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Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates:
From ab initio calculations to grain-scale interactions
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Despite the fast development of computational material modeling, the theoretical description of macroscopic
elastic properties of textured polycrystalline aggregates starting from basic principles remains a challenging task.
In this study we use a supercell-based approach to obtain the elastic properties of a random solid solution cubic
Zr1−xAlxN system as a function of the metallic sublattice composition and texture descriptors. The employed
special quasirandom structures are optimized not only with respect to short-range-order parameters, but also to
make the three cubic directions [1 0 0], [0 1 0], and [0 0 1] as similar as possible. In this way, only a small spread of
elastic constant tensor components is achieved and an optimum trade-off between modeling of chemical disorder
and computational limits regarding the supercell size and calculational time is proposed. The single-crystal
elastic constants are shown to vary smoothly with composition, yielding x ≈ 0.5 an alloy constitution with
an almost isotropic response. Consequently, polycrystals with this composition are suggested to have Young’s
modulus independent of the actual microstructure. This is indeed confirmed by explicit calculations of polycrystal
elastic properties, both within the isotropic aggregate limit and with fiber textures with various orientations and
sharpness. It turns out that for low AlN mole fractions, the spread of the possible Young’s modulus data caused
by the texture variation can be larger than 100 GPa. Consequently, our discussion of Young’s modulus data of
cubic Zr1−xAlxN contains also the evaluation of the texture typical for thin films.
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I. INTRODUCTION

Quantum mechanical calculations using density functional
theory (DFT) of structural and elastic properties of materials
have become a standard tool in modern computational ma-
terial science. Recently, the alloying trends also have been
extensively investigated, which in the area of hard protective
coatings addressed predominantly issues related to the phase
stability (see, e.g., Refs. [1–6]). This has been possible
due to the increased computational power and the develop-
ment of theories for treating random solid solutions. These
include effective potential methods [7] (e.g., the coherent
potential approximation or virtual coherent approximation),
cluster methods [8,9] (e.g., the cluster expansion method), or
supercell-based approaches, such as the special quasirandom
structure (SQS) [10] technique employed in this paper. Prac-
tical advantages of using the supercell-based method include
fast and easy generation of the supercells and direct insight into
the local atomic environments; on other hand, the supercell
size limits the concentration steps available, which is a serious
limitation in particular for dilute alloys.
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While the bulk modulus is relatively easy to obtain from
the Birch-Murnaghan equation of state [11] as used during the
structure optimization, the full tensor of elastic constants Cij

requires additional calculations. The two common methods to
calculate Cij from first principles are the total-energy method
and the stress-strain method. The latter relies on the availability
of the stress tensor and uses Hooke’s law to evaluate Cij

directly. On the other hand, the total-energy method assigns
an energy difference between a ground and a deformed state
to the strain energy. This is a function of applied strain and a
specific combination of the elastic constants. The advantage of
this method is that the total energy is always available from ab
initio calculations and it furthermore allows for estimation of
higher-order elastic constants [12]. The disadvantage is that
it usually takes more CPU resources than the stress-strain
method as more deformation modes need to be applied. It
has been also recently proposed that the stress-strain method
is a more robust technique [13].

When it comes to the elastic constants of materials without
any long-range periodicity, the supercell approach faces an
apparent problem: On the one hand, the distribution of atoms
on the lattice sites is required to be as random as possible to
mimic solid solutions, hence often leading to supercells with
only primitive symmetry (space group P 1). On the other hand,
the material is expected to exhibit certain symmetry based
on its underlying lattice, for example, the cubic symmetry of
nitride coatings with the B1 (NaCl) structure. A combined
ab initio and molecular dynamics study [14] has shown that
when the supercell is large enough, the differences between
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macroscopically equivalent directions or deformation modes
(e.g., tension in the x, y, and z directions in the cubic systems)
vanish. Although this is promising, the idea is not in line with
the original purpose of SQSs, which was to simulate random
alloys with supercells as small as possible. Moakher and
Norris [15] provided a rigorous mathematical theory on how to
project a tensor of elastic constants with an arbitrary symmetry
onto a tensor with a desired crystallographic symmetry. This
has been applied to the cubic Ti1−xAlxN system [16,17]
with satisfactory agreement with available experimental data,
however still requiring supercells with around 100 atoms and
averaging over crystallographically equivalent directions.

In this work we investigate a possible trade-off between the
randomness and the overall effective symmetry by introducing
directionally optimized SQSs (DOSQSs) (a detailed descrip-
tion is given in Sec. II A) with the aim that the resulting tensor
of elastic constants exhibits deviations as small as possible
between the equivalent elastic constants. This in turn can
lead to a significant reduction of computational resources
by applying only a reduced set of deformations (similar
to what is done to perfectly ordered and fully symmetric
compounds; see, e.g., Ref. [12]). The second part of this
work is devoted to establishing the impact of a texture on
the elastic constants of the polycrystalline aggregate. This is an
important step towards a quantitative comparison of theoretical
and experimental data, as well as a theory-guided prediction of
thin-film growth directions that provide extremal mechanical
properties. Additional improvements towards modeling of real
materials would be finite-temperature effects and inclusion of
grain boundaries, neither of which is addressed here.

