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We describe an ab initio disordered local moment theory for materials with quenched static compositional
disorder traversing first-order magnetic phase transitions. It accounts quantitatively for metamagnetic changes and
the magnetocaloric effect. For perfect stoichiometric B2-ordered FeRh, we calculate the transition temperature
of the ferromagnetic-antiferromagnetic transition to be Tt = 495 K and a maximum isothermal entropy change
in 2 T of |�S| = 21.1 J K−1 kg−1. A large (40%) component of |�S| is electronic. The transition results from a
fine balance of competing electronic effects which is disturbed by small compositional changes; e.g., swapping
just 2% Fe of “defects” onto the Rh sublattice makes Tt drop by 290 K. This hypersensitivity explains the narrow
compositional range of the transition and impurity doping effects.
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I. INTRODUCTION

When a metal goes through a change of magnetic order, the
complex electronic fluid with its emergent magnetic fluctua-
tions transforms. The magnetic effect on structure, electronic
transport, and so on is particularly dramatic at first-order phase
transitions, and modest changes in composition and quenched
disorder are strongly influential, shifting, broadening [1,2],
or removing transitions entirely. In a metallic material the
changes to the electronic structure as it passes through a
first-order magnetic transition can be significant. In this paper
we show how these changes can be determined, find out
how they are affected by composition and disorder, and trace
their impact back on the transition itself. We find a partic-
ularly striking example in the metamagnetic Fe-Rh material
[3–10].

In roughly equal proportions, iron and rhodium order
into a B2 (CsCl) alloy phase which experiences a first-order
ferromagnetic (F) to antiferromagnetic (AF) phase transition at
Tt around 340 K, below a Tc of 670 K. This property is highly
composition-dependent so that the F-AF transition vanishes
in alloys with as little as a 2% iron excess or deficiency and
Tt varies strongly with sample preparation, irradiation, and
addition of impurities [11–17]. For example a little Pd raises
Tt while doping with Pt suppresses it. The 1% Fe-deficient
alloy shows one of the largest recorded magnetocaloric effects
around Tt [4,18] which deteriorates on subsequent magnetic
and thermal cycling. The prominent F-AF transition is also
relevant for the design of ultrahigh density magnetic recording
media as shown by FePt/FeRh bilayer investigations [19] and
its time dependence has also been probed by a recent suite of
experiments and analysis [20–23].

The electronic source of the F-AF transition has been
tracked down carefully by several spin-density-functional
theory (SDFT) based studies [21,23–26], which have also
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looked at the role of spin waves [27], and much insight has
been gained. For an AF state with zero sum magnetization on
the Fe sites, the Rh related states have no net spin polarization
and there is a rough half filling of some of the Fe-related d

bands, which sustains the long-range AF order [28]. Around
the Fermi energy EF, there is a strong hybridization between
Fe and Rh states in both spin channels for both F or AF order. In
the former case, however, where the Rh sites pick up an overall
spin polarization [25,26], some bonding states are pulled down
in energy enhancing the F state. The balance between these two
competing effects drives the F-AF transition. We show in this
paper, by allowing for finite T magnetic fluctuation effects,
that tiny alterations of composition and quenched disorder
change the electronic structure to tip this balance which makes
Tt and the critical fields Hc triggering the transition highly
composition sensitive.

Long-range compositional order is never perfect in any real
Fe-Rh sample and there can also be a slight off-stoichiometry.
Given that the alloy orders from a Fe50Rh50 solid solution
around 1600 K [5], a simple Bragg-Williams model [29]
analysis indicates that at least 1% or 2% of the sites on
the Rh cubic sublattice will be occupied by Fe and vice
versa following typical annealing and cooling processes. The
number of Fe-occupied Rh sublattice sites diminishes for
marginally Fe-poor alloys. Our theoretical work finds the
F-AF transition to be profoundly influenced by such Fe antisite
defects and explains the narrow range of composition for the
transition. Added impurities affect the transition by how easily
they displace Fe atoms onto such defects.

