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Trends in the elastic response of binary early transition metal nitrides
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Motivated by an increasing demand for coherent data that can be used for selecting materials with properties
tailored for specific application requirements, we studied elastic response of nine binary early transition metal
nitrides (ScN, TiN, VN, YN, ZrN, NbN, LaN, HfN, and TaN) and AlN. In particular, single-crystal elastic
constants, Young’s modulus in different crystallographic directions, polycrystalline values of shear and Young’s
moduli, and the elastic anisotropy factor were calculated. Additionally, we provide estimates of the third order
elastic constants for the ten binary nitrides.
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I. INTRODUCTION

Nitride compounds are a prominent class of materials with
applications spanning from protective hard coatings (mostly
transition metal nitrides, TMNs, of the IIIB-VIB group but
also, e.g., BN or SiN),1,2 to optoelectronic devices (mostly
IIIA and VA groups, but also, e.g., ScN or TiN)3, to potential
hydrogen storage materials such as Li3N.4

When it comes to their superior mechanical properties
such as high hardness and Young’s modulus, TMNs, and
in particular TiN are often the industrial material of choice
for surface coating of, e.g., cutting tools. The properties of
simple binary compounds can be successfully enhanced by
forming metastable alloys, e.g, Ti1−xAlxN1, which at higher
temperatures age hardens before decomposing into its stable
constituents.5 Recent studies have shown beneficial effects
(such as increased oxidation resistance or retardation of the
final decomposition step to higher temperatures) of additional
alloying elements in Ti1−xAlxN5–8 and other systems.9

Another approach how to improve material properties is
via multilayer design, where individual layers are typically
simple binary or ternary systems.10–12

A modern way of designing new and improving current
materials is to combine experiment with modeling. For simple
and/or small systems, quantum mechanical first-principles
approaches can be used. However, these are typically limited to
several hundreds of atoms and, for example, multilayers, crack
propagation, or nanoindentor tip-layer contact become difficult
topics to handle. Here, the continuum mechanics employing
finite element method (FEM) proves to be a successful
tool.13–15 A key prerequisite to perform FEM calculations is
the knowledge of the elastic properties of the studied materials,
which are not always experimentally available (e.g., because
some phases are stable only in the multilayer arrangement, but
not as a bulk material). In such cases, the elastic constants can
be provided by the first-principles calculations.

The literature on the first-principles calculations of early
TMNs (group IIIB-VB) is vast. The main focus of those

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

papers is the electronic structure and related material chemistry
problems, while the calculation of the elastic properties is
often only a minor part of the results. Additionally, a lot of
those reports focus only on one or a few systems. There are
some exhaustive reports on the chemical trends in the early
TMNs,16–21 but apart from Refs. 20 and 21 they do not discuss
the elastic properties. In addition, there are some discrepancies
between reported values (e.g., C11 for ZrN between 304 GPa22

and 616 GPa20), which are worth cross checking.
The aim of the present paper is to give a comprehensive

overview on elastic properties of early transition-metal nitrides
and AlN, since these materials are or have the potential to
be used as protective coatings.23 In particular, we investigate
ten binary systems: AlN, ScN, TiN, VN, YN, ZrN, NbN,
LaN, HfN, and TaN. We focus on the cubic variant (B1,
Fm3m, NaCl prototype), which is the stable configuration of
all of them apart from AlN, NbN, and TaN being metastable
in this configuration. The single-crystal elastic constants are
validated by several independent approaches as well as by a
comparison with available theoretical and experimental data.
Subsequently, we calculate directionally resolved Young’s
modulus, anisotropy factors, and polycrystalline elastic prop-
erties of these compounds, and rationalize the trends in terms
of their electronic structure and bonding.

