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Diagrammatic Monte Carlo study of a mass-imbalanced Fermi-polaron system
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We apply the diagrammatic Monte Carlo approach to three-dimensional Fermi-polaron systems with mass
imbalance, where an impurity interacts resonantly with a noninteracting Fermi sea whose atoms have a different
mass. This method allows us to go beyond frequently used variational techniques by stochastically summing all
relevant impurity Feynman diagrams up to a maximum expansion order limited by the sign problem. Polaron
energy and quasiparticle residue can be accurately determined over a broad range of impurity masses. Furthermore,
the spectral function of an imbalanced polaron demonstrates the stability of the quasiparticle and allows us to
locate in addition also the repulsive polaron as an excited state. The quantitative exactness of two-particle-hole
wave functions is investigated, resulting in a relative lowering of polaronic energies in the mass-imbalance
phase diagram. Tan’s contact coefficient for the mass-balanced polaron system is found in good agreement with
variational methods. Mass-imbalanced systems can be studied experimentally by ultracold atom mixtures such
as 6Li- 40K.
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I. INTRODUCTION

One of the most general and successful concepts in physics
is the separation of a physical system into a simpler, controlled
subsystem that is interacting with a perturbing subsystem. A
specific example of this method is given by a basic impurity
problem, consisting of a noninteracting homogeneous medium
and one particle disturbing it. In the case of a noninteracting
Fermi gas, this is called Fermi-polaron problem [1]. This
theoretical model can help to map out the phase diagram
of a strongly population-imbalanced Fermi gas [2], where
the quasiparticle energy and effective mass serve as input
parameters for Landau-Pomeranchuk Hamiltonians [3,4] help-
ing to quantify zero-temperature phase separation and the
ground-state energy of different phases. Moreover, the N + 1
Fermi-polaron system was shown to undergo a transition of
its own, featuring as possible ground states [5,6] a polaronic
spin-1/2 quasiparticle and the composite spin-0 molecule,
consisting of the impurity and a single bath atom. However, this
transition does not generalize easily to population-imbalanced
Fermi gases as it might be preempted by phase separation.

Two of the most common approaches to the Fermi-polaron
problem are variational Ansätze and the use of an approximate
diagrammatic technique [2,7–14]. These methods are able to
calculate key quasiparticle properties, e.g., effective mass or
polaron residue and helped to map the transition between
polaronic and molecular states. Mathy et al. extended [4] these
ideas to the case of a mass-imbalanced Fermi-polaron problem
and depicted the ground-state phase diagram with respect
to polaronic, molecular, trimer [15], and tetramer [16,17]
states, where a trimer (tetramer) is the bound state of two
(three) bath particles with the impurity. Concerning other
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techniques, functional renormalization group [18] and fixed-
node diffusion Monte Carlo [19] have been successfully
applied. Experimental works include Refs. [20–22].

Another approach was presented by Prokof’ev and Svis-
tunov in 2008: diagrammatic Monte Carlo [6] (diagMC). Its
key ingredient is the sampling of Feynman diagram integrals
by a set of ergodic updates linking all topologies and internal
variables. By reducing the diagrammatic space, they managed
to reach sufficiently high expansion orders allowing them to
extract energies and effective masses in very good agreement
with other techniques despite the fermionic sign problem.
Recently, the method was used [23–25] for the extraction of
polaron quasiparticle residues and two-dimensional geome-
tries.

Up to now, these diagMC implementations have only been
applied to the special case of equal masses of impurity and bath
atoms. This is important as such a system can be created by
different spin states of a homogeneous atomic gas. However,
also mixtures such as 6Li- 40K are experimentally realizable
in ultracold atom systems. In our work, we extend diagMC
to the case of arbitrary mass imbalance and present the
dependence of polaron energy and residue on the imbalance
ratio. Determining the polaronic spectral function for mass
imbalance helps in understanding the stability of quasiparticles
close to the limit of a heavy impurity. It features the repulsive
polaron [26], an excited state with finite lifetime. We show
that two-particle-hole wave functions remain essentially exact
in three dimensions and demonstrate the implications for the
mass-imbalanced phase diagram. We also present results for
Tan’s contact parameter for a mass-balanced polaron system.

This paper is structured as follows. Section II presents the
basic Fermi-polaron model summarizing the diagrammatic
ingredients for imbalanced masses. In Sec. III, some changes
of the diagrammatic routine are proposed in order to increase
performance, while Sec. IV introduces the enhancements of
bold diagMC we use in our code. Section V will explain a
newly developed regrouping technique helping to increase
extrapolation speed of the series. Finally, Sec. VI exhibits
our results. A brief conclusion is given in Sec. VII, while the
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appendixes give a detailed derivation of the mass-imbalanced
T matrix and explain our extrapolation procedure.