In the next section we describe our ab initio theory for
metamagnetic transitions and the magnetocaloric effect which
we then go on to apply to FeRh in the following section.
We show how the theory can be applied to materials with
quenched static compositional disorder and examine effects of
this on this alloy system’s first-order metamagnetic transition.
We summarize, draw some overall conclusions, and assess the
potential of the theory for aiding magnetic materials design in
the last section.
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II. AB INITIO THEORY OF METAMAGNETIC
TRANSITIONS AND THE MAGNETOCALORIC EFFECT

A. Disordered local moments and the free energy

Important magnetic fluctuations in a metal can often
be modelled as “local moments,” a picture captured by a
generalization of SDFT [30] for noncollinear spin polarization.
A separation of time scales between fast and slow electronic
degrees of freedom causes local moments with slowly varying
orientations {êi} to emerge from the interacting electron system
[31–37]. This means that “disordered local moments” (DLMs)
are sustained by and influence the faster electronic motions.
Their interactions with each other depend on the type and
extent of the long-range magnetic order through the associated
spin-polarized electronic structure [38] which itself adapts
to the extent of magnetic order. Ensemble averages over
all the appropriately weighted noncollinear local moment
orientational configurations {êi} are required for a realistic
evaluation of the system’s magnetic properties [34,39]. Here
we develop the DLM theory for a magnetic material in an
external magnetic field �H at a temperature T for application to
systems with quenched disorder like our FeRh case study. We
show how entropy changes that occur at magnetic transitions,
the magnetocaloric effect (MCE), can be calculated ab initio,
and quantify the potentially significant electronic contribution
and its signature in temperature-dependent magnetotransport
properties [10].

For an Fe-Rh alloy close to equiatomic stoichiometry and
nearly complete B2-type order there are two atomic sites per
unit cell in the cubic crystal lattice. One sublattice (A) has sites,
labeled a, largely Fe occupied but with a small percentage (x)
of sites occupied by Rh atoms. The other sublattice (B), with
sites b, mostly occupied by Rh atoms, has a small fraction (y)
Fe occupied. The alloy is designated Fe1−xRhx–Rh1−yFey .
A particular distribution of Fe and Rh atoms over the two
sublattices is specified with ({ξa}, {ξb}), where ξa(b) = {0,1}
means site a(b) is {Rh,Fe} occupied, such that 〈ξa〉 = cA =
1 − x, and likewise 〈ξb〉 = cB = y. The probability that the
system’s local moments are configured according to {êa}, {êb}
is

P ({êa},{êb}) = exp[−β�({êa},{êb})]
Z , (1)

where the partition function is

Z =
∏
a

∫
dêa

∏
b

∫
dêb exp[−β�({êa},{êb})], (2)

1/β = kBT , and the free energy

F = −kBT lnZ. (3)

A “generalized” electronic grand potential �({êa},{êb};
�H,{ξa},{ξb},T ) is in principle available from SDFT [30]

where, for fixed �H and for the arrangement of atoms specified
by {ξa} and {ξb}, the spin density is constrained to comply with
the local moment configurations {êa} and {êb}. It thus plays
the role of a local moment Hamiltonian but its electronic glue
origins can make it complicated.

Expanding about a suitable reference “spin” Hamiltonian
[40],

�0 =
∑

a

�ha · êa +
∑

b

�hb · êb, (4)

gives a mean-field theoretical estimate of the free energy
[30]. A similar single-site approximation averages over atomic
configurations with the assumption that atomic diffusion times
are very long and that the composition is fixed by the material’s
preparation. Local moments establish on the Fe atoms only
and, in line with T = 0 K DFT studies [21] and consistent
with other theoretical studies [25,26], a net spin polarization
develops on the Rh atoms if there is an overall lining up of the
Fe local moments, i.e., when F order is established. The free
energy is given by

F = �̄ + cA

∑
a

(
μa �ma · �H − 1

β

∫
dê Pa(ê) ln Pa(ê)

)

+ cB

∑
b

(
μb �mb · �H − 1

β

∫
dê Pb(ê) ln Pb(ê)

)
. (5)

The free energy therefore comprises an internal energy �̄ from
the interacting electron system averaged over local moment
and compositional configurations, and two extra contributions
from the Fe local moments in each sublattice: the interaction
with the external magnetic field �H and the magnetic entropy,
−T S̄mag. The magnitudes of the local moment on each site, μa

and μb, are determined by the generalized SDFT. �̄ includes
the effect on the spin-polarized electron density at the Rh
sites from �H and the magnetic order of the Fe local moments
[41,42]. The probability of an Fe local moment being oriented
along êa on site a of the Fe-rich sublattice is set as

Pa(êa) = exp[�λa · êa]∫
dêa exp[�λa · êa]

(6)

and similarly for an Fe atom defect on the Rh-rich sublattice,
Pb(êb). A magnetic state is specified by the set of local order
parameters,{

�ma =
∫

dêa Pa(êa) êa = [coth(λa) − 1/λa] λ̂a

}
(7){

�mb =
∫

dêb Pb(êb) êb = [coth(λb) − 1/λb] λ̂b

}
,

each of which can take values between 0 and 1.
The parameters {�λa}, {�λb} are given as {β �ha}, {β �hb},

respectively, where the Weiss fields satisfy

�ha = − 1

cA

∂�̄

∂ �ma
+ μa

�H,

(8)

�hb = − 1

cB

∂�̄

∂ �mb
+ μb

�H.