To assess the performance of the supercells developed
here, we have chosen the cubic Zr1−xAlxN system (NaCl
prototype, Fm3̄m space group). It is an isovalent system
with well investigated and widely used Ti1−xAlxN. Compared
with TiN, ZrN has a lower coefficient of friction and has
been suggested to have better oxidation resistance [3,18].
Additionally, calculated elastic constants of this system have
not yet been published and experimental values are only
scarce.

II. METHODS

A. Supercells

Warren-Cowley short-range-order (SRO) parameters αj are
commonly used to quantify randomness of an atom distribution
on lattice sites. For binary alloys (or pseudobinary, e.g., where
the mixing happens only on one sublattice, as in the case of
Zr1−xAlxN), they are calculated as [19]

αj = 1 − N
j

AB

xAxBNMj
, (1)

where xA and xB (xA + xB = 1) are the mole fractions of atoms
A and B, respectively, N is the number of sites in the supercell,
Mj is the site coordination in the j th-neighbor distance dj , and
N

j

AB is the total number of {A,B} pairs of atoms separated by
the dj (number of A-B bonds of length dj ). This definition
implies that αj > 0 and αj < 0 correspond to the tendency for
clustering and ordering, respectively, while αj = 0 describes
an ideal statistically random alloy. When constructing SQSs,

FIG. 1. (Color online) Schematic drawing of the DOSQS ap-
proach. The environment of the central atom A consists of two A-A
bonds in the x direction, two A-B bonds in the y direction, and one
A-A and one A-B bond in the z direction. The same environment is
described as three A-A and three A-B bonds within the SQS approach.

the aim is to minimize values |αj | for several first coordination
shells (typically between 5 and 7).

Tasnádi et al. [17] recently concluded that relatively large
(around 100 atoms and more) supercells are needed to
accurately describe the elastic response of cubic Ti0.5Al0.5N.
Nevertheless, somewhat smaller cells with 64 atoms and
overall cubic shape perform with acceptable accuracy too [17].
Moreover, we have applied the following additional constraint
during the SQS generation: The number of bonds N

j

AB is
divided into three subsets N

j

AB,x , Nj

AB,y , and N
j

AB,z, depending

on which projection of the vector �AB in the x, y, and z

directions is the longest (Fig. 1). Since the three directions
x, y, and z are crystallographically equivalent in the cubic
systems, the projected SRO parameters are calculated as

αj,ξ = 1 − N
j

AB,ξ

1
3xAxBNMj

, ξ = x,y,z. (2)

This way, the number of A-B bonds is optimized with respect
to the three equivalent directions. We applied this requirement
also to the A-A and B-B bonds. The resulting supercells,
hereafter called DOSQSs, are summarized in Table I. They
were generated using a script that randomly distributes atoms
A and B (considering a required chemical composition)
on the (sub)lattice, hence providing a large ensemble of
various atomic arrangements. For every one of them, projected
SROs αj,ξ up to j = 5 were evaluated and a supercell with
αj,ξ closest to 0, i.e., an ideal solid solution, was chosen.
The projected SROs of the resulting supercells are listed in
Table II. It is worth noting that the compositions x = 0.125
(x = 0.875) and x = 0.375 (= 0.625) are worse optimized
than the other two x = 0.25 (x = 0.75) and x = 0.5, a behav-
ior consistent with the analysis of standard SQSs reported in
Ref. [20]. Finally, although the DOSQS method is developed
here for high-symmetry cubic systems, it can be applied also
to other crystallographic classes by requesting the number
of different bonds to be as similar as possible in equivalent
directions.
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TABLE I. Arrangement of atoms on the metallic sublattice in the
supercells. An additional 32 positions according to the B1 structure
are occupied by N atoms. Compositions with xA > 0.5 are obtained
by interchanging A and B atoms in a 1 − xA supercell.

Site coordinates Mole fraction xA

x y z 0.125 0.25 0.375 0.5

0 0 0 B B B A

0 0 0.5 B B B A

0 0.25 0.25 A B B B

0 0.25 0.75 B B B A

0 0.5 0 B A A B

0 0.5 0.5 B A B B

0 0.75 0.25 B B A A

0 0.75 0.75 B A B B

0.25 0 0.25 B B B B

0.25 0 0.75 B B B A

0.25 0.25 0 B B B B

0.25 0.25 0.5 A B A B

0.25 0.5 0.25 A A B B

0.25 0.5 0.75 B B B A

0.25 0.75 0 B B B B

0.25 0.75 0.5 B B A B

0.5 0 0 B B A A

0.5 0 0.5 B B A A

0.5 0.25 0.25 B B B A

0.5 0.25 0.75 B B B B

0.5 0.5 0 B B B B

0.5 0.5 0.5 B B B B

0.5 0.75 0.25 B A A B

0.5 0.75 0.75 B B B A

0.75 0 0.25 B A B B

0.75 0 0.75 A B A A

0.75 0.25 0 B B A A

0.75 0.25 0.5 B A B A

0.75 0.5 0.25 B A A B

0.75 0.5 0.75 B B B A

0.75 0.75 0 B B A A

0.75 0.75 0.5 B B A A

B. Elastic properties

The single-crystal elastic constants were obtained using
the total-energy method, discussed in detail in Ref. [12]. The
applied deformation matrices were