II. METHODOLOGY

A. Deformation modes

The linear elastic response of cubic materials is fully
described by three independent components cxxxx , cxxyy , and
cxyxy of the fourth rank tensor of the second-order elastic
constants (SOECs). It is convenient to represent this tensor
with a 6 × 6 matrix:

Cij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where C11 = cxxxx , C12 = cxxyy , and C44 = C66 = cxyxy .
Here, we make use of the Voigt notation xx ∼ 1, yy ∼ 2,
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zz ∼ 3, yz ∼ 4, xz ∼ 5, and xy ∼ 6. An additional relation-
ship links SOECs with the bulk modulus B,

B = 1
3 (C11 + 2C12). (2)

B describes the elastic response of materials to volume
changes, and it is obtained as a fitting parameter from the
Birch-Murnaghan equation of state.24 Consequently, two other
deformation modes are needed to obtain all independent
components of the cubic elastic tensor.

The first pair consists of orthorhombic and monoclinic
deformations. The orthorhombic mode results in a strain
tensor,

εorth(δ) =

⎛
⎜⎝

δ 0 0

0 −δ 0

0 0 δ2

1−δ2

⎞
⎟⎠ , (3)

and the corresponding strain energy density U (δ) is

Uorth(δ) = Etot(δ) − Eeq = (C11 − C12)δ2 + O(δ3). (4)

Here, Etot(δ) and Eeq are the total energies per unit volume, cor-
responding to εorth(δ) and εorth(0), respectively. A monoclinic
deformation yielding a strain tensor

εmon(δ) =

⎛
⎜⎝

0 1
2δ 0

1
2δ 0 0

0 0 δ2

4−δ2

⎞
⎟⎠ (5)

is used to evaluate the C44 elastic constant from the corre-
sponding strain energy density

Umon(δ) = Etot(δ) − Eeq = 1
2C44δ

2 + O(δ3). (6)

One should note that these two modes keep the unit cell volume
constant.

The second pair of deformations, which is also often used,
is a pair of tetragonal and triclinic distortion. The tetragonal
deformation corresponds to a strain matrix

εtet(δ) =

⎛
⎜⎝

− 1
2δ 0 0

0 − 1
2δ 0

0 0 δ

⎞
⎟⎠ (7)

producing a strain energy density

Utet(δ) = Etot(δ) − Eeq = 3
4 (C11 − C12)δ2 + O(δ3). (8)

The C44 elastic constants is obtained from a trigonal distortion
with a strain tensor

εtri(δ) =
⎛
⎝ 0 δ 0

δ 0 0
0 0 0

⎞
⎠ (9)

and a strain energy density

Utri(δ) = Etot(δ) − Eeq = 2C44δ
2 + O(δ3). (10)

These two deformations are volume nonconserving.
Recently, Zhao et al.25 and Łopuszyński and Majewski26

proposed a set of six deformation matrices that allow for
estimation of second- and third-order27 elastic constants of

TABLE I. Coefficients from Eq. (12) for various deformation
matrices A1–A6.

A B

A1 1
2 C11

1
6 C111

A2 C11 + C12
1
3 C111 + C112

A3 3
2 C11 + 3C12

1
2 C111 + 3C112 + C123

A4 1
2 C11 + 2C44

1
6 C111 + 2C144

A5 1
2 C11 + 2C44

1
6 C111 + 2C166

A6 6C44 8C456

cubic materials at the same time. These are

A1 =

⎛
⎜⎝

δ 0 0

0 0 0

0 0 0

⎞
⎟⎠ , A2 =

⎛
⎜⎝

δ 0 0

0 δ 0

0 0 0

⎞
⎟⎠ ,

A3 =

⎛
⎜⎝

δ 0 0

0 δ 0

0 0 δ

⎞
⎟⎠ , A4 =

⎛
⎜⎝

δ 0 0

0 0 δ

0 δ 0

⎞
⎟⎠ , (11)

A5 =

⎛
⎜⎝

δ δ 0

δ 0 0

0 0 0

⎞
⎟⎠ , A6 =

⎛
⎜⎝

0 δ δ

δ 0 δ

δ δ 0

⎞
⎟⎠ .

The strain energy density in these cases is

UA(δ) = Etot(δ) − Eeq = Aδ2 + Bδ3 + O(δ4), (12)

where the coefficients A and B are specific combinations of
Cij and Cijk as given in Table I.

