and dislocations are relaxed by glide only. This
procedure is repeated iteratively during the simulation. Here
dtc = 103dtg , �εcrit = 10−18, and Ntest = 400 have been used.
Periodic boundary conditions along the x and y directions have
been applied in all the simulations to mimic bulk conditions
and the long range stress contribution is calculated with the fast
multipole algorithm. Also, we tested different ratio between
the linear box sizes Lx and Ly and we checked that the results
are independent of this ratio. Hence, the simplest solution
Lx/Ly = 1 is used in the following section.

III. RESULTS

The results of high temperature DD creep simulations
obtained by activating the sole glide mechanism are shown
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constant strain rate (b) simulations obtained by activating the glide
mechanism only. (a) Plastic strain vs time curves obtained by applying
a creep stress ranging from 10 to 100 MPa. (b) Stress σ vs strain ε

curves obtained by applying a constant strain rate.

in Fig. 3. All the results in this section have been obtained
by imposing uniaxial loading and single slip, the [100](001),
condition. The linear average dimension of the simulation box
is 6.4 μm and the temperature is 1600 K. In Fig. 3(a) the strain
versus time curves for different values of the creep stress,
ranging from 10 to 100 MPa, are plotted. In these conditions,
the plastic strain initially increases with time and then it
reaches a constant value. This indicates that, after a small
transient where dislocations move under the applied stress,
they are blocked in a quasiequilibrium state where the glide
force due to the applied stress cannot overcome the one induced
by the internal stress. This interpretation is further supported
by constant strain rate DD simulation results. In Fig. 3(b) the
stress-strain curves obtained for different strain rate values,
ranging from 10−4 to 5×10−7 s−1, are shown. For large values
of the applied strain rate (10−4,5×10−5 s−1), after the flow
stress is reached the stress remains almost constant. On the
contrary, at lower strain rates (below 10−5 s−1), an hardening
behavior is observed. In the latter case, a small and almost
constant strain hardening rate is found (∼0.7×10−3 μ). The
results shown in Fig. 3 suggest that the deformation behavior,
at high temperature and low applied stress (or small strain rate),

is controlled by dipolar short-range interactions that explain
the formation of dislocation organized microstructures. This
feature is equivalent to the forest interactions controlling
dislocation microstructure formation in many other materials
plasticity. Furthermore, by considering the glide mechanism
only we could not reproduce the steady state creep behavior
observed in experiments.

The contribution of the climb mechanism to the creep
behavior of olivine is illustrated in Fig. 4, where DD simulation
results for a creep stress of 40 MPa at 1600 K are presented.
In particular, we compare the results obtained by activating
glide and climb simultaneously with the results obtained by
allowing dislocations to move by glide only. A sketch of
the simulation box and of the loading condition is shown in
Fig. 4(a). The tensile loading axis is inclined by 60° with
respect to the glide displacement direction, which in our
case coincide with the Burgers vector direction. In Fig. 4(b)
the initial dislocation microstructure is shown. The initial
dislocation density is 1.4×1012 m−2 and the box size is
8.3 μm. Dislocations with positive (negative) Burgers vector
are represented by red (blue) full circles. Figures 4(c) and 4(d)
show the final microstructure obtained when only glide is
considered [Fig. 4(c)] and when both glide and climb are
included in the simulation [Fig. 4(d)]. We can observe in both
simulations the formation of dislocation walls perpendicular
to the glide direction, as dislocations with the same sign tend
to self-organize along this direction. Moreover, most of the
dislocations are trapped into dipole configurations, as we can
observe in Figs. 4(c) and 4(d), where we see numerous couples
of dislocations with opposite signs closely packed together.
In Fig. 4(e) the strain vs time curve obtained by including
the climb mechanism (blue curve) is compared to the curve
obtained by activating the glide mechanism only (red curve).
When climb is active a steady state regime is found and the
plastic strain increases linearly with time. In Fig. 4(f) the
contribution of glide (green) and of climb (red) to the total
plastic strain (blue) is shown. As we can see, even if climb
is active, the plastic strain is almost completely produced by
dislocations moving in their glide planes. The effect of climb
is to release dislocations from a “jammed” configuration,
i.e., when dislocations are trapped in a minimum energy
configuration, so that they can further move by glide and
produce plastic strain. At a given time most of the dislocations
are immobile and stored in a dislocation microstructure. Climb
allows dislocations involved into dipoles to move outside the
glide plane to annihilate or to bypass repulsive dislocations.
As a consequence, the dislocation microstructure is relaxed
and other dislocations become free to move by glide until
a new jammed configuration is reached. The repetition of
this process in time leads to the steady state creep condition,
characterized by a linear increase of the plastic strain with
time and a nearly constant dislocation density. In Fig. 5 DD
creep curves obtained by varying the applied stress from 10 to
60 MPa at 1600 K are shown. In all simulations we observe
a linear dependence of the plastic strain on time and larger
strain rates are found for larger values of the creep stress, as
can be seen in Fig. 5(a). Moreover, after an initial transient
where dislocation multiplication is observed, the dislocation
density fluctuates around a constant value, see Fig. 5(b). In this
stage both dislocation annihilation and multiplication operate
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FIG. 4. (Color online) (a) Sketch of the 2D simulation box. Single slip conditions are used. The angle between the loading axis and glide
displacement direction is 60°. (b) Initial dislocation microstructure and final dislocation microstucture in glide only (c) and glide coupled with
climb (d) dislocation motion. (e) Plastic deformation ε vs time, as obtained in creep conditions, assuming glide only (red) and glide coupled
with climb (blue) dislocation motion. (f) The plastic strain produced by glide εglide (green curve) and climb motion εclimb (red curve) as a
function of time is compared with the total plastic strain εtot (blue curve).