This ensures that the function F({ �ma},{ �mb}; �H,cA,cB,T ),
shown in Eq. (5), is minimized with respect to the {�λa},
{�λb} (equivalently { �ma}, { �mb}), at a temperature T , and hence
describes the free energy.
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B. Entropy changes

Particularly pertinent for our description of MCE [43] is
the electronic entropy contained in �̄ of Eq. (5) [44],

�̄ = Ē − T S̄elec. (9)

Ē is the SDFT-based energy averaged over local moment
orientations and compositional arrangements [38,39,45–47]
with electronic density of states (DOS) at the Fermi energy
n̄(EF; { �ma},{ �mb}; �H,cA,cB) and S̄elec is the electronic entropy.
S̄elec ≈ π2

3 k2
BT n̄(EF) from the Sommerfeld expansion. The

isothermal entropy difference between states with and without
a magnetic field applied, �S( �H,T ), is therefore comprised of
the sum of the S̄mag and S̄elec differences. Likewise the adiabatic
temperature change, �Tad ( �H,T ) can be estimated from
S̄mag( �H,T ) + S̄elec( �H,T ) + S̄latt(T ) = S̄mag (�0,T + �Tad ) +
S̄elec(�0,T + �Tad ) + S̄latt(T + �Tad ) where S̄latt is the lattice
vibration entropy.

C. Calculational details: The Weiss fields and T -dependent
electronic structure

We use a multiple-scattering [Korringa-Kohn-Rostoker
(KKR)] [39,45–47] formalism to describe the electronic
structure and the averaging over local moment configurations
is carried out via the coherent potential approximation (CPA)
[45,47] technology. Relativistic spin-orbit coupling effects
on the electronic motion are fully included by solving the
Kohn-Sham-Dirac equations [48] and the maximum value of
the orbital angular momentum used to describe the scattering
is lmax = 3. The electronic charge density and also the
magnetization density, which sets the magnitudes, μa , μb,
of the local moments, are determined from a self-consistent
field (SCF)-KKR-CPA [46] calculation using the muffin-
tin approximation and the local spin-density approximation
(Perdew-Wang [49]) for exchange and correlation. In this
work we use potentials, charge, and magnetization densities
generated self-consistently for the paramagnetic DLM state
({ �ma = 0},{ �mb = 0}). Using them with the Harris expression
[50] to calculate an energy for { �ma = 1},{ �mb = 1} and
comparing it with the total energy of the T = 0 K FM state in
which the charge and magnetization densities are found fully
self-consistently, we account approximately for the changes
to charge and magnetization densities that are induced for
intermediate values of the magnetic order parameters { �ma} and
{ �mb}. This amounts to a term − 1

2U (cAM2
A + cBM2

B) being
added to �̄ where �MA(B) = 1

NA(B)

∑
a(b) μa(b) �ma(b) describes

the average magnetization per site on sublattice A (B). The
added term contains the effect that the density surrounding
a Rh site becomes spin polarized once there is an overall
ferromagnetic alignment of the Fe local moments [41]. In a
subsequent publication [42] we lift this approximation and
show how full charge and magnetization self-consistency can
be achieved in the DLM theory. We find both approaches to be
in good agreement.

For a given set of potentials, electronic charge, and local
moment magnitudes, the orientations of the local moments are
accounted for by the similarity transformation of the single-site

scattering t matrices [39],

ta(b);Fe

(
êa(b)

) = R
(
êa(b)

)
ta(b);Fe (̂z)R

(
êa(b)

)+
, (10)

where for a given energy (not labeled explicitly) ta(b);Fe (̂z)
stands for the t matrix with effective field pointing along the
local z axis [48] and R(êa(b)) is a unitary representation of
the O(3) transformation that rotates the z axis along êa(b). The
underlining specifies a matrix in angular momentum and spin
space.

The Weiss fields, �ha , �hb [Eq. (8)], can be expressed in terms
of the KKR-CPA formalism as follows as [39]

�ha(b) = Uμa(b) �Ma(b) + μa(b) �H + 3

4π

∫
êa(b)

×
[∫ EF Im

π
ln det D−1

a(b);Fe

(
ε; êa(b)

)
dε

]
dêa(b),

(11)

where

D−1
a(b);Fe

(
ε; êa(b)

)
= [

1 + ([
ta(b);Fe

(
êa(b)

)]−1 − (
t̄ a(b)

)−1)
τ̄ aa(bb)

]
. (12)

t̄ a(b) describes the CPA effective-medium single-site scatterer
and τ̄ aa(bb) describes the CPA site-diagonal scattering path
operator [39,45,46] for a site a(b) on the predominantly Fe
(Rh) sublattice.