II. MODEL

The system referred to as a Fermi-polaron problem consists
of two main ingredients: a noninteracting Fermi bath and an
impurity resonantly interacting with it. This can be realized
at ultracold temperatures because s-wave scattering between
any bath particles is forbidden due to Pauli’s principle and
p-wave scattering is energetically suppressed. The simplest
Hamiltonian compatible with these requirements is [2]

Ĥ =
∑
k,σ

εk,σ ĉ
†
k,σ ĉk,σ + g

∑
k,k′,q

ĉ
†
k+q,↑ĉ

†
k′−q,↓ĉk′,↓ĉk,↑. (1)

ĉk,σ labels a field operator for a particle in state σ and with
momentum k, g is the bare coupling constant and εk,σ = k2

2mσ

incorporates the energy dispersion. For convenience, we label
the impurity by ↓ and bath particles by ↑, although this does
not necessarily refer to pure spin states. kF is the bath particle
Fermi momentum, EF its Fermi energy. We are working
in units assuring � = 1. For the diagrammatic series, we
employ the imaginary time representation and establish the
following particle-hole convention: Bath lines with momentum
|k| > kF are denoted particles possessing positive time while
lines with |k| < kF are called holes and propagate with
negative time. The positive time direction is defined to be
from left to right. The interparticle interaction can be modeled
by a pseudopotential in case of a zero-range interaction. It
is important, though, that this potential assures the correct
two-particle scattering length [27,28] a. We introduce the T

matrix �(τ,p) in conventional form [6] and tabulate it prior to
the Monte Carlo run. This is tantamount to replacing the bare
coupling g by the experimentally accessible scattering length
a. We refer to Appendix A for details. The Green’s functions
are given by

G0
↑(τ,k) = −θ (τ )θ (k − kF )e−(εk,↑−EF )τ

+ θ (−τ )θ (kF − k)e−(εk,↑−EF )τ

G0
↓(τ,k) = −θ (τ )e−(εk,↓−μ0

↓)τ , (2)

where μ0
↓ is a tuning parameter used for convergence reasons.

Reduced mass mr and total mass M are introduced canonically

M = m↓ + m↑ mr = m↓m↑
M

. (3)

III. DIAGRAMMATIC FRAMEWORK

The set of updates we use is different from the approach of
Prokof’ev-Svistunov [6]. Rather than linking different orders
by worm diagrams, we prefer to implement these transitions
by direct updates. We propose the following update pairs:

(i) first-to-fake and fake-to-first,
(ii) change-fake (self-inverse),
(iii) insert-mushroom and remove-mushroom,
(iv) insert-T -matrix and remove-T -matrix,
(v) reconnect (self-inverse).
A fake diagram is used for normalization purposes and is

graphically identical to the first-order [29] diagram, but with

FIG. 1. The first-order diagram is used for normalization pur-
poses. The (local) appearance of this diagram topology as part of the
whole diagram will be used to identify reducible diagrams in partially
bold diagMC in Sec. IV.

analytically easy weights, cf. Fig. 1. Its internal variables are
updated by the update change-fake. The updates first-to-fake
and fake-to-first connect this fake diagram with the lowest-
order diagram we sample, presented in Fig. 2. Note that this
diagram is unphysical if no self-consistent bold scheme [6] is
used. The first-order diagram is not included in our simulation
because its contribution experiences a 1√

τ
behavior for τ → 0,

thus forcing the program to spend a lot of time on small times.
It is straightforward to include the first-order self-energy by a
numerical tabulation in ω space [7].

There are four updates linking different orders: insert-
mushroom, insert-T -matrix and their inverse updates remove-
mushroom and remove-T -matrix. Insert-T -matrix chooses any
T matrix of the current diagram and splits it into two linked T

matrices. The resulting (unphysical) diagram has good overlap
with the previous configuration if G1

↓ − G0
↓ is artificially

attributed as weight of the underlying impurity propagator.
Here, G1

↓ denotes the impurity Green’s function evaluated by
plugging the first-order self-energy contribution into Dyson’s
equation.

Last, an update called reconnect ensures that all different
topologies of a certain order are sampled.

This set of updates is ergodic and avoids sampling of first-
order contributions. The last remaining unphysical diagrams
connect two adjacent T matrices—however, this is important
for partially bold sampling (cf. Sec. III). If no self-consistent
bold scheme is used, sampling of relevant diagrams can
be enforced by assigning an additional penalty weight to
those diagrams. We will present the updates insert-mushroom,
remove-mushroom, and reconnect in the next sections. All
other updates were designed in the same spirit.

A. Insert-mushroom

This update is available for impurity propagator lines. It
attempts to insert the diagrammatic structure of Fig. 1 (called
mushroom) on one of these lines. If the current diagram

FIG. 2. This (unphysical) second-order diagram connects the
first-order fake diagram with higher-order diagrams.
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FIG. 3. Illustration of inverse updates insert-mushroom and
remove-mushroom.

order is denoted by N , there are N − 1 propagators available
for insertion. Having selected one of those with imaginary
time τ and momentum p, internal time slices τ1 and τ2 are
uniformly seeded (probabilities: dτ1

τ
and dτ2

τ−τ1
), as well as

a bath propagator momentum q with |q| < kF (probability:
d3q

(2kF )3 ). This fixes the time variable of the last piece to
τ3 = τ − τ1 − τ2. The whole process is illustrated in Fig. 3.
The Metropolis acceptance ratio PIM is

min

(
1,

pRM

pIM

G0
↓(τ1,p)�(τ2,p + q)G0

↓(τ3,p)G0
↑(τ2,q)

(2π )3G0
↓(τ,p) · 1

τ
1

τ−τ1

1
(2kF )3

)
. (4)

The factor (2π )3 in the denominator is part of the diagrammatic
weight of the new configuration. pIM and pRM are the
probabilities of selecting the updates insert-mushroom or
remove-mushroom, respectively.