B. Calculation details

Quantum-mechanical calculations employing density func-
tional theory (DFT)28,29 were carried out using Vienna
ab initio simulation package.30,31 Projector augmented-wave
pseudopotentials32 together with the generalized gradient ap-
proximation (GGA), as parametrized by Wang and Perdew,33

for the exchange and correlation potential were used. The
plane-wave cutoff energies and the k-vector samplings of the
Brillouin zone were carefully checked to provide a total energy
accuracy in the order of 1 meV/at or better. They are listed in
Table II together with the used pseudopotentials; the suffices
sv and pv refer to the exact valence configuration taking

into account explicitly also the s and p closed-shell electrons,
respectively.

III. RESULTS AND DISCUSSION

A. Equilibrium properties

The optimized lattice constants a, formation energies Ef ,
and mass densities ρ are summarized in Table III. Since there
has been a vast number of publications on experimental as
well as calculated equilibrium structure parameters of these
early TMN compounds (see, e.g., Refs. 16,18,19,21,34 and 35,
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TABLE II. An overview of PAW-GGA pseudopotentials, plane-
wave cutoff energies, and the Monkhorst-Pack sampling of the
Brillouin zone used in this study.

pseudopotential Ecut (eV) k-point sampling

Al 800 5 × 5 × 5

Sc sv 800 7 × 7 × 7
Ti pv 400 17 × 17 × 17
V pv 800 11 × 11 × 11

Y sv 800 7 × 7 × 7
Zr sv 700 13 × 13 × 13
Nb sv 600 15 × 15 × 15

La 800 7 × 7 × 7
Hf pv 700 11 × 11 × 11
Ta pv 600 15 × 15 × 15

and references therein), we limit the comparison of the here
calculated lattice parameters to the experimental data from
Ref. 36. The calculated lattice constants (with the exception
of VN) are, as expected for GGA, slightly larger than the
experimental values. The error is smaller then 1% except for
the case of TaN, where a deviation of about 1.5% is obtained.
This is likely to be related to the fact that cubic TaN is
metastable and prefers N-deficient configurations resulting in
a significant decrease of the lattice parameter with respect to
a stoichiometric configuration.37

The trends in the energy of formation, i.e., less negative
values as one moves from the IIIB to the VB group, as well
as the absolute numbers agree well with those presented by
Rovere et al.35 Formation energy was calculated as a difference
between the total energy of the binary nitride, and the total
energy of the respective metal in its stable crystalline form
and the molecule of nitrogen.

Lastly, from the calculated lattice parameters (equilibrium
volume) and the atomic weights we computed mass densities.
Again, apart from the TaN case, where the under-stoichiometry
of the experimental compound is likely to play a role, the
agreement with experimental values is satisfactory.

TABLE III. Calculated lattice constants a, formation energy Ef ,
and mass density ρ. The experimental lattice constants aexp are taken
from Ref. 36, the experimental values of density ρexp are from Ref. 38,
and those marked with an asterisks are from Ref. 39.

a (Å) aexp (Å) Ef (eV/at) ρ (g/cm3) ρexp (g/cm3)