In this multiple-scattering KKR formalism the electronic
structure setting and being set by the behavior of the fluctuating
local moments is expressed in terms of the electronic Green
function [47,51]. Its average over the local moment configura-
tions appropriately weighted for a given temperature enables us
to readily calculate temperature-dependent electronic effects.
Work is in progress to incorporate these effects into a full
Kubo-Greenwood-Str̆eda formalism for T -dependent magne-
totransport properties [52]. In the meantime we show here the
T -dependent density of states as the first step to quantifying
the magnetoresistive changes at Tt as well as the electronic
component of the MCE. For example, the density of states
associated with sublattice A, partially averaged according to
its occupation by Fe atoms, is given as

nA;Fe(ε) = − Im

π

∫
dêa Pa(êa)

∫
dra

× [
Tr Gêa,Fe(Ra + ra,Ra + ra; ε)

]
, (13)

where Ra is a lattice vector picking out a site on the A

sublattice, ra is a position vector in the space around site
a, and the Green function (all quantities have ε dependence)

Gêa,Fe(Ra + ra,Ra + ra)

= Zêa,Fe(ra)Da;Fe (êa) τ̄ aaZ
†
êa ,F e(ra)

− Zêa,Fe(ra)J †
êa ,F e(ra). (14)

Zêa,Fe(ra) and J êa,Fe(ra) are the regular and irregular solutions
of the Schrödinger (Dirac) equation [51] for a single site
occupied by a Fe atom whose local moment is oriented
along êa . The spin polarization of the DOS is given by re-
placing Tr Gêa,Fe(Ra + ra,Ra + ra; ε) with Tr σ Gêa,Fe(Ra +
ra,Ra + ra; ε) in Eq. (13).
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III. METAMAGNETIC TRANSITION IN FERH

To examine the compositional sensitivity of the F-AF
transition to disorder, we apply the theory to two magnetic
states of a Fe1−xRhx–Rh1−yFey alloy at many temperatures,
both with and without an external field �H = Hẑ.

(i) The first state is a ferromagnetic state (F) with local
moments on the Fe sites all set to �ma = mf ẑ, describing how
aligned the Fe moments are on the Fe-rich sublattice (A), and
all �mb = mf ′ ẑ, describing the analogous order parameter for
the antisite Fe moments on the Rh-rich sublattice (B).

(ii) The second is a canted antiferromagnetic state (AF)
[23], with order parameters �ma alternating between mf ẑ +
maf x̂ and mf ẑ − maf x̂ on the two interleaved fcc sublattices
which form the A sublattice, and all �mb = mf ′ ẑ for the sites
of the B sublattice.

The paramagnetic state is specified by mf = mf ′ = maf =
0, and the T = 0 K magnetic ground states by mf = mf ′ = 1,
maf = 0 for the F state and maf = 1, mf = mf ′ = 0 for the AF
state. In general mf , mf ′ are ferromagnetic order parameters
while maf describes the extent of antiferromagnetic order.

For specific concentrations (x,y) ⇔ (cA,cB), and magnetic
state (F or AF) we select many values of mf , mf ′ , maf (80–120
sets) and calculate ab initio [34,38] �̄ and S̄elec averaged with
the probability distributions consistent with these choices. We
find that in terms of mf , mf ′ , and maf

�̄ ≈ E0 − π2

6
(kBT )2n̄(EF) − cA

(
eaf m2

af + gaf m4
af

+ ef m2
f + gf m4

f + gaff m2
af m2

f

)
− cB

(
eff ′mf mf ′ + gaff ′m2

af m2
f ′ + gff ′m3

f mf ′
)

(15)

and

n̄(EF) ≈ n0 + cA

(
naf m2

af + nf m2
f

) + cB nff ′mf mf ′ (16)

fit our ab initio computational data very well. Equation (16)
reflects how the spin-polarized electronic structure adapts to
the extent and type of long-range magnetic order. All fit
coefficients depend on cA, cB , and the magnetic state. For
the F state, eaf , gaf , gaff , gaff ′ , and naf coefficients are all
zero and if cB = 0, when there are no Fe atoms on sublattice
B, those coefficients associated with the B sublattice are not
needed. The ef coefficient includes the effect derived from the
spin polarization on the Rh sites which is caused by the Fe
local moments lining up (mf ) [41,42].