B. Remove-mushroom

Remove-mushroom is the inverse update for insert-
mushroom. If the current diagram order is denoted by N ,
there are N T matrices that could be removed together with
the corresponding impurity propagator. However, the first T

matrix can not be removed, because it is never constructed
by insert-mushroom. The same is true for the last T matrix.
That leaves N − 2 possible T matrices and balances the
selection factors in the METROPOLIS algorithm. Being the
inverse update of insert-mushroom, the acceptance ratio of
remove-mushroom is given by

min

(
1,

pIM

pRM

(2π )3G0
↓(τ,p) · 1

τ
1

τ−τ1

1
(2kF )3

G0
↓(τ1,p)�(τ2,p + q)G0

↓(τ3,p)G0
↑(τ2,q)

)
. (5)

C. Reconnect

Reconnect is the key update of our procedure. It randomly
selects one of the T matrices, except the last one. In diagram
order N , there are N − 1 possible choices. Suppose that a
T matrix with parameters (τt ,pt ) and an impurity neighbor
adjacent to the right with parameters (τp,p↓) is selected. The
update then proposes to swap the incoming bath propagator
with the incoming bath propagator of its right neighbor. There
is a unique way of swapping as we are not working in cyclical
representation. Accordingly, the former bath propagator times
τ1 and τ2 are exactly mapped on new times τ ′

1 and τ ′
2. Index

1 labels the bath propagator linked to the selected T matrix.
Note that the mapping of the bath propagator momenta to the
corresponding new momenta is not clear at this instant, as the
shape of the current topology has to be reflected. In the moment
of linking the new propagator configuration, the underlying
momenta have to be adjusted in a manner described below.
Last, the resulting diagram has to be checked for one-particle

FIG. 4. Illustration of the first and second case of update
reconnect. The dotted vertical bath propagator line is connected to an
arbitrary T matrix in the diagram.

irreducibility—the update has to be rejected if any impurity
propagator line turns out uncovered. Subsequent application
of reconnect updates allows us to reach every bath propagator
configuration and guarantees ergodicity.

More precisely, the update separates into three different
cases depending on the current diagram configuration. The
first diagram topology (cf. Fig. 4) is identified by having a
mushroom-structure on the selected T matrix–its incoming
bath line is connected with its outgoing bath line. Since
swapping will transfer a hole into a bath particle, it is necessary
to create its new particle momentum q. This is done by uniform
seeding on the interval [−kmax,kmax] for each component of q,
where kmax introduces the momentum cutoff of our procedure.
The update is rejected if |q| > kmax or if |q| < kF . Concerning
underlying momenta, the selected T matrix is assigned the
momentum p of the right neighboring T matrix, while its right
impurity neighbor obtains p − q. It is easy to compute final
times

τ ′
1 = τ2 − τt − τp

τ ′
2 = τp. (6)

The acceptance ratio is

min

(
1,

�(τt ,p)G0
↓(τp,p − q)G0

↑(τ ′
1,p2)G0

↑(τ ′
2,q)k3

max

�(τt ,pt )G0
↓(τp,p↓)G0

↑(τ1,p1)G0
↑(τ2,p2)k3

F

)
. (7)

The second topology is identified by a link between the
outgoing end of the selected T matrix and its right neighbor.
Being the inverse of the latter update, only one more step is
necessary. Instead of seeding new particle momentum, now the
hole momentum has to be created on the selected T matrix,
thus explaining the factor of kF in Eq. (7). The acceptance
ratio for the second topology is

min

(
1,

�(τt ,pt )G0
↓(τp,p↓)G0

↑(τ1,p1)G0
↑(τ2,p2)k3

F

�(τt ,p)G0
↓(τp,p − q)G0

↑(τ ′
1,p2)G0

↑(τ ′
2,q)k3

max

)
. (8)

All other cases are included in the third topology (cf. Fig. 5),
defined by neither connecting the selected T matrix with its
right neighbor nor with itself. Such cases are self-inverse. No
seeding is necessary, all bath momenta are purely swapped or
added. Determining final times is straightforward

τ ′
1 = τ2 − τt − τp

τ ′
2 = τ1 + τt + τp. (9)

Note that holes are defined to have negative times. Concerning
momenta, only the selected T matrix and its right impurity
neighbor have to be considered, yielding new momenta Pt for
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FIG. 5. Illustration of the third case of update reconnect. The
dotted and full vertical bath propagator lines are connected to arbitrary
T matrices in the diagram (as long as neither the full line of the left
figure nor the dotted line of the right figure is connected to itself.