so as to maintain an equilibrium dislocation density value.
The latter increases with the increasing creep stress values as
dislocation dipole height can be smaller at higher stress. From
our DD simulations it emerges that deformation involving
glide assisted by climb leads to a steady state creep behavior.
Moreover, in order to describe at least qualitatively plastic
deformation of olivine at high temperature, it is necessary to
take climb into account.

A large number of DD simulations, taking into account
both the glide and climb, have been performed in order to
calculate the high temperature creep strain rate in olivine.
The range of applied stresses σ and temperatures T are,
respectively, from 10 to 115 MPa and from 1400 to 1700 K. In
particular, for each couple of values (σ,T ) we run numerous
simulations varying the average linear box size, from 3.8
to 21.8 μm, and the initial dislocation configuration, so as
to avoid any influence of the boundary condition and of
the initial dislocation microstructure on the calculated creep
rates. The latter were determined by a linear least-square fit
of the plastic strain vs time curves and then by taking the
average value for each set of simulations run at constant
σ and T . Similarly, we calculated the average dislocation
density. In Fig. 6 we plot the average dislocation density as a
function of the shear stress resolved in the glide plane τ . We
observe that the average dislocation density does not depend

on temperature. This result confirms that the flow stress is
controlled by short range dislocation-dislocation interactions
in the dislocation microstructure. In view of the discussion
in Sec. IV about the mobile dislocation density and velocity,
we analyze the dependence of the total dislocation density
on the resolved shear stress τ . Typically, when dislocation-
dislocation interactions govern the microstructure and the flow
stress, it is observed that the dislocation density is proportional
to the square of the critical flow stress and can be described by
rewriting Taylor’s equation as follows:

ρ =
(

τ

μ

)2

C/b2. (5)

In Taylor’s equation the constant C is given by 1/α2 where
α is a dimensionless parameter that reflects the strength
of the dislocation-dislocation interaction, i.e., the strength
of the obstacles. By fitting our DD results with Eq. (5)
(solid gray curve in Fig. 6) we find C = 21.6 ± 0.7 and
consequently α = 0.21. This value of α is consistent with
the case where the microstructure is controlled by dipole
interactions [42]. However, we can see in Fig. 6 that Eq. (5)
does not reproduce very well the evolution of the dislocation
density at low stresses. Indeed Taylor’s equation usually
holds for materials with low lattice resistance when the main
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strengthening mechanism is forest interactions; for example
it applies remarkably well for fcc metals in a wide range
of applied stresses [43]. In olivine, at low and moderate
temperature, large α coefficient >1, which are not consistent
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FIG. 6. (Color online) Total dislocation density ρ as a function
of the applied stress resolved in the glide plane τ .

with a dislocation interaction strengthening mechanism, are
generally found [9,23]. This can be explained by the high
lattice friction of this material, for which dislocations cannot
easily bow out to bypass obstacles. At high temperature, climb
assists dislocation motion and helps them bypassing obstacles.
Still, dislocations exhibit marked crystallographic orientation
which reveal that the contribution of lattice resistance to
the material strengthening is not negligible even in the high
temperature regime. The discrepancy between the simulation
results and Eq. (5) at low stress also points in this direction.
If we analyze the relationship between the dislocation density
and the applied stress with the more general equation:

ρ =
(

τ

μ

)s

C ′/b2, (6)

we find that the best fit for the stress exponent s is 1.31 ± 0.03,
with C ′ = 0.104 ± 0.0025. This curve, shown with a dotted
black line in Fig. 6, reproduces well the simulation results.
Moreover, it is in good agreement with several experimental
findings. In Ref. [29] a power law with a stress exponent
s = 1.37 has been found by fitting the values of the dis-
location density, measured in olivine samples deformed at
high temperature and low strain rates, as a function of the
stress. Similarly, s = 1.41 ± 0.16 was found by analyzing
olivine samples deformed at high temperature and pressure
of 1–2 GPa [44].

High temperature deformation is commonly analyzed by
using the following equation for the creep rates:

ε̇ = ε̇0σ
n exp

(
− Q

kBT

)
, (7)

where Q is the creep activation enthalpy, σ is the applied stress,
and T is the temperature. Q, n, and ε̇0 are generally assumed
to be constant and depend on the physical mechanism that
control the plastic behavior. In Fig. 7(a) the values of the strain
rates as obtained by DD simulations are reported as a function
of the reciprocal temperature T . From the negative slope of the
logarithm of the strain rate versus the reciprocal temperature
curves, it is possible to extract the activation enthalpy Q.
Experimentally this value has been found to be close to the
Si self-diffusion activation enthalpy �H sd

Si . In agreement with
the experiments [23,24,26,45], we find Q = 5.07 eV, value
which is in between the activation enthalpy for Si self-diffusion
(�H sd

Si = 4.25 eV) and kink-pair activation enthalpy for [100]
dislocations (�H0 = 5.7 eV). This indicates that dislocation
mobility in olivine is controlled by the interplay between two
kinetics, the one of glide and the one of climb. The stress
exponent n in Eq. (7) can be calculated as the derivative of
the logarithm of the strain rate with respect to the logarithm
of stress. In Fig. 7(b) the creep strain rates are reported as a
function of the applied stress for four different T values. A
constant slope of the log ε̇ curve is found for all temperatures
considered. This corresponds to a constant stress exponent
value n close to 3 in the (σ,T ) range here explored. In particular
n is equal to 3.1, 3.2, 3.2, and 2.9 at 1700, 1600, 1500, and
1400 K, respectively. In Sec. IV we compare our results with
olivine relevant creep models and we propose a semianalytical
model based on our DD simulation results aimed at describing

014115-7



BOIOLI, CARREZ, CORDIER, DEVINCRE, AND MARQUILLE PHYSICAL REVIEW B 92, 014115 (2015)

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

5.8 6 6.2 6.4 6.6 6.8 7 7.2

ε' 
(s

-1
)

104/T(K)

(a)

60 MPa

10 MPa

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10 100

ε' 
(s

-1
)

σ (MPa)

(b)

1600 K

1500 K

1400 K

1700 K

FIG. 7. (Color online) DD strain rate values ε′ as a function (a)
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the creep strain rates in olivine and possibly in other high
lattice friction materials.

IV. COMPARISON WITH CREEP MODELS
AND DISCUSSION

Several efforts have been made in the past to define simple
analytical equations that can describe the creep strain rates in
different deformation conditions. Most of the theoretical works
on dislocation creep are focused on fcc metals and are based
on the pioneer works of Weertman [46,47] and Nabarro [48].
These works helped explained the steady state creep behavior
in some limiting cases, but a comprehensive creep model is
still lacking. First, it is generally assumed that the creep strain
rates can be written in terms of Orowan’s equation:

ε̇ = ρmbvm, (8)

where ρm and vm are the average mobile dislocation density
and velocity. Then, few assumptions are made to evaluate
the latter two quantities ρm and vm. In most of the cases,
ρm is substituted with the total dislocation density ρ and vm

with the instantaneous glide or climb dislocation velocity v.
In climb-controlled models, it is assumed that climb is much
slower than glide. Hence, the time tg needed to glide a distance
L is much smaller than the time needed to climb from one

glide plane to another one. The dislocation velocity, written as
v = L

tg+tc
, is then simplified as v = L

tg+tc
∼ L

tc
= L

d
vc, where

d is the distance between glide planes and vc is the climb
velocity. By substituting this expression in Eq. (8), it results in
ε̇ = L

d
ρbvc. By further assuming that the dislocation density

is proportional to the square of the applied stress, according
to the Taylor relationship [Eq. (5)], and that, for small stress
values, the climb velocity varies linearly with stress [when
τ� � kBT it is possible to simplify exp (− τ�

kBT
) − 1 ∼ τ�

kBT
in

Eq. (3)], the strain rates can be described by a power law with
a stress exponent equal to 3. A creep power law characterized
by the same stress exponent has been found in the model of
Nabarro [48], where creep is produced by dislocation climb
only. Similarly to the climb-controlled model it is assumed ρ ∝
τ 2 and that the climb velocity varies linearly with the stress, for
small stress values. The dislocation velocity is then assumed
to be exactly the climb velocity, obtaining ε̇ ∝ τ 3. Stress
exponent larger than 3, as found for fcc Al, could be reproduced
by making some ad hoc assumptions on the multiplication and
annihilation processes [47,49]. Only recently, DD simulations
on Al micropillars have been used to describe the different
stress exponents, ranging from 1 to 6, in different stress
and temperature conditions by coupling the glide and the
climb mechanisms [15]. This shows the capabilities of DD
simulations to predict the collective behavior of dislocations.
Still, in olivine, a power law characterized by a stress exponent
close to 3–3.5 is found in a wide range of temperature and stress
conditions [50,51]. Our DD results are in good agreement with
these experimental evidences. In fact, we were able to capture
the variation of both the dislocation density and the creep strain
rate with the applied stress and temperature. In the following
we compare our numerical results with the theoretical models
proposed in literature and we derive a semianalytical model
based on the analysis of our dislocation dynamics simulations.

In order to make use of Eq. (8) to extract a simple expression
for the creep strain rates, the first issue is to verify that the
collective behavior of dislocations can be described as an
average of the single dislocation behavior. Then we need
to evaluate the mobile dislocation density and velocity that
characterize the collective dislocation motion. To this aim we
analyze our DD simulation results and extract the average
mobile dislocation density ρm and velocity vm for the ensemble
of dislocations that contribute, respectively, to 99% and 95%
of the total plastic strain produced during the simulation εtot.
Details about how we calculate the mobile dislocation velocity
vm,99 (vm,95) and density ρm,99 (ρm,95) are reported in the
Appendix. The results of the analysis of our DD simulations
performed at 1400, 1600, and 1700 K, are shown in Figs. 8
and 9. The average density of mobile dislocations obtained
for the two criteria are plotted in Fig. 8(a) and compared
with the total dislocation density ρtot. Most dislocations are
immobile. Figure 8(b) shows that only a small fraction of
dislocations effectively contribute to the plastic strain. Almost
all the plastic strain (99%) produced during creep results from
the motion of a small portion of the dislocations, between 30%
and 40%, approximately. Among those, a smaller ensemble
of mobile dislocations, 10% of the total, is responsible for
95% of the total plastic deformation. On one hand, this
fraction is almost constant and does not significantly change
with the applied stress or temperature. Interestingly we found
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that also in constant strain rate condition plastic deformation
is sustained by approximately the same constant fraction
of mobile dislocations. On the other hand, the velocity of
mobile dislocations strongly depends on temperature, since
both glide and climb processes are thermally activated. In
Figs. 9(a)–9(c) the values obtained for the mobile dislocation
velocity vm,99 (vm,95) are plotted as a function of the applied
stress and compared with the instantaneous glide and climb
velocities. Figure 9 demonstrates that the mobile dislocation
velocity cannot be replaced by either the pure climb or the
climb velocity. It clearly results from an interplay between the
two kinetics. In order to derive an expression for the mobile
dislocation velocity, we can make few assumptions based on
our DD results. First, we can assume that the distance covered
by climb �lc is negligible compared to the glide mean free
path �lg traveled by mobile dislocations and express the
distance �l traveled in the time interval �t , as the glide
mean free path �l ∼= �lg = vg(τ,T )�tg . This is supported

by the results in Fig. 4(f), where it emerges that the entire
plastic strain is only produced by glide during the whole creep
simulation. On the contrary, the waiting time �tc needed to
release a dislocation from a quasiequilibrium configuration is
much larger than the time �tg needed to glide from a jammed
configuration to another one, so that �t = �tc + �tg ∼= �tc.
This is supported first by the observation that the glide velocity
is two or three order of magnitude larger than the climb velocity
and it is corroborated by the observation that a large fraction
of dislocations is nearly immobile. By following these two
considerations, we can write the average mobile dislocation
velocity as

vm = �l

�t
∼= vg(τ,T )�tg

�tc + �tg

∼= vg(τ,T )
�tg

�tc
. (9)