We use Eqs. (15) and (16) in Eq. (5) to specify the
free-energy function, F(maf ,mf ,mf ′ ; cA,cB, �H,T ), and find,
for both F and AF states, those values of maf , mf , and mf ′

which minimize it for selected T , �H , cA, and cB values,
i.e., F̄F ( �H,cA,cB,T ) and F̄AF ( �H,cA,cB,T ). By comparing
F̄F and F̄AF we can locate the F-AF transition, its magnetic
field dependence, and associated MCE and electronic structure
changes.

A. Stoichiometric, completely B2-ordered FeRh

Our first application is to completely ordered Fe-Rh (x =
y = 0, i.e., cA = 1, cB = 0), with the lattice spacing 3.0 Å, in
line with experiment. A local moment of 3.15μB forms on the
Fe atoms and a net spin polarization is induced on Rh of 1.00μB

per atom, when the Fe moments are fully ferromagnetically
aligned (mf = 1) but vanishes when the Fe local moments are
disordered (mf = 0). The coefficients in Eqs. (15) and (16) are
calculated to be (in meV) eaf = 87.6, ef = 99.4, gaf = 18.2,
gf = −23.0, and gaff = −35.6. ef > eaf so that in zero field
the material orders ferromagnetically at Tc = 773 K while
the negative signs of gf and gaff ensure a transition to an
AF state at Tt = 495 K (experimental values are Tc = 670 K
and Tt = 340 K). There is a large change to n̄(EF) at Tt

(i.e., change of (naf m2
af + nf m2

f ) [9] with naf = −1.3 and
nf = 0.59 states/eV/FeRh pair) where the order parameters
are mf = 0.59, maf = 0 above Tt and mf = 0, maf = 0.71
below.

We include the effects of an applied field �H and find
dTt

dH
= −3.7 K T−1. The isothermal entropy change for 2 T has

a maximum value at the transition of |�S| = 21.1 J K−1 kg−1

which compares well with values reported experimentally
[4,16,43] of |�S| = 13–20 J K−1 kg−1. Notably |�S| has
a large electronic component—reducing to 13 J K−1 kg−1 if
S̄elec = π2

3 k2
BT n̄(EF) [see Eq. (15)] is omitted.

Figure 1(a) shows the sublattice-resolved [53] electronic
structure for FeRh above Tc (mf = 0, maf = 0). In the
paramagnetic state, the Fe atoms still retain a local exchange
splitting [30] that underpins the stability of the disordered local
moments although, once averaged over all the orientations
equally weighted, there is no net spin polarization in the
system. In a F state, however, mf �= 0 and the Rh-related states
become spin polarized by the overall long-range alignment of
the Fe local moments. This lowers the bonding states slightly,
as shown in Fig. 2(a) for T just above Tt , in comparison
with what happens when the Rh states are unpolarized in an
AF state (maf �= 0) as shown in Fig. 2(b) for T just below
Tt . For the F state there is a DOS peak 1.6 eV below EF

which is slightly lower than its AF counterpart and one set of
higher-lying states is mostly filled for majority spin electrons
as seen in the double peak structure straddling EF at ± 0.3 eV.
This energy gain is overturned for more entrenched AF order,
also evident in Fig. 2(b). For large maf , the AF coupling
between Fe local moments causes a redistribution of states
so that a rather pronounced trough develops in the DOS at EF.
The differing effect of F and AF order on this redistribution
[5,10,54] generates the large electronic MCE component and
underpins the transition.

B. Off stoichiometry and incomplete B2-order:
The effect of Fe “anti-site” defects

Our most important result is the profound effect that
tiny compositional changes have on this electronic structure
balancing act. When we model slightly incomplete B2 order
by swapping just 2% of Fe with Rh (x = y = 0.02) we
find Tt to plummet to 208 K as found experimentally [12]
and Tc to increase to 859 K. For a 4% swap the F-AF
transition vanishes completely (Tc = 926 K). Shifting the
composition off stoichiometric has dramatic consequences too.
No F-AF transition is found for the Fe-rich x = 0, y = 0.04
Fe52Rh48 composition (Tc = 1008 K) while for x = 0.04,
y = 0 (Fe48Rh52) Tt increases to 549 K (Tc = 700 K). For
the Fe49Rh51 composition with slightly imperfect B2 order,
consistent with reported annealing temperatures (x = 0.03,
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FIG. 1. (Color online) (a) Density of states of Fe-Rh above Tc resolved into sublattice components. (b) The difference in the DOS between
Fe-rich Fe-Rh0.96Fe0.04 and Fe-Rh above Tc. The Fe “defect” DOS on the Rh sublattice is also shown.

y = 0.01), we find Tt = 415 K (Tc = 815 K) and |�Smax| =
20.7 J K−1 Kg−1 at 2 T, in good agreement with experiment
[4].