A1 =
⎛
⎝δ 0 0

0 0 0
0 0 0

⎞
⎠, A2 =

⎛
⎝δ 0 0

0 δ 0
0 0 0

⎞
⎠,

(3)

A4 =
⎛
⎝δ 0 0

0 0 δ

0 δ 0

⎞
⎠.

The volumetric density of the total-energy increase after appli-
cation of such deformation matrix is, in the first approximation,
a quadratic function of δ,

UA(δ) = Aδ2. (4)

The coefficient A depends on the applied deformation matrix
A. For example, for A1 it is equal to 1

2CP 1
11 . By changing

TABLE II. Directionally resolved SRO parameters calculated
according to Eq. (2).

Mole fraction xA

SRO parameter 0.125 0.25 0.375 0.5

α1,x 0.000 0.000 0.000 0.000
α1,y 0.000 0.000 0.000 0.000
α1,z 0.000 0.000 0.000 0.000
α2,x −0.143 0.000 −0.067 0.000
α2,y −0.143 0.000 −0.067 0.000
α2,z −0.143 0.000 −0.067 0.000
α3,x 0.000 −0.083 −0.133 0.000
α3,y −0.143 0.000 −0.133 0.000
α3,z 0.000 0.000 0.067 0.000
α4,x −0.143 0.000 −0.067 0.000
α4,y −0.143 −0.167 −0.067 0.000
α4,z −0.143 −0.167 −0.067 0.000
α5,x 0.000 0.000 0.000 0.000
α5,y 0.000 0.000 0.000 0.000
α5,z 0.000 0.000 0.000 0.000

the position of the nonzero component δ in the matrix A1
to position (2,2) and (3,3), the coefficient A changes to
1
2CP 1

22 and 1
2CP 1

33 , respectively. By fitting the UA(δ) curves
for various deformation matrices (coefficients A are listed in
Table III), a full tensor CP 1

ij of single-crystal elastic constants
was obtained for every composition. In doing so, the off-
diagonal components for rows i = 4,5,6 and for columns
j = 4,5,6 in CP 1

ij were set to 0.
Finally, application of the symmetry-based projec-

tion technique [15,21] as described in Ref. [17]
yields the three cubic elastic constants C11, C12

TABLE III. Quadratic coefficient A in the expansion of the strain
energy (4) for various deformation matrices.

Deformation matrix Position A

A1 (1,1) 1
2 CP 1

11

A1 (2,2) 1
2 CP 1

22

A1 (3,3) 1
2 CP 1

33

A2 (1,1), (2,2) 1
2

(
CP 1

11 + CP 1
22

) + CP 1
12

A2 (1,1), (3,3) 1
2

(
CP 1

11 + CP 1
33

) + CP 1
13

A2 (2,2), (2,3) 1
2

(
CP 1

22 + CP 1
33

) + CP 1
23

A4 (1,1), (1,2), (2,1) 1
2 CP 1

11 + 2CP 1
66 + 2CP 1

16

A4 (1,1), (1,3), (3,1) 1
2 CP 1

11 + 2CP 1
55 + 2CP 1

15

A4 (1,1), (2,3), (3,2) 1
2 CP 1

11 + 2CP 1
44 + 2CP 1

14

A4 (2,2), (1,2), (2,1) 1
2 CP 1

22 + 2CP 1
66 + 2CP 1

26

A4 (2,2), (1,3), (3,1) 1
2 CP 1

22 + 2CP 1
55 + 2CP 1

25

A4 (2,2), (2,3), (3,2) 1
2 CP 1

22 + 2CP 1
44 + 2CP 1

24

A4 (3,3), (1,2), (2,1) 1
2 CP 1

33 + 2CP 1
66 + 2CP 1

36

A4 (3,3), (1,3), (3,1) 1
2 CP 1

33 + 2CP 1
55 + 2CP 1

35

A4 (3,3), (2,3), (3,2) 1
2 CP 1

33 + 2CP 1
44 + 2CP 1

34
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and C44:

C11 = CP 1
11 + CP 1

22 + CP 1
33

3
, (5)

C12 = CP 1
12 + CP 1

13 + CP 1
23

3
, (6)

C44 = CP 1
44 + CP 1

55 + CP 1
66

3
. (7)

The anisotropicity of the material is quantified using Zener’s
anisotropy ratio A:

A = 2C44

C11 − C12
. (8)

The stress-strain method [22] was used to confirm the total-
energy calculations of elastic constants. Additional tests were
performed using a 96-atom 4 × 3 × 4 SQS supercell from
Ref. [17].