T matrix and P↓ for impurity line:

Pt = pt + p2 − p1

P↓ = p↓ + p2 − p1

p′
1 = p2

p′
2 = p1. (10)

This results in the acceptance ratio

min

(
1,

�(τt ,Pt )G0
↓(τp,P↓)G0

↑(τ ′
1,p2)G0

↑(τ ′
2,p1)

�(τt ,pt )G0
↓(τp,p↓)G0

↑(τ1,p1)G0
↑(τ2,p2)

)
. (11)

IV. PARTIALLY BOLD DIAGRAMMATIC MONTE CARLO

In addition to the modifications of the bare code, we propose
some changes only affecting the bold diagrammatic Monte
Carlo routine. Using full Green’s functions as self-consistent
input has the disadvantage of increasing sampling space dras-
tically by forcing the tabulation of the full Green’s function in
both imaginary time and momentum. It is therefore beneficial
to use the fact that first-order contributions dominate the fully
bold propagator and construct a partially bold diagrammatic
series out of quantities that are easily tabulated. It is possible
to put the analytically known first-order self-energy into
Dyson’s equation in Matsubara frequency space to obtain the
first-order Green’s function. A Fourier transform yields the
basic propagator G1

↓(τ,p) without stochastic errors. Only a
few modifications are necessary to adjust the basic Monte
Carlo routine: First, every diagram containing at least one
first-order self-energy diagram (cf. Fig. 1) has to be excluded
from measurements. Second, it is no longer forbidden to
connect adjacent T matrices, just as in fully bold code [6]—the
only difference is that the associated impurity weight is now
G1

↓ − G0
↓.

We also extended the molecule code to include partially
bold propagators. This extension is almost identical to the
bold polaron code. Linking T matrices is readmitted with
the same (now nonartificial) weight G1

↓ − G0
↓ for impurity

propagators. The only new feature concerns the first-order
molecule diagram that is now sampled and has to be calculated
with impurity weight G1

↓ − G0
↓. By this means, the ultraviolet

divergence is cured and a second, independent molecule
series is constructed, which helps confirming robustness and
reproducibility of the results. Resummation is still needed for
this new series.

As a last comment on bold sampling, we would like to draw
attention to the flaws of bold diagMC. First, if the Dyson series

is not absolutely convergent, the rearrangement of this series
into the fully or partially bold series is potentially harmful,
as it constitutes a (though physically motivated) regrouping
of terms, which can yield any result for nonconvergent
series [30]. Second, many series in quantum field theory
are asymptotic expansions, implying that results begin to get
better and better with increasing expansion order until some
maximum expansion order Nmax is reached, after which the
factorial growth of the number of diagrams leads to huge
oscillations. In such a case, using a bare series is a common
procedure, whereas the bold approach captures diagrams of
higher order from the start. Summarizing this line of argument,
a bold diagrammatic approach seems only reasonable if the
underlying series is convergent.

V. DIAGRAM REGROUPING AND RESUMMATION

As diagrammatic expansions are in general not absolutely
convergent, an important tool to study the underlying series
is resummation [6]. This resummation procedure requires a
discussion in more detail. Typically we find the molecular
energies to be stable, but the polaron energies in the Bose-
Einstein-condensate limit are harder. Sharp resummations
are potentially dangerous if the maximum sampling order is
not high enough as can be seen as follows: With a strong
resummation method, the produced curve is almost flat for
low expansion orders and then bends down sharply for higher
orders. Weak resummation methods on the other hand have
more curvature for low expansion orders and flatten off if the
order of divergence of the series is weak enough. There is thus
a risk with strong resummation methods if only low expansion
orders can be reached in the sense that a possibly strong
curvature is missed, resulting in an apparently converging but
wrongly extrapolated result in close vicinity to the first-order
result. This effect is demonstrated [31] in Fig. 6 at unitarity.
Note that the bare series is monotonously decreasing, which
makes a high maximum resummation order necessary to

FIG. 6. (Color online) Resummation methods of type Riesz with
different exponents δ are compared for unitarity in a three-
dimensional setup. The plot shows polaron energies depending on
maximum sampling order.
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extract the correct answer. Summing it up: the more sign
alternating the bare series is, the better resummation works.

A typical resummation method is the Riesz resummation
method. These resummations will act upon self-energy series,
which can be written as S = ∑

N S(N), where S(N) contains
all contributions of diagrams of order N . The order of a
self-energy diagram is defined as the number of interaction T

matrices. The resummed self-energy series S ′ for some given
maximum order L is defined [6] as

S ′(L) =
L∑

N=1

S(N)F
(L)
N , (12)

where F is given by the Riesz coefficients

F
(L)
N =

(
L − N + 1

L

)δ

. (13)

δ fixes the strength of the resummation: For δ = 0, no
resummation is performed at all, while only the first-order
contribution is maintained in the limit δ → +∞. If this method
is used on molecular series, it might be beneficial to set
F

(L)
2 = 1 as this ensures that the first contributing diagram

(which is of second order for molecules) always contributes
with full weight.

We introduce a regrouping technique that seems to saturate
much faster. Provided the series is absolutely convergent,
this is always allowed. It is based on a regrouping of terms
in the bare series in such a way that sign alternation is
maximized. The technique consists in splitting S(N), the
self-energy contributions of order N , into two parts:

S(N) = Sr
(N) + S ir

(N), (14)

where Sr
(N) collects all diagrams containing at least one T

matrix linked by a hole to itself, cf. Fig. 1, and S ir
(N) gathers

the rest. We propose a new series S ′ = ∑
N S ′

(N), which aims
to maximize sign alternation in S ′

(N). The coefficients in the
resummation procedure depend on the expansion order for
k ∈ N as

S ′
(1) = S(1),

S ′
(N=2k+1) = S ir

(N) + 1
2S

ir
(N−1) + 1

2S
r
(N), (15)

S ′
(N=2k) = Sr

(N) + 1
2S

r
(N−1) + 1

2S
ir
(N).