The transition’s extreme sensitivity to Fe defects on the
Rh sublattice is encapsulated by the relatively large positive
value of the eff ′ coefficient in Eq. (15) which describes
the ferromagnetic coupling between Fe atoms on the two
sublattices (≈600 meV). Figure 1(b) shows the root electronic
cause for this. With the presence of local spin polarization
on the Fe “defect” sites on the Rh sublattice, developing F
order deepens the DOS trough at EF with near depletion
of a set of minority spin states. T = 0 K DFT supercell
calculations of the band structure of FM FeRh with Fe antisite
defects [55] support this interpretation. This enhances the
material’s tendency to F order and the F-AF transition is
affected accordingly. Fe antisite defects reduce the electronic
contribution to the MCE, e.g., for x = y = 0.02, only 20% of
the |�S| = 22.3 J K−1 kg−1 is electronic. So magnetotransport
properties are also acutely composition sensitive in this
material.

C. Impurity-doping and volume effects

The metamagnetism of Fe-Rh varies with impurity doping
[17] and this can also be linked to the Fe antisite effect. For
example isoelectronic dopants such as Pd and Pt have opposite
effects on Tt owing the differing propensities for the dopants to
displace Fe atoms onto the Rh sublattice. T = 0 K calculations
[47] for the energy difference between F Fe1−2zPt2z-Rh1−zFez

and Fe1−zRhz-Rh1−2zPt2z) alloys (0 < z < 10%) show that the
“big” Pt atoms preferentially displace Rh atoms to the Fe
sublattice so that they maximize the number of the smaller
Fe nearest neighbors [56]. This reduces the spin-polarization
energy gain, strengthening AF ordering and increasing Tt . On
the other hand similar calculations for the Pd-doped alloys
show that Fe and Rh atoms are displaced roughly equally
so that some Fe atoms find their way onto the Rh sublattice
creating Fe antisite defects. Consequently Tt drops [17].

At the F-AF transition there is a significant well-studied
volume magnetostriction [57] λ of ≈8 × 10−3. We find the
leading coefficients ef and eaf of Eq. (15) to change by 16 and
−11 meV respectively for a 1% volume increase reflecting
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FIG. 2. (Color online) (a) Density of states of FeRh just above Tt in the F state, mf = 0.59, and (b) just below Tt in the AF state, maf = 0.71.
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the increasing tendency towards F order with expansion.
So the free energy F ≈ F0 + F ′

λ + 1
2Kλ2. Using a bulk

modulus K estimate of 2 Mbar [24], λ at Tt is 4 × 10−3 for
perfectly ordered Fe-Rh and 6 × 10−3 for imperfectly ordered
Fe98Rh2-Rh98Fe2 alloy, in fair agreement with experiment,
and we deduce that volume changes are consequences of the
magnetic transition but not major drivers of it.

IV. CONCLUSIONS

We have described an ab initio DFT-based theory for
magnetic materials which gives a quantitative account of a
material’s properties as function of temperature and applied
magnetic field. The role of temperature-dependent spin-
polarized electronic structure is paramount. The unusual
ordered FeRh material with its famous metamagnetic transition
has all main features described well in comparison with
experiment:

(i) the location of the F-AF transition close to room
temperature,

(ii) the magnitude of the magnetocaloric entropy changes
with large electronic contributions, and

(iii) crucially the extremely narrow compositional range
for the first-order transition and its dependence on material
preparation route.

In particular we show why very small variations away from
complete B2 order and stoichiometry have such a strong effect
on the transition in terms of the presence of Fe antisites, i.e., Fe
atoms occupying a very small proportion of the Rh sublattice
sites. In addition to affecting phase coexistence and the broad-
ening of the first-order magnetic transition, this compositional
hypersensitivity means that, even if Rh were cheaply available,
FeRh is unlikely to become a technologically useful adaptive
magnetic material. On the other hand the theory’s facility to
quantify subtle compositional and electronic effects means
that it can aid in the design of the next generation of adaptive
magnetic materials including magnetic refrigerants based on,
for example, MnFePSi or LaFeSi [43].
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[28] J. Kübler, Theory of Itinerant Electron Magnetism (Clarendon,

Oxford, 2000).
[29] W. Bragg and E. Williams, Proc. R. Soc. A 145, 699 (1934).
[30] B. L. Gyorffy, A. J. Pindor, J. Staunton, G. M. Stocks, and

H. Winter, J. Phys. F 15, 1337 (1985).
[31] J. Hubbard, Phys. Rev. B 20, 4584 (1979).
[32] H. Hasegawa, J. Phys. Soc. Jpn. 46, 1504 (1979).
[33] J. B. Staunton and B. L. Gyorffy, Phys. Rev. Lett. 69, 371