The orientation distribution function (ODF) FODF is a
convenient way to quantify the texture of polycrystals. Here
FODF(α,β,γ ) is a function of three Euler angles α, β, and γ

and for particular values it gives a fraction of grains with that
orientation [23]. The Voigt’s (constant strain in all grains) and
Reuss’s (constant stress in all grains) polycrystalline averages
of elastic constants are defined as [24]

CV
ijkl =

∫
α,β,γ

FODF(α,β,γ )Cijkl(α,β,γ )dα dβ dγ, (9)

(CR)−1
ijkl =

∫
α,β,γ

FODF(α,β,γ )Sijkl(α,β,γ )dα dβ dγ, (10)

where Cijkl(α,β,γ ) and Sijkl(α,β,γ ) are stiffness and com-
pliance tensors, respectively, in a coordinate frame rotated by
angles α, β, and γ with respect to the reference coordinate
frame, in which both the ODF and the single crystal elastic
constants are defined. In fact, Voigt’s and Reuss’s elastic aver-
ages represent the elastic response of a polycrystalline material
with grain boundaries oriented parallel and perpendicular with
respect to the applied stress direction. Single-valued polycrys-
talline elastic properties are obtained from Hill’s average

CH
ijkl = 1

2

(
CV

ijkl + CR
ijkl

)
. (11)

A commercial package LABOTEX [25] was used to generate the
ODFs describing the cubic fiber texture with preferred 〈1 0 0〉
or 〈1 1 1〉 orientation, different sharpness of the distribution
[quantified by the full width at half maximum (FWHM) of
the distribution [24]], and varying isotropic fraction.

C. First-principles calculations

The quantum mechanical calculations within the
framework of DFT were performed using the Vienna ab initio
simulation package (VASP) [26,27]. The exchange and correla-
tion effects were treated using the generalized gradient approx-
imation as parametrized by Perdew, Burke, and Ernzerhof [28]
and implemented in projector augmented wave pseudopoten-
tials [29,30]. We used a plane-wave cutoff of 700 eV (500 eV)
with a 7 × 7 × 7 (6 × 6 × 6) Monkhorst-Pack k-point mesh
for the 64- (96-) atom supercells, yielding a total-energy

accuracy on the order of meV. The slightly different parameter
sets are a consequence of combining the results of two
research groups; nevertheless, additional tests revealed that
the changes in elastic constants induced by increasing the
plane-wave cutoff energy from 500 to 700 eV and/or altering
the k mesh are not larger than a few GPa. All supercells
were fully structurally optimized yielding energies and lattice
parameters as discussed in Ref. [31].

III. RESULTS

A. Single-crystal elastic constants

The single-crystal elastic constants calculated using the
total-energy method as a function of the composition are shown
in Fig. 2. Here C11, describing the uniaxial elastic response,
decreases from 522 GPa for ZrN to 377 GPa for Zr0.25Al0.75N
and then increases again to 421 GPa for pure cubic AlN.
On the contrary, off-diagonal shear-related components C12

and C44 increase with the AlN mole fraction from 118 GPa
(ZrN) to 165 GPa (AlN) and from 105 GPa (ZrN) to 306 GPa
(AlN), respectively. As a result, the Zener’s anisotropy ratio A

also increases monotonically with the AlN mole fraction. This
corresponds to a qualitative change of the directional Young’s
modulus distribution: The stiffest direction is 〈1 0 0〉 for ZrN
and 〈1 1 1〉 for AlN [12].

The error bars show standard deviation as obtained by
averaging the three elastic constants equivalent for a perfect
cubic material [17]. The relative error is below 3% for C11,
around 5% for C12, and below 7% for C44 (with the exception
of Zr0.5Al0.5N, where it is 11%). Consequently, one can
in principle rely on values obtained only for deformation,
e.g., in the x direction to get an estimate for the C11

with an accuracy better than 3% (a value usually regarded
as an acceptable deviation between theory and experiment
due to various exchange-correlation effects, temperature of
measurement/calculation, material quality, etc. [32]).

0 0.2 0.4 0.6 0.8 1
AlN mole fraction x

0

100

200

300

400

500

600

el
as

tic
 c

on
st

an
ts

 C
ij  (

G
P

a)

C11

C12

C44

0.0

0.5

1.0

1.5

2.0

2.5

3.0

an
is

ot
ro

py
 r

at
io

  
A

ADOSQS

FIG. 2. (Color online) Single-crystal cubic elastic constants C11,
C12, and C44 and the Zener’s anisotropy ratio A as functions of the AlN
mole fraction in Zr1−xAlxN, calculated using the DOSQS approach.
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FIG. 3. (Color online) Bulk, Young’s, and shear moduli for
isotropic aggregates of Zr1−xAlxN grains as obtained using the
DOSQS method. The shaded areas mark the spread of the respective
quantities between Voigt’s and Reuss’s limits.