These coefficients are in principle arbitrary—our choice was
designed to show fast saturation as can be seen in Fig. 7 for
the case of the Fermi polaron at unitarity: The application
of conventional Riesz resummations on the reordered series
illustrates that the manually implemented oscillations make it
possible to read off polaron energies reliably and allow for a
clear statement whether the expansion order is high enough
or not. When reverting the roles of reducible and irreducible
in Eq. (15), the same answer can be found but only after a
stronger resummation. Note that although the sum of diagrams
of a specific order of the unitary polaron series is vanishing
within error bars, the different terms are not small.

As the regrouped series agrees with the results of the
standard bare series, this might indicate that the polaron Dyson
series is convergent or that the maximum expansion order Nmax

of its asymptotic expansion is essentially infinity at unitarity.

FIG. 7. (Color online) Resummation methods of type Riesz with
different exponents δ applied to the modified bare series [see Eq. (15)]
are compared at unitarity in a three-dimensional setup. The plot shows
polaron energies depending on maximum sampling order.

Nevertheless, Fig. 7 of Ref. [23] suggests that the series might
be asymptotic in fact, as a doubly bold regrouping shows clear
signs of growing fluctuations for increasing expansion order
after an initial improvement of results.

VI. RESULTS

In this section, our diagrammatic Monte Carlo results for a
mass-imbalanced polaron are presented.

A. Polaron energy and residue at unitarity

Figure 8 plots the polaron energy at unitarity for different
mass ratios r = m↓

m↑
. While the variational Chevy Ansatz, here

labeled as first order, captures the whole curve qualitatively,
its quantitative accuracy gets less precise for low r , i.e., a light
polaron. Note that this energy curve reproduces the correct

FIG. 8. (Color online) Polaron energy at unitarity for different
mass ratios r . The inset shows the flat part of the figure. Many-body
effects get more pronounced for a lighter polaron.
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infinite mass limit [7] Epol = −0.5 for an imbalance ratio as
low as r = 2. For the case of an immobile impurity, the polaron
is subject to Anderson’s orthogonality catastrophe [32] and
the quasiparticle description is no longer appropriate. For a
light impurity, the polaron energy decreases rapidly as the
effective interaction is stronger for smaller reduced mass (see
Appendix A) at unitarity. The next subsection will show that
this effect is weakened for finite scattering length. Eventually,
a very light impurity will be subject to relativistic effects so that
our description will no longer be appropriate. The extraction
of error bars was based on conservative extrapolations of
light Riesz resummation with δ = 1. For details, consult
Appendix B.

The quasiparticle residue Z can be extracted from the
asymptotic decay of the full propagator [6] G↓(τ,k) −→

τ→∞
−Ze−(E−μ↓)τ , where E is the ground-state energy of the
quasiparticle. This form implies that a suitable Monte Carlo
estimator for the residue is Z = [1 + A(E,p)]−1 with

A(E,p) = −
∫ ∞

0
τS(τ,p)e(E−μ↓)τ dτ. (16)

S is the sampled self-energy.
Our results for Z are depicted in Fig. 9. In this case, the first-

order Ansatz is both quantitatively and qualitatively different,
predicting a different position of the mass-imbalance ratio
of maximum residue. This might indicate that the variational
wave-function description works particularly well for energy-
based quantities, while it might take further particle-hole terms
to capture the residue equally well. Therefore the quasiparticle
with maximum residue can be found at higher r than estimated
by first order. At low r , higher orders affect Z stronger and
stronger, down to a ratio as low as r = 0.125, which is
sufficient for most mixtures, e.g., 6Li- 40K. In this regime,
the differences between the diagrammatic answer and the
first-order result are most pronounced. For high r , the diagMC
solution yields a roughly constant shift to the first-order
answer.

FIG. 9. (Color online) Polaron residue at unitarity for different
mass ratios r . The whole range of masses shows a clear difference
between the first order result and the full diagrammatic answer. The
inset shows the curve for additional values of r .

As a trimer state acquires more and more strength with
respect to the polaron state for decreasing r and as the
molecular state is strengthened for increasing [4] r , it seems
natural that the polaron residue takes on a maximum value
in between—once it is no longer the ground state, its residue
will decay quickly (although it will not be zero because there
is no simple decay channel [18]). The measured residue is
strictly lower than the first-order variational result. This is
remarkable as the functional renormalization group analysis
of Ref. [18] predicts a higher residue for unitarity at r = 1.
Further investigation is needed to understand this discrepancy.

No resummation was used to extract the quasiparticle
residues. For r � 0.5, the series seemed to saturate within
our maximum expansion order. The extrapolation error was
approximated to be twice the fluctuation of the saturating
points. For r � 0.5, the series changed and the saturation was
not visible anymore. These points are therefore only valid if a
linear extrapolation to infinite expansion order is appropriate.
This extrapolation error was approximated by the method
explained in Appendix B.

B. Polaron energy beyond unitarity

Figure 10 shows polaron energies at varying coupling
strength in the BEC regime for two different mass-imbalance
ratios r . Both curves experience a peak of maximum dressing
around (kF a)−1 = 0.4. Decreasing the coupling further, this
relative energy is decreased for both masses, although the
light impurity is affected more strongly. Eventually, the heavy
impurity has a higher effective dressing (relative to the binding
energy) than the light impurity. This is a consequence of
the mr/(2πa) term in the denominator of the T matrix (see
Appendix A) that strengthens the effective interaction between
impurity and bath atoms for increasing r at a given interaction
strength. Note that these curves extend into the molecular
sector [4] where the polaron ceases to be the ground state.