AlN 4.069 4.045 −2.285 4.04

ScN 4.516 4.440 −2.958 4.25
TiN 4.253 4.241 −2.752 5.34 5.40�

VN 4.127 4.139 −1.998 6.14 6.13, 6.0�

YN 4.917 4.894 −2.737 5.75
ZrN 4.618 4.578 −2.716 7.10 7.32�

NbN 4.427 4.389 −2.001 8.19 8.47, 7.3�

LaN 5.306 5.293 −2.350 6.80 6.73
HfN 4.538 4.525 −2.783 13.68 13.80, 13.8�

TaN 4.426 4.358 −1.869 14.94 13.70, 14.3�

B. Single-crystal elastic constants

When calculating the single-crystal elastic constants as
described in Sec. II A, one should check how the fitted Cij s
depend on the maximum deformation, δmax, i.e., on the range
of deformations applied to the unit cell. When δmax is too small,
the accuracy of Cij s is likely to be influenced by the numerical
inaccuracies of the DFT calculations, while nonlinear elastic
(and perhaps also plastic) effects are no longer negligible for
too large δmax.25 To illustrate this behavior, we plot in Fig. 1
the C11 and C44 elastic constants of ZrN as a function of
δmax and the order of the fitting polynomial. It follows, that
with increasing order of the fitting polynomial, the plateau
region where the specific elastic constant is independent of
δmax, enlarges. At the same time, the onset of the plateau shifts
to higher values δmax. The reason is that a high fitting order
leads to an overfitting of the too few data points for a small
δmax. In extreme cases, such overfitting may lead to incorrect
plateaus, as shown, e.g., for C44 (monoclinic deformation)
using a 13th order fitting polynomial.

In general, the combination of tetragonal and trigonal
deformations gives more robust results for the early TMN
in the cubic structure then the combination of orthorhombic
and monoclinic deformations. Nevertheless, the most robust
results in terms of plateau values scatter and the dependence
on the order of the fitting polynomial, were obtained when
employing the deformation matrices A1 and A6 (see Fig. 1).

Recently, Udyansky et al.40 showed that the elastic con-
stants of α-Fe are also highly sensitive to the value of the
smearing parameter σ in the Methfessel-Paxton scheme. We
have therefore checked the convergence of Cij s also with
respect to σ . It turns out that the cubic early TMNs are
not hugely sensitive to σ , but in some cases, e.g., ZrN or
NbN, the elastic constant values change by up to 5% when
sigma is increased from 0.02 eV to 0.8 eV. Nevertheless, these
variations typically take place only for small values of σ , and
a converged behavior is obtained for σ ≈ 0.6 eV.

The single-crystal elastic constants are summarized in
Table IV. When possible to evaluate, we give the Cij s
based on all three methods described here (i.e., orthorhom-
bic + monoclinic, tetragonal + trigonal, and A1 + A6 defor-
mation modes). Since the A1 + A6 deformation modes were
the only ones to provide well converged results for all ten
binary nitrides, we show them in Fig. 2 and we will use them
in the following analysis for consistency.

A comparison with previous DFT-GGA literature
data21,22,41,42,44,45,50 yields, apart from a few exceptions, a good
agreement with our results. The local density approximation
(LDA) based C11 elastic constants from the literature20,43,48

are higher than our GGA-based data. This is a consequence
of over and underbinding of LDA and GGA, respectively,
resulting in too small lattice constants and consequently too
hard elastic constants in LDA. Finally, although many of the
here calculated elastic constants agree well with the available
experimental data, in a few cases, the discrepancy is as large
as 20% (e.g., C11 of VN).

In all cases, the obtained elastic constants fulfill the stability
criteria for cubic crystals,

C44 > 0, C11 > |C12|, C11 + 2C12 > 0. (13)
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FIG. 1. (Color online) Dependence of the ZrN elastic constants on the range −δmax � δ � δmax of deformation taken into account, and
the order of the fitting polynomial. The upper and lower rows correspond to C11 and C44, respectively, as obtained from various approaches
described in Sec. II A.

The elastic constant C11 is significantly stiffer than the other
two elastic constants. Within each row, the C11 and C12 elastic
constants monotonically increase with increasing atomic
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FIG. 2. (Color online) Single-crystal elastic constants C11, C12,
and C44 and resulting Cauchy pressure, C12 − C44, of the compounds
investigated here.

number at the same time, C11 decreases from Sc to Y to La
(isovalent IIIB group), while it increases from V to Nb to Ta
(isovalent VB group). It has been suggested in the literature51,52

that a negative Cauchy pressure C12 − C44 < 0 corresponds
to more directional bonding, while positive values indicate
predominant metallic bonding. Indeed, the calculated Cauchy
pressure is most negative for AlN in which a significantly
larger charge transfer from cation to anion takes place as, e.g.,
in TiN.53 Cauchy pressure increases to positive values with
increasing number of valence electrons within each periodic
table row, as those contribute mainly to the metal-metal d-d
interactions.19,54 These trends may be used in the materials
selection process to realize specific requirements.