Zener’s anisotropy ratio reaches 1 for Zr0.5Al0.5N, implying
that for this composition the alloy should have an isotropic
elastic response. This is a particularly interesting behavior,
e.g., for a practical coating design. Generally, when deposi-
tion conditions are optimized to meet certain requirements
such as grain size and shape, also the preferred orientation
and consequently the elastic properties change. However,
elastically isotropic materials exhibit an elastic response
independent of the texture and hence such optimization would
not influence the resulting mechanical properties. The range of
isotropic elastic response of Zr1−xAlxN is further confirmed by
evaluating the polycrystalline elastic constants in the following
sections.

B. Elastic response of isotropic polycrystal aggregates

We begin with presenting the polycrystalline properties
of isotropic aggregates, i.e., when all crystal orientations
are equally probable. Figure 3 shows the compositional
dependence of the bulk modulus B, Young’s modulus E, and
the shear modulus G. The spread of the data as shown by the
shaded area corresponds to the Voigt’s (upper) and Reuss’s
(lower) limits. In the case of isotropic aggregates of cubic
materials, i.e., when the ODF is a constant function, Eqs. (9)

and (10) simplify to [12]

GV = C11 − C12 + 3C44

5
, (12)

GR = 5

4(S11 − S12) + 3S44
, (13)

Eα = 9BGα

3B + Gα

, (14)

where α = V or R and Sij are the elastic compliances
corresponding to the elastic constants Cij [33].

The bulk modulus changes only a little with the composition
of Zr1−xAlxN and the alloy is predicted to be some 10% softer
than the binary ZrN (B = 244 GPa) and AlN (B = 250 GPa);
E and G exhibit the same behavior, being almost constant for
AlN mole fractions up to x ≈ 0.6 and only then significantly
rising. The range between Voigt’s and Reuss’s limits is
largest for the binary nitrides and becomes almost zero for
x ≈ 0.4–0.5. Hence for these compositions, the microstructure
(lamellar or columnar) does not play a role for the resulting
elastic response, as has been already stated in the previous
section based on the Zener’s anisotropy ratio.

C. Influence of fiber texture

The elastic behavior of real materials with always unique
microstructure is, however, different from that of isotropic
polycrystalline aggregates. Hard ceramic coatings typically
exhibit a 〈1 0 0〉 or 〈1 1 1〉 fiber texture [34], with a fiber
axis oriented perpendicular to the substrate surface, which
usually develops due to the minimization of the strain energy
during nucleation or as a result of the surface/interface energy
minimization, respectively. Hence we have investigated the
influence of a particular fiber texture containing a certain
fraction of isotropic background (isotropic aggregate of grains)
on the elastic Young’s modulus in a direction perpendicular to
the film surface (z direction). The sharpness of the texture
(width of the grain orientation distribution along the preferred
orientation) is quantified by the FWHM parameter [24].
Figure 4 shows representative results of the Hill’s average
of Young’s modulus in the z direction.

The values of the elastic constants for crystals with a
FWHM equal to 0.5◦ and no isotropic background approach
the single-crystal directional Young’s modulus in the 〈1 0 0〉
and 〈1 1 1〉 directions, respectively. These values for ZrN
(E〈1 0 0〉 = 469 GPa, E〈1 1 1〉 = 307 GPa) and AlN (E〈1 0 0〉 =
338 GPa, E〈1 1 1〉 = 579 GPa) exhibit the change of the softest
(stiffest) direction from 〈1 1 1〉 (〈1 0 0〉) for ZrN to 〈1 0 0〉
(〈1 1 1〉) for AlN, as also shown earlier in Ref. [12].

An increase of the FWHM leads to a decrease (increase)
of the Young’s modulus in the z direction for ZrN with the
〈1 0 0〉 (〈1 1 1〉) texture, as the contribution from softer (stiffer)
oriented grains increases. A similar but opposite trend is
obtained also for AlN. An increase of the isotropic content in
the texture has qualitatively the same impact as an increasing
FWHM (a decreasing sharpness of the texture). The Young’s
modulus values are independent of the FWHM parameter for
100% isotropic content since in these cases no texture fiber is
present. Hence, also the values in the 〈1 0 0〉 and 〈1 1 1〉 plots
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FIG. 4. (Color online) Dependence of the elastic response, as measured by Young’s modulus in the z direction, on the texture sharpness
(FWHM), content of the isotropic background, and alloy composition. The evaluation was done for fiber textures in the 〈1 0 0〉 and 〈1 1 1〉
directions.

are the same for 100% isotropic texture and correspond to the
values shown in Fig. 3.