FIG. 10. (Color online) The polaron energy of two values of r is
plotted for various interaction parameters kF a. Note that the binding
energy EB = (2mra

2)−1 is subtracted. For strong interactions, the
light impurity acquires a higher effective dressing relative to the
binding energy than the heavy impurity. This is eventually reversed
in the BEC regime.
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FIG. 11. (Color online) Different contributions to the full polaron
energy are compared for three maximum expansion orders N . En

denotes contributions including up to n-particle-hole diagrams. Two
of the curves have been offset by ±0.03EF for clarity. The points
were measured for a mass-imbalance ratio r = 0.125 at unitarity.

Concerning the residue, no qualitative difference could be seen
between the r = 0.5 and r = 2 curves.

C. Two-particle-hole channel

For quasi-two-dimensional geometries, a remarkable quan-
titative precision of two-particle-hole wave-functions was
found for polaron energies [25,33]. A natural question is
whether this approach remains valid in three dimensions.
Figure 11 compares different particle-hole channels for three
maximum expansion orders. For the selected measurement
point (unitarity with imbalance r = 0.125), the three-particle-
hole channel contributes with slight quantitative differences,
whereas four-particle-hole and five-particle-hole diagrams
vanish within error bars. This confirms the observation that
the two-particle-hole result is essentially correct and can
be used for quantitative calculations. The classification of
diagrams into particle-hole classes breaks down for the fully
bold approach, because each bold diagram captures bare
diagrams of different particle-hole order. For the partially
bold scheme, this does not apply since the diagrammatic
structure of the partially bold Green’s functions ensures
that the propagation will start with zero holes and is guar-
anteed to switch to the one-particle-hole sector at least
once.

D. Spectral function

It is possible to extract the polaronic spectral function
A(ω,p) = −2 Im[ω + i0 − εp + μ0

↓ − S(ω,p)]−1 from the
sampled self-energy S. The full Green’s function can be
calculated by Fourier transform, subsequent application of
Dyson’s equation and another Fourier transform. Then,
analytic continuation to real quantities is applied [34,35].
Figure 12 presents the spectral function for a mass-imbalance
ratio r = 2. Although the energy corresponds to the infinite
mass limit [7], the polaron remains a stable quasiparticle. The

FIG. 12. (Color online) The polaron spectral function is plotted
for a mass imbalance r = 2 at unitarity. Note the quadratic dispersion
and the repulsive polaron at positive energies.

dispersion follows a parabola with positive effective mass,
whereas at higher energies, the repulsive polaron (a metastable
eigenstate of the Hamiltonian) can clearly be seen [11,18].

E. Quantitative exactness of variational energies

In this section, the extraction of polaron and molecule
energies by resummation is compared to variational one-
particle-hole wave functions. We choose the point kF a = 0.5
and r = 0.25 of the mass-imbalanced phase diagram [4] as it
stays away from the peculiarities of unitarity and the trimer
threshold. Molecular energies (Fig. 13) yield perfect agree-
ment with the variational Ansatz and motivate the quantitative
correctness of variational wave functions for the Fermi-polaron
problem. For the polaron (Fig. 14), using a one-particle-hole
wave function underestimates its energy slightly. Hence, it

FIG. 13. (Color online) Molecule energy extrapolation for
kF a = 0.5 and r = 0.25. The maximum expansion order is denoted
by N . The solid line corresponds to a linear fit of the last five
points. The crosses mark the one-particle-hole result of Ref. [4].
Riesz resummation with exponent δ = 6 was used.
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FIG. 14. (Color online) Polaron energy extrapolation for
kF a = 0.5 and r = 0.25. The maximum expansion order is denoted
by N . The solid line corresponds to a linear fit of the last five points,
the dashed line is a special fitting function explained in Appendix B.
The one-particle-hole result of Ref. [4] is identically with the point
N = 2. Riesz resummation with exponent δ = 4 was used.

would be beneficial to use at least two-particle-hole precision
for the polaron sector for a precise mapping of the phase
diagram. Altogether, the phase diagram of Ref. [4] can be
expected to be nearly quantitatively exact. Nevertheless, as
the polaron phase is underestimated, it will be shifted into
the molecular sector. As this will reduce the small size of
the nonzero-momentum molecular phase [labeled as Fulde-
Ferrell-Larkin-Ovchinnikov phase (FFLO)] further, it remains
open whether this phase really exists. We suggest to compute
the phase boundary with high precision within a variational
two-particle-hole polaron approach.

F. Dimensionless contact coefficient

Tan’s contact coefficient [9] C for a strongly population-
imbalanced Fermi gas is linked to the dimensionless contact
coefficient s by

C = s · k3
F,↓kF,↑. (17)

Here, kF,↓ is the Fermi momentum of the minority species,
which is finite for the strongly imbalanced Fermi gas. The
dimensionless contact coefficient s can be accessed easily by
calculating the derivative of the polaron energy with respect
to the dimensionless coupling [9] (kF,↑a)−1. The resulting
contact curve agrees with first-order calculations within error
bars.