(1992).
[34] J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gyorffy,

L. Szunyogh, B. Ginatempo, and E. Bruno, Phys. Rev. Lett.
93, 257204 (2004).

054427-6

http://dx.doi.org/10.1103/PhysRevB.19.3580
http://dx.doi.org/10.1103/PhysRevB.19.3580
http://dx.doi.org/10.1103/PhysRevB.19.3580
http://dx.doi.org/10.1103/PhysRevB.19.3580
http://dx.doi.org/10.1016/j.actamat.2008.08.040
http://dx.doi.org/10.1016/j.actamat.2008.08.040
http://dx.doi.org/10.1016/j.actamat.2008.08.040
http://dx.doi.org/10.1016/j.actamat.2008.08.040
http://dx.doi.org/10.1063/1.360955
http://dx.doi.org/10.1063/1.360955
http://dx.doi.org/10.1063/1.360955
http://dx.doi.org/10.1063/1.360955
http://dx.doi.org/10.1063/1.369224
http://dx.doi.org/10.1063/1.369224
http://dx.doi.org/10.1063/1.369224
http://dx.doi.org/10.1063/1.369224
http://dx.doi.org/10.1088/0953-8984/13/14/308
http://dx.doi.org/10.1088/0953-8984/13/14/308
http://dx.doi.org/10.1088/0953-8984/13/14/308
http://dx.doi.org/10.1088/0953-8984/13/14/308
http://dx.doi.org/10.1103/PhysRevB.72.214432
http://dx.doi.org/10.1103/PhysRevB.72.214432
http://dx.doi.org/10.1103/PhysRevB.72.214432
http://dx.doi.org/10.1103/PhysRevB.72.214432
http://dx.doi.org/10.1103/PhysRevB.77.184401
http://dx.doi.org/10.1103/PhysRevB.77.184401
http://dx.doi.org/10.1103/PhysRevB.77.184401
http://dx.doi.org/10.1103/PhysRevB.77.184401
http://dx.doi.org/10.1063/1.3556754
http://dx.doi.org/10.1063/1.3556754
http://dx.doi.org/10.1063/1.3556754
http://dx.doi.org/10.1063/1.3556754
http://dx.doi.org/10.1088/1367-2630/15/1/013008
http://dx.doi.org/10.1088/1367-2630/15/1/013008
http://dx.doi.org/10.1088/1367-2630/15/1/013008
http://dx.doi.org/10.1088/1367-2630/15/1/013008
http://dx.doi.org/10.1063/1.1708424
http://dx.doi.org/10.1063/1.1708424
http://dx.doi.org/10.1063/1.1708424
http://dx.doi.org/10.1063/1.1708424
http://dx.doi.org/10.1063/1.1657670
http://dx.doi.org/10.1063/1.1657670
http://dx.doi.org/10.1063/1.1657670
http://dx.doi.org/10.1063/1.1657670
http://dx.doi.org/10.1109/TMAG.2004.832445
http://dx.doi.org/10.1109/TMAG.2004.832445
http://dx.doi.org/10.1109/TMAG.2004.832445
http://dx.doi.org/10.1109/TMAG.2004.832445
http://dx.doi.org/10.1063/1.2828812
http://dx.doi.org/10.1063/1.2828812
http://dx.doi.org/10.1063/1.2828812
http://dx.doi.org/10.1063/1.2828812
http://dx.doi.org/10.1063/1.3549440
http://dx.doi.org/10.1063/1.3549440
http://dx.doi.org/10.1063/1.3549440
http://dx.doi.org/10.1063/1.3549440
http://dx.doi.org/10.1103/PhysRevLett.109.255901
http://dx.doi.org/10.1103/PhysRevLett.109.255901
http://dx.doi.org/10.1103/PhysRevLett.109.255901
http://dx.doi.org/10.1103/PhysRevLett.109.255901
http://dx.doi.org/10.1063/1.4820583
http://dx.doi.org/10.1063/1.4820583
http://dx.doi.org/10.1063/1.4820583
http://dx.doi.org/10.1063/1.4820583
http://dx.doi.org/10.1016/0011-2275(92)90352-B
http://dx.doi.org/10.1016/0011-2275(92)90352-B
http://dx.doi.org/10.1016/0011-2275(92)90352-B
http://dx.doi.org/10.1016/0011-2275(92)90352-B
http://dx.doi.org/10.1063/1.1571232
http://dx.doi.org/10.1063/1.1571232
http://dx.doi.org/10.1063/1.1571232
http://dx.doi.org/10.1063/1.1571232
http://dx.doi.org/10.1103/PhysRevLett.93.197403