The shape of Young’s modulus profile changes continu-
ously with the composition. It is worth noting that for x = 0.5,
an almost flat dependence is obtained. This underlines our
earlier estimates that the elastic response of a Zr1−xAlxN solid
solution around this composition is isotropic and independent
of the texture (assuming that the grain boundary influence
is negligible). To illustrate the compositional dependence
further, we plotted in Fig. 5 the spread between the single-
crystal Young’s moduli in the 〈1 0 0〉 and 〈1 1 1〉 directions.
It follows that the elastic response is most sensitive to the
texture for the binary ZrN and AlN. Both theory [3,31] and
experiment [35–37] suggest that the maximum AlN mole
fraction in a supersaturated cubic single phase is about x ≈ 0.4.
Consequently, it can be stated that the addition of Al into ZrN
up to its solubility limit results in the solid solution becoming
steadily more elastically isotropic, hence decreasing the impact
of film microstructure on the elastic behavior.

IV. DISCUSSION

A. Supercell size and the method used

A complementary calculation of the elastic constants have
been performed in order to critically assess the quality of

the data presented here. The results obtained with standard
but larger supercells (96-atom 4 × 3 × 4 supercells based on
the fcc unit cell [17]) are shown together with the previously
discussed elastic constants in Fig. 6. It follows that there
is up to ≈13% difference in the C11 values, while the
C12 and C44 are practically unchanged. As a consequence,
the SQS-based calculation predicts Zener’s anisotropy ratio
A to be significantly higher than the value based on the
DOSQS supercell. A test calculation using the DOSQS and the
stress-strain method yields the same result as the total-energy
approach applied to the DOSQS. Another test calculation
using an ordinary 64-atom SQS cell yielded C11 ≈2% smaller
than the corresponding DOSQS value. It can therefore be
concluded that the discrepancies shown in Fig. 6 originate
from the different supercell sizes (and shapes). This is similar
to the behavior of an isovalent system Ti1−xAlxN, where C11

from the 64-atom supercell is about 7.5% smaller than the
corresponding value calculated using a 96-atom supercell.

Moreover, the 96-atom SQS data shown are CP 1
11 , CP 1

12 , and
CP 1

44 instead of the projected elastic constants C11, C12, and
C44 [for which nine elastic constants would be needed; see
Eqs. (5)–(7)]. As shown in Ref. [17], when only CP 1

11 , CP 1
12 ,

and CP 1
44 are used to calculate A (a value labeled Ax), Ax is

overestimated by ≈18% with respect to the value A based
on the projected elastic constants for x = 0.5. The other set
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FIG. 5. (Color online) Compositional dependence of Young’s
modulus for various textures as a function of AlN mole fraction. These
data were calculated using the DOSQS cells and suggest x ≈ 0.5 to
be the texture-independent composition.
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FIG. 6. (Color online) Overview of the supercell size and calcu-
lation method impact on the predicted single-crystal elastic constants
as functions of the Zr1−xAlxN alloy composition. The elastic
constants C11, C12, and C44 are represented by squares, diamonds, and
circles, respectively, while triangles are used for Zener’s anisotropy
ratio A. Closed and open symbols correspond to DOSQS and SQS
cells, respectively. The small black symbols represent results obtained
from the stress-strain method; all other data points were calculated
using the total energy method.

of elastic constants CP 1
22 , CP 1

23 , and CP 1
55 (Ay) and CP 1

33 , CP 1
13 ,

and CP 1
66 (Az) underestimate A by 9% and 7%, respectively. In

contrast, the DOSQS results in a significantly reduced spread
of the Zener’s ratio. For example, for x = 0.5 our data yield
Ax/A = 1.026, Ay/A = 0.997, and Az/A = 0.978. A similar
trend was observed also for the standard 64-atom SQS in
Ref. [17].

The supercell size and using/not using the projection
technique for Cij add up and cause the Zener’s anisotropy ratio
A of the 96-atom supercell to increase more steeply (than the
DOSQS value) for low AlN mole fractions, yielding x ≈ 0.35
as the composition with the nearly isotropic response. As a
consequence of the overestimated A for the 96-atom SQS,
the isotropic concentration is expected to be shifted to higher
Al concentrations in Fig. 6, hence get closer to the DOSQS
predictions, when the corrected projected Cij values are used.
It can therefore be concluded that the DOSQS cells proposed
here are more appropriate for a direct estimation of Cij (i.e.,
without projecting the nine P 1 values on the three cubic C11,
C12, and C44) than the 96-atom SQS supercell.

Focusing on the single-crystal elastic constants for com-
positions x < 0.4 (i.e., those experimentally accessible in a
single phase), the relative error from averaging C11 from
deformations in the x, y, and z directions is a maximum ≈1%,
while it is below ≈6% for C12 and C44.1 When such accuracy is
acceptable, the DOSQSs proposed here can be used to perform
only one of the three symmetry equivalent deformations (i.e.,
x, y, or z for C11) to obtain the respective elastic constant of
the alloy.