C. Directional Young’s modulus

The Young’s modulus E in a certain direction ξ is defined
as the ratio of longitudinal stress to longitudinal strain in this
direction. The elastic compliances Sij are in the case of cubic
crystals the solution of the following set of equations:55

C11 = S11 + S12

(S11 − S12)(S11 + 2S12)
, (14a)

C12 = −S12

(S11 − S12)(S11 + 2S12)
, (14b)

C44 = 1

S44
. (14c)
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TABLE IV. Single-crystal elastic constants. “o,” “t,” and “A” stand
for values calculated by orthorhombic and monoclinic, tetragonal, and
trigonal, and using the A1 and A6 deformation modes, respectively.
“c” and “e” stand for calculated and experimental data from the
literature, respectively. The results in bold are used for further analysis
of polycrystalline elastic properties.

C11 (GPa) C12 (GPa) C44 (GPa)

o: 420 c: 423a o: 166 c: 167a o: 309 c: 306a

AlN t: 421 c: 379b t: 168 c: 201b t: 308 c: 196b

A: 418 A: 169 A: 308

o: 390 c: 498c o: 105 c: 52c o: 166 c: 169c

ScN t: 388 c: 299d t: 105 c: 128d t: 166 c: 120d

A: 388 c: 381e A: 106 c: 105e A: 166 c: 164e

o: 560 c: 516f o: 135 c: 129f o: 163 c: 132f

TiN t: 577 c: 610a t: 129 c: 137a t: 161 c: 158a

A: 575 e: 625g A: 130 e: 165g A: 163 e: 163g

o: 660 c: 738h o: 174 c: 186h o: 118 c: 119h

VN t: 658 t: 172 t: 118
A: 660 e: 533g A: 144 e: 135g A: 120 e: 133g

o: 318 o: 81 o: 124
YN t: 318 t: 81 t: 124

A: 318 A: 81 A: 124

o: 495 c: 616i o: 128 c: 117i o: 116 c: 130i

ZrN t: 492 c: 304l t: 126 c: 114l t: 116 c: 511l

A: 523 e: 471j A: 111 e: 88j A: 116 e: 138j

o: . . . c: 739i o: . . . c: 161i o: . . . c: 75i

NbN t: . . . e: 556g t: . . . e: 152g t: . . . e: 125g

A: 649 e: 608j A: 136 e: 134j A: 80 e: 117j

o: 201 c: 221k o: 84 c: 62k o: 71 c: 75k

LaN t: 201 c: 213m t: 83 c: 84m t: 71 c: 71m

A: 198 A: 86 A: 71

o: 575 c: 694i o: 120 c: 112i o: 117 c: 135i

HfN t: . . . c: 628k t: . . . c: 95k t: . . . c: 105k

A: 588 e: 679j A: 113 e: 119j A: 120 e: 150j

o: . . . c: 783i o: . . . c: 167i o: . . . c: 20i

TaN t: . . . c: 881k t: . . . c: 122k t: 57 c: 74k

A: 715 A: 138 A: 60

aReference 41, GGA.
bReference 42, GGA.
cReference 43, LDA.
dReference 44, GGA.
eReference 45, GGA.
fReference 46, LDA.
gReference 47, exp.
hReference 48, LDA.
iReference 20, LDA.
jReference 49, exp.
kReference 21, GGA.
lReference 22, GGA.
mReference 50, GGA.