Here the mobile dislocation velocity is expressed as the product
of the pure glide velocity and the ratio between the time
needed to glide the mean free path and the waiting time
between two glide displacements. We notice that �tc is not
simply the time needed to do a climb step, but it represents
the time interval during which the dislocation is trapped in
a local equilibrium configuration. �tc depends on the local
dislocation configuration: a dislocation remains immobile until
it climbs to bypass an obstacle or until one or few of the
neighboring dislocations move or annihilate by climb so as to
modify the local internal stress field and release it. In general,
the instantaneous glide velocity for each dislocation is due
to an effective stress τ ∗ given by the sum of the applied
stress τ and of the internal stress τint. While for the immobile
dislocations τ ∼ −τint, for the subset of mobile dislocations
we can assume that the average stress value controlling the
glide process is given by the applied creep stress τ > τint.
In Fig. 9(d) we plot the ratio between the average mobile
dislocation velocity vm and the glide velocity vg as a function
of τ at three different temperatures T . This ratio turns out to
be approximately constant with the increasing stress values.
By setting k = vm(τ,T )

vg (τ,T ) , we fit the ratio between the mobile
dislocation velocity vm,99 (vm,95) and the glide velocity and
we extract the k value for each curve of vm. The curves
obtained by this fitting are plotted in Figs. 9(a)–9(c), dashed
lines in the graphs. The values of k extracted from the fit of
vm,99 and vm,95 are, respectively, 0.019 and 0.074 at 1700 K,
0.021 and 0.078 at 1600 K, and 0.010 and 0.034 at 1400 K.
Since the values of vm,99 and vm,95 calculated from our DD
simulations are well described by the fitting curves, we can
infer that the mobile dislocation velocity is given by the glide
velocity reduced by a constant k. By using Eq. (9) the latter
can also be interpreted as the ratio between the time needed
for glide and the waiting time (controlled by climb) necessary
to bypass obstacles. Hence we observe that this ratio is rather
temperature insensitive. Values obtained at 1600 and 1700 K
are nearly identical, while at 1400 K they are reduced by a
factor of 2 only. Since k represents the competition between
glide and climb kinetics, we can qualitatively explain such a
result from Fig. 2 which shows that the ratio between glide and
climb velocities does not vary significantly with temperature
(contour lines in Fig. 2 are almost vertical). In fact, if we
select a given stress value in Fig. 2, we can observe that the
difference between the ratio vg/vc at 1700 and at 1400 K is
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only a factor of 2–3. In the examined stress range, a power
law with a constant stress exponent m close to 2 is found to
fit the glide velocity and, consequently, the mobile dislocation
velocity (vm ∝ τm). In particular, the best fit of m is 1.88, 1.85,
and 1.5 at 1700, 1600, and 1400 K, respectively. It is worth
to say that, while in the limited stress and temperature range
considered here it is appropriate to describe the glide mobility
law with a power law characterized by a constant exponent m,
this approximation may not be valid in general.

Once having calculated the average mobile dislocation
density and velocity, we can derive the strain rates from
Orowan’s equation [Eq. (8)]. In Fig. 10 we compare the
strain rates directly obtained from our DD simulations with
the ones calculated by inserting the values of ρm,99 and vm,99

or ρm,95 and vm,95 in Orowan’s equation. The agreement is
quite remarkable. This justifies the use of Orowan’s equation,
as long as the average mobile dislocation density and velocity
are adopted. This demonstrates that the collective behavior of
dislocations in creep conditions can be well described by the
motion of small set of mobile dislocations. These dislocations
move essentially by glide and their average velocity is reduced
by a factor that depends on the time needed to climb and bypass

obstacles. In the examined range, a creep power law with a
constant stress exponent close to 3 is found as the mobile
dislocation density is a constant fraction of the total density
which scales to τ s , with s ∼ 1.3, and the mobile dislocation
velocity increases with the creep stress as τm, with m ∼ 1.7.