VII. CONCLUSION

Our work extends the diagrammatic Monte Carlo polaron
routines to the more general case of a mass-imbalanced
polaron. This is an important limiting case of population-
imbalanced Fermi gases and allows us to estimate key
properties of its phase diagram. The diagrammatic space can be
drastically reduced by sampling the self-energy instead of the

full Green’s functions and by using the ladder approximation
as basic interaction element. We presented a critical analysis
and alternative check of diagrammatic Monte Carlo as well
as a partially bold approach, thus broadening the toolbox
of the diagrammatic Monte Carlo method. An additional
regrouping technique was presented to speed up extrapolation
to infinite diagram order for absolutely convergent series.
While the first-order variational Ansatz could give qualitative
and quantitative good results for the polaron energy at
different polaron masses, discrepancies are more pronounced
for the polaron residue. For this quantity, higher orders
have to be included in order to capture the whole physics.
Concerning Tan’s contact coefficient, an excellent agreement
was found with the Chevy variational wave function. The
polaronic spectral function was extracted from imaginary time
representation of diagrammatic Monte Carlo data by means
of analytic continuation. It demonstrates a clean parabolic
dispersion as well as the existence of the repulsive polaron. The
two-particle-hole wave-function Ansatz, which was shown to
be essentially exact in quasi-two-dimensional geometries [25],
provides an equally good description of quasiparticle energies
in three dimensions. Therefore, using one-particle-hole trial
functions will lead to a phase diagram, which overestimates
molecular contributions and might lead to a weakening of the
FFLO state found in Ref. [4].
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APPENDIX A: MANY-BODY T MATRIX
FOR UNEQUAL MASSES

It is possible to write the T matrix in presence of the Fermi
sea in a self-consistent way [36]

− i�(ω,p) = −ig +
∫

q>kF

d3q

(2π )3

∫
dq0

2π
(−ig)

× iG0
↑(q0,q)iG0

↓[ω − q0,p − q)(−i�(ω,p)].

(A1)

Since T is replacing an interaction line in first approximation
it has to follow the same sign convention as g. Also note that
for a point interaction, g(k) is constant and independent of
momentum. Rewriting yields

1

�(ω,p)
= 1

g
− i

∫
q>kF

d3q

(2π )3

∫
dq0

2π
G0

↓(ω − q0,p − q)

×G0
↑(q0,q). (A2)
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The integral is calculated by residue calculus; as only the pole
of G0

↓ is in the upper plane, it follows

1

�(ω,p)
= 1

g
−

∫
q>kF

d3q

(2π )3

× 1
q2

2m↑
+ (p−q)2

2m↓
− EF − μ0

↓ − ω
. (A3)

The problem of the latter expression is an ultraviolet diver-
gence in q, consequently it has to be regularized.

A similar series appears in the standard scattering
Lippmann-Schwinger equation and can be used for regular-
ization. The starting point is the Lippmann-Schwinger form of
the relative motion Schrödinger equation

|ψk〉 = |k〉 + 1

E − Ĥ0 + i0
V̂ |ψk〉. (A4)

Imposing V̂ on the left and introducing the two-body T matrix
T̂ 2B via T̂ 2B |k〉 ≡ V̂ |ψk〉, it follows

T̂ 2B |k〉 = V̂ |k〉 + V̂
1

E − Ĥ0 + i0
T̂ 2B |k〉. (A5)

In the next step, 〈k′| is multiplied from the left with |k| = |k′|
and a complete set of eigenfunctions of Ĥ0 is inserted

〈k′|T̂ 2B |k〉 = 〈k′|V̂ |k〉 +
∫

d3h

(2π )3
〈k′|V̂ |h〉〈h|

× 1

E − Ĥ0 + i0
T̂ 2B |k〉. (A6)

The matrix elements of the potential are trivial for a pseu-
dopotential and the newly inserted 〈h| is an eigenstate of Ĥ0

〈k′|T̂ 2B |k〉 = g + g

∫
d3h

(2π )3

1

E − h2

2mr
+ i0

〈h|T̂ 2B |k〉.
(A7)

Looking at 〈h|T̂ 2B |k〉 more closely

〈h|T̂ 2B |k〉 = 〈h|V̂ |ψk〉

=
∫

d3k′′

(2π )3
〈h|V̂ |k′′〉〈k′′|ψk〉

=
∫

d3k′′

(2π )3
g〈k′′|ψk〉

=
∫

d3k′′

(2π )3
〈k′|V̂ |k′′〉〈k′′|ψk〉 = 〈k′|T̂ 2B |k〉. (A8)

Remarkably, this expression does not depend on the first
element. As there is no h dependence left, the T matrix can be
extracted from the integral

1

〈k′|T̂ 2B |k〉 = 1

g
−

∫
d3h

(2π )3

1

E − h2

2mr

. (A9)

The two-body T matrix is related to the scattering length [37]
if the effective range can be set to zero

1

〈k′|T̂ 2B |k〉 = mr

2πa
(1 + iak). (A10)

k is related to the energy of relative motion and can be
generalized to off-shell behavior

k2

2mr

= E = Etot − Ecom = ω + EF + μ0
↓ − p2

2M
. (A11)