For a cubic crystal, Eξ then reads55

1

Eξ

= S11 − 2

(
S11 − S12 − 1

2
S44

) (
l2
1 l

2
2 + l2

2 l
2
3 + l2

1 l
2
3

)
,

(15)
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FIG. 3. (Color online) Young’s modulus in the 〈100〉, 〈110〉, and
〈111〉 directions.

where l1, l2, and l3 are the directional cosines of ξ . For 〈100〉,
〈110〉, and 〈111〉 directions, this becomes

E〈100〉 = 1/S11, (16a)

E〈110〉 = 1/

[
S11 − 1

2

(
S11 − S12 − 1

2
S44

)]
, (16b)

E〈111〉 = 1/

[
S11 − 2

3

(
S11 − S12 − 1

2
S44

)]
. (16c)

The results are plotted in Fig. 3. The Young’s modulus
in 〈100〉 follows mostly the same trend as C11, since the
C11 elastic constant has the strongest contribution to E〈100〉.
There is a considerable difference between the semiconducting
compounds AlN, ScN, YN, and LaN, in which the 〈100〉
direction becomes the softest, and the metallic TiN, VN, ZrN,
NbN, HfN, and TaN, where the 〈100〉 direction is clearly the
strongest. In addition, the Young’s modulus of AlN in the 〈111〉
direction is more than 1.5 times larger than in any other of the
here investigated TMNs. This is mainly caused by the high
value of C44 of AlN, suggesting that AlN is much stronger in
shear deformation than the other TMN.

To quantify the anisotropy, we employ the Zener’s
anisotropy ratio,56 A, defined as

A = 2C44

C11 − C12
. (17)

The results, together with the ratio E〈111〉/E〈100〉, which
provides similar information, are shown in Fig. 4. The results
suggest that AlN is clearly stiffer in the 〈111〉 than in the 〈100〉
direction. The opposite result is obtained for the group IVB
and VB TMN where the 〈100〉 direction is the stiffest. The
group IIIB semiconducting TMN exhibit values of both, A

and E〈111〉/E〈100〉 very close to 1. This implies that their elastic
behavior is almost isotropic. The most isotropic response
is predicted for YN with A = 1.05. The (an)isotropy of
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FIG. 4. (Color online) Zener’s anisotropy ratio E〈111〉/E〈100〉 and
B/G values for the ten nitrides studied here.

the Young’s modulus is visualized in Fig. 5. Figure 5(b)
demonstrates the isotropic elastic response of YN, while the
comparison of Figs. 5(a) and 5(c) shows the qualitatively
different elastic response of AlN and TiN.

Some insight into these trends can be gained from consider-
ing the differences in bonding. The bonds in AlN are strongly
ionic,53 while the TMNs contain a significant part of the
covalent bonding.19 Since the covalent bond is stronger than
the ionic, this can rationalize why AlN has the smallest value
of E〈100〉. When going from group IIIB to VB elements within
each row, the extra electrons fill the bonding metal-metal
orbitals, while the hybridized sp3d2 states move to lower
energies.19,54 This can be interpreted as strengthening of the
hybridized sp3d2 bonds that are oriented along the 〈100〉
directions. As for the high C44 elastic constant of AlN, one may
argue that since there are no d electrons available to form the
metal-metal bonds in the 〈110〉 directions (as it is the case for
the IVB and VB group elements), upon a shear deformation, a
significantly increased repulsion between Al-Al and N-N ions
as they get closer occurs, which causes the high value of E〈111〉.

D. Polycrystalline properties

Several models exist that assess the isotropic polycrystalline
elastic properties using the anisotropic single-crystal elastic

FIG. 5. (Color online) 3D representation of the directional
dependence of Young’s modulus for (a) AlN, (b) YN, and (c) TiN.

constants of a given material. Voigt’s approach57 of constant
strains in all grains yields the upper limit, GV and EV , to the
polycrystalline shear and Young’s moduli, respectively. On
the other hand, Reuss58 proposed to apply constant stresses
in all grains, which yields lower limits GR and ER . Taking
BV = BR = B, where the bulk modulus B is obtained from
the Birch-Murnaghan equation of state,24 one gets

GV = C11 − C12 + 3C44

5
, (18)

GR = 5

4(S11 − S12) + 3S44
, (19)

Eα = 9BGα

3B + Gα

, α = V,R. (20)

Finally, Hershey59 derived an equation for self-consistently
calculating the shear modulus, GH . In this approach, GH is
the real positive root of the following fourth-order polynomial:

64G4
H + 16(4C11 + 5C12)G3

H

+ (3(C11 + 2C12)(5C11 + 4C12)