The off-diagonal components in rows i = 4,5,6 and
columns j = 4,5,6 set to 0 GPa during the fitting procedure of
the total-energy method were confirmed to be negligibly small
(below 3 GPa) using the stress-strains method. Therefore, the
assumption used does not influence our results.

As pointed out in recent publications (see, e.g.,
Refs. [13,38]), the stress-strain method proves to be more
robust than the total-energy approach. It is also faster as one
deformation yields several linearly independent equations for
obtaining the full 6 × 6 matrix of elastic constants. It follows
that the stress-strain method performed on a standard SQS
(possibly with more atoms) should be the preferred method.
When a reliable interatomic potential exists, a molecular-
dynamics-based approach on large SQSs [14] may be an
acceptable approach. However, in the case when neither
the stress tensor nor the good non-DFT-based method is
available, we propose that our DOSQSs together with the
total-energy method are a suitable (CPU-time affordable)
approach.

B. Comparison with experimental data

There are only a few experimental reports on the mechanical
properties of Zr1−xAlxN monolithic films in the literature.
Lamni et al. [37] reported on magnetron sputtered thin films

1This is likely to be related to the way DOSQS cells are constrained
during their generation. To decrease the spread between, e.g., C12,
C13, and C23, additional cubic symmetries have to be considered
during the cell construction.
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that keep the cubic structure up to an AlN mole fraction x =
0.43. The films have the preferred 〈1 1 1〉 texture. The Young’s
modulus, as measured by nanoindentation, increases from
250 GPa for pure ZrN to 300 GPa for Zr0.57Al0.43N. The
predicted Young’s modulus for the preferred 〈1 1 1〉 texture
increases from 307 GPa (335 GPa) for ZrN to 389 GPa
(375 GPa) for Zr0.625Al0.375N for a FWHM equal to 0.5◦ (45◦)
(compare with Fig. 5). Therefore, the trend, as well as the
magnitude of the increase, is correctly predicted by our calcu-
lations. The somewhat softer Young’s modulus experimentally
is likely to be related to the presence of grain boundaries in
the real microstructure as well as finite temperature during
experimental measurement. The same authors also published a
value of the nanoindented Young’s modulus of 250 GPa for the
as-deposited Zr0.57Al0.43N [39], which increased to 265 GPa
after annealing the sample to 850 ◦C. Rogström et al. [36] also
observed an increase in Young’s modulus after annealing their
arc-deposited Zr0.52Al0.48N to 1400 ◦C and argued that this was
a consequence of an increased grain size, a decreased porosity,
and an improved crystallinity of their sample. Although the
grain size is not reflected in our calculations (the ODF takes
into account only the grain orientations, not their size nor
shape), its effect, i.e., decreasing the volume fraction of the
soft grain boundaries, can be intuitively foreseen. It therefore
further underlines the importance of the grain boundaries (as
well as the amorphous matrix present in the case of Zr1−xAlxN)
on the mechanical properties of nanocrystalline materials.
This topic cannot be easily handled by means of density
functional theory itself and would require use of multimethod
scale-bridging techniques (see, e.g., [40,41]).

Nevertheless, the influence of the grain boundary frac-
tion has been experimentally proven by our results for
reactively prepared Zr0.65Al0.35N and nonreactively prepared
Zr0.68Al0.32N coatings possessing a single-phase cubic struc-
ture and a mixed 〈1 1 1〉-〈2 0 0〉 orientation. The reactively
prepared coatings have a grain size of 8 nm and a Young’s
modulus of 347 GPa, whereas the nonreactively prepared
coatings have a grain size of 36 nm and also a larger Young’s

modulus of 398 GPa [42]. The latter is in almost perfect
agreement with our calculations for Zr0.625Al0.375N with a
FWHM of 0.5◦ yielding 389 GPa.

V. CONCLUSION

The directionally optimized SQSs proposed here seem to
be a reasonable alternative to large standard SQSs for the
estimation of elastic properties of alloys, in particular for
systems with cubic symmetry. When well optimized, they
can provide accurate single-crystal elastic constants while
significantly reducing the number of calculations needed by
omitting the need for symmetry-based projection of Cij .

Based on the calculated single-crystal elastic constants,
we proposed that Zr1−xAlxN with an AlN mole fraction x ≈
0.4–0.5 exhibits isotropic elastic behavior. This in particular
means that any polycrystal with this composition will have
a texture-independent Young’s modulus. This hypothesis has
been supported by explicitly evaluating the compositional
dependence of Young’s modulus on fiber texture orientation,
its sharpness, and the amount of isotropic background. The
comparison with experimental data showed decent agreement
with our theoretically predicted values. The small discrepancy
was ascribed mainly to the influence of grain boundaries. This
phenomenon, however, goes beyond the capabilities of DFT
and requires a multiscale/multimethod approach.
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[17] F. Tasnádi, M. Odén, and I. A. Abrikosov, Phys. Rev. B 85,
144112 (2012).