Note that the total energy ω is measured with respect to EF

and μ0
↓. p is the total momentum of the system. Inserting this

into Eq. (A9) yields

1

g
= mr

2πa
− mr

2π

√
mr

M
p2 − 2mr (ω + EF + μ0

↓)

+
∫

d3h

(2π )3

1
p2

2M
+ h2

2mr
− ω − EF − μ0

↓
. (A12)

Finally, a suitable expression for the T matrix can be found
by inserting Eq. (A12) into Eq. (A3)

�(ω,k)−1

= mr

2πa
− mr

2π

√
mr

M
k2 − 2mr (EF + μ0

↓ + ω)

+
∫

d3q

(2π )3

1

k2

2M
+ (q− k

2 )2

2mr
− EF − μ0

↓ − ω

−
∫

q>kF

d3q

(2π )3

1
q2

2m↑
+ (k−q)2

2m↓
− EF − μ0

↓ − ω
. (A13)

This can be cast into its final form by a shift q → q + k
2 − m↑k

M

in the first integral

�(ω,k)−1

= mr

2πa
− mr

2π

√
mr

M
k2 − 2mr (EF + μ0

↓ + ω)

+
∫

q<kF

d3q

(2π )3

1
q2

2m↑
+ (k−q)2

2m↓
− EF − μ0

↓ − ω
. (A14)

APPENDIX B: EXTRAPOLATION OF RESUMMED DATA

In this Appendix, we explain the details of our resummation
procedure. Its use is most delicate for cases where the maxi-
mum diagram order is small. Therefore, it is illustrative to use
a quasi-two-dimensional Fermi-polaron series (characterized
by the dimensionless parameter η = ln (k2D

F a2D), where a2D

is the two-dimensional scattering length and k2D
F is the two-

dimensional Fermi momentum) to explain this technique, since
the maximum expansion order is approximately 8. For these
systems, it is additionally necessary to deal with large binding
energies, hence aggressive resummation has to be applied to
the bare series in order to be able to extrapolate to infinite
expansion order. However, this tends to conceal the curvature
of the series in the first points, leading to an initially flat curve.

Our extrapolation procedure is the following: For the upper
value of the error bar, we apply linear extrapolation on the
Riesz-resummed data with Riesz exponent δ. In this linear
extrapolation, only the two points corresponding to highest and
second highest expansion order are taken into account. For the
lower value of the error bar, we assume a worst-case scenario
with large curvature of the extrapolated curve, according to
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FIG. 15. (Color online) The extrapolation procedure on re-
summed data is demonstrated for η = −0.248 and δ = 2. The dotted
curve shows the linear part, whereas the dashed line is a fit with f .

the following fit function f of parameters a and b:

f (N−1,a,b) = 4δ
(

1
3N−3 − 3

10N−2
) + aN−1 + b. (B1)

N denotes the maximum expansion order. We emphasize that
the curvature of this function is empirically set by us. This
curve includes only the highest and second highest expansion
points. An important feature of f is the dependence on the
Riesz exponent. This ensures that a stronger resummation
results in a bigger error bar due to extrapolation errors. The
fit f can also be used for bare data (δ = 0). In this case, we
replace δ by −1 in Eq. (B1). Note that the error bars represent
a variability of results due to systematic origins corresponding
to the one-σ interval. The result of this technique is shown in
Fig. 15. For a maximum expansion order of 7, the two ways
of extrapolating are shown in comparison. If the maximum

FIG. 16. (Color online) The extrapolation procedure on re-
summed data is demonstrated for η = −0.248 and δ = 4. The dotted
curve shows the linear part, whereas the dashed line is a fit with f .
Note that the resulting error bar exceeds the corresponding δ = 2
error bar.

FIG. 17. (Color online) The extrapolation procedure on re-
summed data is demonstrated for η = −1.02 and δ = 4. The dotted
curve shows the linear part, whereas the dashed line is a fit with f .

expansion order was 6, then this error bar would increase,
just as one would expect regarding the loss of information.
Figure 16 uses a sharper resummation on the same data,
demonstrating that the error bar increases with δ.

Therefore, it becomes clear that the weakest possible resum-
mation procedure (among the ones resulting in a monotonously
decaying series) should be applied. As a final example, we
show our resummation for a polaron point inside the quasi-two-
dimensional transition region in Fig. 17. Here, resummation
with δ = 2 is too weak, so δ = 4 has to be used, resulting
in a stronger curvature. It is important to stress that these
two extrapolations represent assumed worst-case scenarios.
Finally, as always for diagMC, the extrapolation result has to
be checked with available experimental or theoretical results,
thus justifying its application in retrospect. In our case, these
results would be variational two-particle-hole results, which
we expect to be quantitatively exact. As an example for a

FIG. 18. (Color online) The extrapolation procedure on re-
summed data is demonstrated for a molecule with η = −1.02 and
δ = 6.
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system in which extrapolated error bars were underestimated
for a similar system, consult Fig. 22 of Ref. [38].

For molecular energies, resummation is more straightfor-
ward. As this series is typically alternating, resummed curves
can often be extrapolated linearly. This is demonstrated in

Fig. 18: The last four points are well fit by a straight line.
However, as this resummation involves the same dangers as
described above, we try to vary both the fitting (e.g., fitting
three of the four last points) and the resummation technique to
test the variability of this result.
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