− 8(7C11 − 4C12)C44)G2
H

− (29C11 − 20C12)(C11 + 2C12)C44GH

− 3(C11 + 2C12)2(C11 − C12)C44 = 0. (21)

This equation can be simplified by dividing it with (3C11 +
6C12 + 8G) to a third-order polynomial60 with the same
positive real root:

8G3 + (5C11 + 4C12)G2 − C44(7C11 − 4C12)G

− C44(C11 − C12)(C11 + 2C12) = 0. (22)

Subsequently, Eq. (20) is used to estimate the Young’s modulus
within Hershey’s approach.

The calculated polycrystalline elastic constants are shown
in Fig. 6 together with the bulk modulus. They fit well with the
few accessible experimental data points included (black full
symbols). The trends in E and G are akin: the maximum value
in each row of the periodic table is obtained for the group IVB
TMNs. The spread between GR and GV (shaded in Fig. 6),
as well as between ER and EV is very small for the group
IIIB and IVB TMNs, suggesting that the elastic properties of
polycrystals of these materials will not be hugely influenced by
the misorientations of individual grains. A different situation
is obtained for AlN and group VB TMNs (in particular, for
NbN and TaN), where the Reuss-Voigt range is quite large. As
shown in Ref. 65, the ratio between the Voigt and Reuss bounds
depends nonlinearly on the anisotropy factor A. The ratio
becomes particularly large when the anisotropy A approaches
0, as in the case of NbN and TaN. As a consequence, these
materials are expected to be strongly affected by the actual
microstructures (i.e., not only by the grain orientations, but
also by the shape of the grain).

Based on an evaluation of a large experimental data set,
Pugh66 proposed that the higher (lower) the B/G ratio is the
more ductile (brittle) the material is. This ratio is plotted in
Fig. 4. In general, the ductility increases from IIIB to VB
group (e.g., with increasing number of valence electrons and
thus increasing amount of metallic bonding), and within each
group from lighter to heavier elements.
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FIG. 6. (Color online) Calculated bulk modulus B, polycrys-
talline Young’s E, and shear G moduli. The shaded area corresponds
to the Reuss’s and Voigt’s limit cases. The full symbols denote
experimental values from literature. (aReference 61, bReference 62,
cReference 63, dReference 64.)

E. Third-order elastic constants

The methodology employing the deformation matrices A1–
A6 allows also to easily estimate third-order elastic constants
(TOECs), by following Eq. (12) and relations in Table I.
TOECs Cijk appear in the Taylor series expansion of the strain
energy

U = 1

2

∑
ij

Cijηiηj + 1

6

∑
ijk

Cijkηiηjηk + . . .

= 1

2

∑
ij

(
Cij + 1

3

∑
k

Cijkηk + . . .

)
ηiηj , (23)

where εαβ = (1 + δαβ)ηi/2 is the relationship between compo-
nents εαβ of the Lagrangian strain tensor and six components ηi

of a corresponding vector in Voigt notation.25,26,60 According
to the above equation, TOECs give corrections when applying
such large strains that linear elasticity no longer applies.
TOECs are thus useful to describe the pressure dependence
of second-order elastic constants Cij or thermal properties of
solids.67 This can be of a particular interest for thin films where
residual stresses in the range of several GPa can be realized.

TABLE V. Third-order elastic constants as obtained from the six
deformation modes A1–A6 [Eq. (12)].

C111 C112 C123 C144 C166 C456

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

AlN −5200 −400 330 320 −850 280
ScN −5100 −190 260 200 −330 215
TiN −7100 −370 430 175 −475 60
VN −8000 −400 420 541 −450 −235
YN −4100 −160 180 180 −225 185
ZrN −6450 −310 370 150 −370 −5
NbN −8600 −190 115 300 −480 −180
LaN −1200 −550 650 140 −80 135
HfN −7050 −350 520 170 −450 −220
TaN −9800 −20 −190 340 −600 −230