184106-8

http://dx.doi.org/10.1063/1.2360778
http://dx.doi.org/10.1063/1.2360778
http://dx.doi.org/10.1063/1.2360778
http://dx.doi.org/10.1063/1.2360778
http://dx.doi.org/10.1063/1.2773625
http://dx.doi.org/10.1063/1.2773625
http://dx.doi.org/10.1063/1.2773625
http://dx.doi.org/10.1063/1.2773625
http://dx.doi.org/10.1016/j.actamat.2007.10.050
http://dx.doi.org/10.1016/j.actamat.2007.10.050
http://dx.doi.org/10.1016/j.actamat.2007.10.050
http://dx.doi.org/10.1016/j.actamat.2007.10.050
http://dx.doi.org/10.1063/1.3131824
http://dx.doi.org/10.1063/1.3131824
http://dx.doi.org/10.1063/1.3131824
http://dx.doi.org/10.1063/1.3131824
http://dx.doi.org/10.1016/j.actamat.2010.12.013
http://dx.doi.org/10.1016/j.actamat.2010.12.013
http://dx.doi.org/10.1016/j.actamat.2010.12.013
http://dx.doi.org/10.1016/j.actamat.2010.12.013
http://dx.doi.org/10.1063/1.4795590
http://dx.doi.org/10.1063/1.4795590
http://dx.doi.org/10.1063/1.4795590
http://dx.doi.org/10.1063/1.4795590
http://dx.doi.org/10.1103/PhysRevB.81.224202
http://dx.doi.org/10.1103/PhysRevB.81.224202
http://dx.doi.org/10.1103/PhysRevB.81.224202
http://dx.doi.org/10.1103/PhysRevB.81.224202
http://dx.doi.org/10.1038/nature11609
http://dx.doi.org/10.1038/nature11609
http://dx.doi.org/10.1038/nature11609
http://dx.doi.org/10.1038/nature11609
http://dx.doi.org/10.1103/PhysRevB.42.9622
http://dx.doi.org/10.1103/PhysRevB.42.9622
http://dx.doi.org/10.1103/PhysRevB.42.9622
http://dx.doi.org/10.1103/PhysRevB.42.9622
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.1103/PhysRevB.85.064101
http://dx.doi.org/10.1103/PhysRevB.85.064101
http://dx.doi.org/10.1103/PhysRevB.85.064101
http://dx.doi.org/10.1103/PhysRevB.85.064101
http://dx.doi.org/10.1088/0953-8984/25/2/025803
http://dx.doi.org/10.1088/0953-8984/25/2/025803
http://dx.doi.org/10.1088/0953-8984/25/2/025803
http://dx.doi.org/10.1088/0953-8984/25/2/025803
http://dx.doi.org/10.1103/PhysRevB.81.094203
http://dx.doi.org/10.1103/PhysRevB.81.094203
http://dx.doi.org/10.1103/PhysRevB.81.094203
http://dx.doi.org/10.1103/PhysRevB.81.094203
http://dx.doi.org/10.1007/s10659-006-9082-0
http://dx.doi.org/10.1007/s10659-006-9082-0
http://dx.doi.org/10.1007/s10659-006-9082-0
http://dx.doi.org/10.1007/s10659-006-9082-0
http://dx.doi.org/10.1063/1.3524502
http://dx.doi.org/10.1063/1.3524502
http://dx.doi.org/10.1063/1.3524502
http://dx.doi.org/10.1063/1.3524502
http://dx.doi.org/10.1103/PhysRevB.85.144112
http://dx.doi.org/10.1103/PhysRevB.85.144112
http://dx.doi.org/10.1103/PhysRevB.85.144112
http://dx.doi.org/10.1103/PhysRevB.85.144112


MACROSCOPIC ELASTIC PROPERTIES OF TEXTURED . . . PHYSICAL REVIEW B 90, 184106 (2014)

[18] L. Chen, D. Holec, Y. Du, and P. H. Mayrhofer, Thin Solid Films
519, 5503 (2011).

[19] S. Müller, J. Phys.: Condens. Matter 15, R1429
(2003).

[20] B. Alling, A. V. Ruban, A. Karimi, O. E. Peil, S. I. Simak,
L. Hultman, and I. A. Abrikosov, Phys. Rev. B 75, 045123
(2007).

[21] J. Z. Liu, A. van de Walle, G. Ghosh, and M. Asta, Phys. Rev.
B 72, 144109 (2005).

[22] R. Yu, J. Zhu, and H. Ye, Comput. Phys. Commun. 181, 671
(2010).

[23] H. J. Bunge, Texture Analysis in Materials Science: Mathemat-
ical Methods (Butterworths, Oxford, 1982).

[24] K. J. Martinschitz, R. Daniel, C. Mitterer, and J. Keckes, J. Appl.
Crystallogr. 42, 416 (2009).

[25] LABOTEX, Version 3.0 (LaboSoft, Krakow, 2006),
http://www.labosoft.com.pl/.

[26] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[27] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169

(1996).
[28] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
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