V. CONCLUSIONS

Dislocation dynamics simulations performed with our 2.5D
approach are shown to be a useful tool to model the high
temperature deformation behavior in olivine. From our results
it emerges that it is fundamental to consider the climb
mechanism in order to reach steady state creep conditions.
In the temperature range between 1400 and 1700 K and
with applied creep stresses between 10 and 100 MPa, it is
possible to describe the creep strain rates by a power law.
A constant value for the stress exponent n close to 3 and
an activation enthalpy of 5.07 eV are found in agreement
with published experimental results. From an analysis of the
average mobile dislocation density and velocity we formulate
a semianalytical model able to reproduce the creep behavior
in olivine at low stress and high temperature. In particular, we
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find that the collective behavior of dislocations in this regime
can be described from the motion of a small ensemble of
mobile dislocations that are responsible for the whole plastic
strain. These dislocations are a constant fraction of the total
dislocation density and have an average velocity which is given
by the glide velocity reduced by a coefficient that is rather
insensitive to temperature. As a consequence, even though
climb is fundamental to maintain an equilibrium between the
multiplication and annihilation processes, it emerges that the
glide kinetics plays a mayor role in determining the creep
strain rates and the constant exponent n ∼ 3 in the creep power
law. In olivine, even at high temperature, lattice friction is
significantly large. Therefore, the glide mobility law differs
substantially from the one characterizing fcc metals like Al,
where a stress exponent ranging from 1 to 6 has been found by
DD simulations. In the latter case, only climb is a thermally
activated process and the competition between the two kinetics
differs substantially at different temperatures.

Our capability to reproduce the qualitative creep behavior
and the good agreement we found between the predicted
and the measured stress exponent values in a wide range
of temperature and stress, demonstrate the strength of our
simulations. We believe that this numerical approach can
be useful to investigate high temperature plasticity in other
relevant minerals and to compare the creep behavior in
different conditions and for different material parameters, such
as the diffusion coefficient. Finally, we think that the creep
model here proposed is useful to analyze the creep behavior of
other materials characterized by high lattice resistance, such
as bcc metals or zirconium alloys, and also to understand the
influence of the glide and the climb motion on the mechanical
behavior in different temperature and stress conditions.
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APPENDIX: CALCULATION OF THE AVERAGE MOBILE
DISLOCATION DENSITY AND VELOCITY

In order to evaluate the mobile dislocation density ρm and
velocity vm we analyze our DD simulation results and extract
ρm and vm from the same set of simulations from which we
obtained the creep strain rates and equilibrium dislocation
density reported in Figs. 6 and 7. To define the ensemble
of mobile dislocations we need to establish a criterion. Here
we chose to select the dislocations that mostly contribute to
the plastic strain ε. In particular, we adopt two criteria: for
each simulation we calculate the average dislocation density
and velocity for the ensemble of dislocations that contribute,
respectively, to 99% and 95% of the total plastic εtot strain
produced during the simulation. To calculate ρm and vm we
proceed in the following way. For each simulation, first we pick
a test value for the dislocation velocity vtest. For all the
dislocations Ni in the simulation box we calculate the distance
�ri traveled by the ith dislocation in a time interval �t � dtc
and we select the subset of Nj dislocations characterized by
a velocity vi = �ri

�t
� vtest. For this subset we calculate the

average dislocation velocity:

v̄�t = 1

Nj

Nj∑
j=1

vj

and the plastic strain produced in the time interval �t :

�ε�t =
∫ �t

0

Nj∑
j=1

bjv
′
j dt.

Here bj and v′
j are the Burgers vector and the instantaneous

dislocation velocity calculated at each glide or climb time step
dt in the interval �t for the j th dislocation. We perform this
computation for subsequent time intervals �t until the end of
the simulation (t = tf ) and we extract the average dislocation
velocity

v̄test = �t

tf

∑
v̄�t

and density

ρ̄test = 1

LxLy

�t

tf

∑
N̄j

for the subset of dislocations with vj � vtest and we calculate
the total amount of plastic strained εtest = ∑

ε̄�t originated by
such set of dislocations. By iterating these steps for increasing
values of vtest, we defined ρm,99 = ρ̄test and vm,99 = v̄test

(ρm,95 = ρ̄test and vm,95 = v̄test) when we find εtest = 0.99εtot

(εtest = 0.95εtot), being εtot the total plastic strain generated
during the simulation. For each simulation we checked
different values of �t , between 103dtg and 106dtg , obtaining
consistent results for the different values.
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