The computed TOECs for the binary systems investigated in
this work are summarized in Table V. For isotropic aggregates
of cubic crystals, Lubarda60 derived equations for Voigt- and
Reuss-type averages of TOECs. These equations are equiv-
alents to the elastic constants expressed by Eqs. (18)–(20).
The corresponding formulas are briefly summarized in
Appendix. The three polycrystalline Voigt- and Reuss-type
TOECs C123, C144, and C456 are presented in Fig. 7 as the upper
and lower boundaries of the shaded areas. These boundaries
provide an estimate for the expected spread of the data and
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FIG. 7. (Color online) The polycrystalline third-order elastic
constants. The shaded area corresponds, for each compound, to the
spread between Voigt- and Reuss-type approach, while the solid line
with data points represents Hill’s average [see Eq. (24)].
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depend on the actual microstructure. The lines in Fig. 7
represent the Hill’s average

Cijk,H = Cijk,V + Cijk,R

2
(24)

of the Voigt-type Cijk,V and Reuss-type Cijk,R TOECs. The
six TOECs describing a crystal with the cubic symmetry are
in the isotropic case related by

C111 = C123 + 6C144 + 8C456, (25)

C112 = C123 + C244, (26)

C166 = C144 + 2C456. (27)

The results suggest that in each row of the periodic table,
C123 and C456 decrease to more negative values with increasing
number of valence electrons from 3 to 5. For C144, no clear
trend is observed. Since the TOECs are mostly negative,
second-order elastic constants get stiffer with compressive
stresses and they soften under tension [compare with Eq. (23)].

IV. CONCLUSIONS

Calculating elastic properties using density functional
theory is a powerful technique, in particular when material
phases of single crystals are not experimentally accessible. In
this paper we provided a coherent description of the elastic
behavior of nine binary early transition-metal nitrides (ScN,
TiN, VN, YN, ZrN, NbN, LaN, HfN, and TaN) and AlN.
These binary compounds are of high technological interest
for designing materials with application-tailored properties.
Single-crystal elastic constants Cij and directionally resolved
Young’s moduli E in 〈100〉, 〈110〉, and 〈111〉 directions are
provided. The results clearly indicate the special position of
AlN. This material has the largest Young’s modulus E along
〈111〉, while all group IVB and VB nitrides exhibit the largest
E value along 〈100〉. These trends could be rationalized by
analyzing the bonding characteristics of these compounds.
Computing the elastic anisotropy we find that YN followed
by ScN and LaN are the materials closest to the elastically
isotropic behavior. Finally, the polycrystalline elastic prop-
erties (Young’s and shear modulus) were calculated. Good
agreement with the rather scarce available experimental data
was obtained.
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APPENDIX: EQUATIONS FOR
THE POLYCRYSTALLINE TOECS

A detailed derivation of the equations below was given by
Lubarda.60 Here, we only summarize the final results for the
reader’s perusal.

The Voigt-type TOECs Cijk,V are obtained from the single-
crystal elastic constants Cijk as

C123,V = 1
35 (C111 + 18C112 + 16C123

− 30C144 − 12C166 + 16C456), (A1)

C144,V = 1
35 (C111 + 4C112 − 5C123

+ 19C144 + 2C166 − 12C456), (A2)

C456,V = 1
35 (C111 − 3C112 + 2C123

− 9C144 + 9C166 + 9C456). (A3)

The Reuss-type estimates of TEOCs Cijk,R can be calculated
as

C456,R = 1

35

(
5A

2A + 3

)3[
C111 − 3C112 + 2C123

− 9

A2
(C144 − C166) + 9

A3
C456

]
, (A4)

C144,R = 1

3

[
A

2A + 3

[
C111 − C123 + 3

A
(C144 + 2C166)

]

− 4C456,R

]
, (A5)

9C123,R + 18C144,R + 8C456,R

= 9C123,V + 18C144,V + 8C456,V, (A6)

where A is the anisotropy ratio given by Eq. (17). It can be
seen that in case of an isotropic materials (A = 1), the two
approaches give the same results [compare, e.g., Eqs. (A3)
and (A4)].
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