http://dx.doi.org/10.1103/PhysRevLett.93.197403
http://dx.doi.org/10.1103/PhysRevLett.93.197403
http://dx.doi.org/10.1103/PhysRevLett.93.197403
http://dx.doi.org/10.1103/PhysRevB.83.174408
http://dx.doi.org/10.1103/PhysRevB.83.174408
http://dx.doi.org/10.1103/PhysRevB.83.174408
http://dx.doi.org/10.1103/PhysRevB.83.174408
http://dx.doi.org/10.1103/PhysRevLett.108.087201
http://dx.doi.org/10.1103/PhysRevLett.108.087201
http://dx.doi.org/10.1103/PhysRevLett.108.087201
http://dx.doi.org/10.1103/PhysRevLett.108.087201
http://dx.doi.org/10.1103/PhysRevB.85.174431
http://dx.doi.org/10.1103/PhysRevB.85.174431
http://dx.doi.org/10.1103/PhysRevB.85.174431
http://dx.doi.org/10.1103/PhysRevB.85.174431
http://dx.doi.org/10.1103/PhysRevB.46.2864
http://dx.doi.org/10.1103/PhysRevB.46.2864
http://dx.doi.org/10.1103/PhysRevB.46.2864
http://dx.doi.org/10.1103/PhysRevB.46.2864
http://dx.doi.org/10.1103/PhysRevB.67.064415
http://dx.doi.org/10.1103/PhysRevB.67.064415
http://dx.doi.org/10.1103/PhysRevB.67.064415
http://dx.doi.org/10.1103/PhysRevB.67.064415
http://dx.doi.org/10.1080/01411590412331316591
http://dx.doi.org/10.1080/01411590412331316591
http://dx.doi.org/10.1080/01411590412331316591
http://dx.doi.org/10.1080/01411590412331316591
http://dx.doi.org/10.1103/PhysRevB.72.012403
http://dx.doi.org/10.1103/PhysRevB.72.012403
http://dx.doi.org/10.1103/PhysRevB.72.012403
http://dx.doi.org/10.1103/PhysRevB.72.012403
http://dx.doi.org/10.1098/rspa.1934.0132
http://dx.doi.org/10.1098/rspa.1934.0132
http://dx.doi.org/10.1098/rspa.1934.0132
http://dx.doi.org/10.1098/rspa.1934.0132
http://dx.doi.org/10.1088/0305-4608/15/6/018
http://dx.doi.org/10.1088/0305-4608/15/6/018
http://dx.doi.org/10.1088/0305-4608/15/6/018
http://dx.doi.org/10.1088/0305-4608/15/6/018
http://dx.doi.org/10.1103/PhysRevB.20.4584
http://dx.doi.org/10.1103/PhysRevB.20.4584
http://dx.doi.org/10.1103/PhysRevB.20.4584
http://dx.doi.org/10.1103/PhysRevB.20.4584
http://dx.doi.org/10.1143/JPSJ.46.1504
http://dx.doi.org/10.1143/JPSJ.46.1504
http://dx.doi.org/10.1143/JPSJ.46.1504
http://dx.doi.org/10.1143/JPSJ.46.1504
http://dx.doi.org/10.1103/PhysRevLett.69.371
http://dx.doi.org/10.1103/PhysRevLett.69.371
http://dx.doi.org/10.1103/PhysRevLett.69.371
http://dx.doi.org/10.1103/PhysRevLett.69.371
http://dx.doi.org/10.1103/PhysRevLett.93.257204
http://dx.doi.org/10.1103/PhysRevLett.93.257204
http://dx.doi.org/10.1103/PhysRevLett.93.257204
http://dx.doi.org/10.1103/PhysRevLett.93.257204


FLUCTUATING LOCAL MOMENTS, ITINERANT . . . PHYSICAL REVIEW B 89, 054427 (2014)

[35] M. dos Santos Dias, J. B. Staunton, A. Deak, and L. Szunyogh,
Phys. Rev. B 83, 054435 (2011).
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Staunton, Z. Szotek, and W. M. Temmerman, New J. Phys. 10,
063010 (2008).

[38] J. B. Staunton, M. dos Santos Dias, J. Peace, Z. Gercsi, and
K. G. Sandeman, Phys. Rev. B 87, 060404(R) (2013).

[39] J. B. Staunton, L. Szunyogh, A. Buruzs, B. L. Gyorffy,
S. Ostanin, and L. Udvardi, Phys. Rev. B 74, 144411 (2006).

[40] R. P. Feynman, Phys. Rev. 97, 660 (1955).
[41] M. Lezaic, P. Mavropoulos, G. Bihlmayer, and S. Blügel, Phys.
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