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Although assuming that doping creates holes primarily on oxygen sites, eve derive explicitly a
single-band e6'ective Hamiltonian for the high-T, Cu-oxide superconductors. Cu-0 hybridization
strongly binds a hole on each square of 0 atoms to the central Cu + ion to form a local singlet.
This moves through the lattice in a similar ~ay as a hole in the single-band effective Hamiltonian
of the strongly interacting Hubbard model.

Since the discovery of high-T, superconducting oxides
there has been considerable controversy over the choice of
the appropriate microscopic Hamiltonian. Although it is
generally agreed now that Anderson's starting point,
namely, strong on-site Coulomb interactions among a par-
tially filled band of Cu 3d levels, is correct, it is not so gen-
erally agreed that a single-band effective Hamiltonian, as
Anderson proposed, is sufficient. Since various spectro-
scopic methodsi have shown that the holes introduced in
the superconductors reside primarily on Q sites and do not
form Cui+ ions, there have been various works which
have proposed that this introduces an essential dif-
ference. However, Anderson has recently restated that
a single-band effective Hamiltonian is adequate. In this
Rapid Communication we explicitly derive a single-band
effective Hamiltonian starting from a two-band model us-
ing methods which follow from Anderson's original treat-
ment of magnetic insulators. The key point of our work
is that the hybridization strongly hinds a hole on each
square of 0 atoms to the central Cu2+ ion to form a local
sin let. This singlet then moves through the lattice of
Cu + ions in a similar way as a hole (or doubly occupied
site) in the single-band effective Hamiltonian. Further,
two holes feel a strong repulsion against residing on the
same square, so that we recover the single-band model.

We consider a Hamiltonian describing a single layer of
square planar coordinated Cu and Q atoms:

H QEddi+t&+X&pplnpla
l,a

+Ugd;td;td;ttd;1+H' . (1)

In Eq. (1), the vacuum is defined as filled Cu d' and 0
p states. The operators d; create Cu (3d, ~ pi) holes at
site i, and PP create 0 (2p„, 2') holes at site l. U is the
on-site Coulomb repulsion at a Cu site. We set the atomic
energy of the Cu holes ed 0 and consider the case ep & 0.
The hybridization term is given by

H' g Vgdgtpl +H c
i el' ij

where sum over l runs over the four 0 sites around a given
Cu site i The hybridizat. ion matrix V;I is assumed to be
proportional to the wave-function overlap of Cu and 0
holes. Taking the phase of the wave functions into ac-

count we may write

V;I -(—I)""ro,
where ro is the amplitude of the hybridization, and
M;,I 2 if l i —-2xor i —2y, and M;I 1 if 1 i+ —,'x
or i+ —,

' J. We use the Cu-Cu distance as the length unit.
In the following we shall consider the case to(&U, ep,U- ep.

Undoped La2Cu04 has 1 hole/Cu. At to 0, and with
(U, ep) & 0 all the Cu sites are singly occupied, and all the
0 sites are empty in the hole representation. If to is finite
but small, the virtual hopping process involving the doubly
occupied Cu-hole states produces a superexchange anti-
ferromagnetic (AF) interaction 6 between neighboring Cu
holes. The Hamiltonian (1) reduces6 to a S 2 Heisen-
berg model on the square lattice of Cu sites:

4~04 4~g4
Hv J S; SJ, J 2

+ (4)
if LpU 2'

In Eq. (4), S; are spin —
2 operators of Cu holes, and (ij)

denotes nearest-neighbor pairs. A flood of experimental
data on undoped La2Cu04 has found strong and, in par-
ticular, two-dimensional AF correlations consistent with
Eq. (4).

Upon doping, additional holes are introduced in the
Cu02 layers. In the atomic limit to 0, the additional
holes sit either at Cu sites if ep )U or at 0 sites if ep & U.
In the first case, the hybridization may be included by
eliminating 0 sites to give an efl'ective Hamiltonian for
motion on Cu sites alone. This is obviously a single-band
Hubbard model. In the second case, it is not so apparent
that one can eliminate the 0 sites, and the issue remains
controversial at present. Below we shall examine the
second ease and show that the physics of the Cu02 layer is
also described by the single-band effective Hamiltonian.

To explore this idea further, Iet us consider the energy
of an extra hole in La2Cu04. To the zeroth order in ro
this energy is ep for any 0 hole state. However, the sys-
tem may gain energy from the Cu —0 hybridization,
which leads to a AF superexchange interaction between 0
and Cu holes. Therefore, our first task is to choose a prop-
er set of the localized 0-hole states.

Consider the combinations of the four oxygen hole
states around a Cu ion. They can form either symmetric
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or antisymmetric state with respect to the central Cu ion:

P(sA) L (~ I )W t

le tj
(5)

where —(+) corresponds to the S(A) state, and the
phase of the p- and d-state wave functions are defined in

Fig. 1. Both S and A states may combine with the d-wave
Cu hole to form either singlet- or triplet-spin states. To
the second order in perturbation theory, the energies of
the singlet and triplet states for S in Eq. (5) are
-8(tt+t2) and 0, respectively, where tl tj/e~ and
t2 t$/(U st,

—), while A has energy -4t l. In the band-
structure language, S forms bonding and antibonding
states while A is nonbonding. The large binding energy
in the singlet S state is due to the phase coherence. This
energy should be compared with the energy of an 0 hole
sitting at a fixed site /. In the latter case, the binding en-

ergy of a singlet combination of a 0 hole and its neighbor-
ing Cu hole is only -2(t t+t2), —,

' of the square S state.
Because the effective hopping energy of the 0 hole is t l or
t2 (depending on the spin configuration), much smaller
than the energy separation of these localized states, we
may safely project out the antisymmetric Q-hole states,
and work in the subspace of the S states of Eq. (5). The
energy of the two 0 holes residing on the same square,
i.e., the configuration P;p Pp)dt is —(6t l+4t2) much
higher than the energy of the two separated Q holes. So
the two holes feel a strong repulsion on the same square.

The localized states of (5) are, however, not orthogonal
because the neighboring squares share a common 0 site.
Thus,

&Pl~a IP,' '
& b (bt,j ~ b«j),p),

P I+ —X2

where b«j) P 1 if i,j are nearest neighbors. In analogy to
the treatment of Anderson for the isolated spin quasiparti-
cle, we construct a set of Wannier functions (Nv num-

ber of squares):

Ng 'j gPq exp(ik R;),
k

N 'j
Pl, +P; exp( —ik R;), (8)

where Pq is a normalization factor

pl, -[1—
2 (cosk +cosk~)]

The functions p; are orthogonal, and are complete in the
symmetric 0-hole space. p; combines with the Cu hole at
site i to form a spin singlet ( —) or triplet (+):

lj«p -(I/J2)(((ttd;1+(1;(d;t), (10)

with energies in second-order perturbation theory, of

E~ -X I&v,(~ IH I w&I 2/AF. „, (11)
fw)

where w runs over all possible intermediate states, and
AF. is the 0th-order energy difference between lit and lv,

i.e., AF„ez —U or —sz depending on whether or not the
state w contains a doubly occupied Cu hole. From now
on, for simplicity, we set s~ U-e~, i.e., tl t2 t. The
physics is expected to be essentially the same. We find
that

E~ - -8(l T-A, ')t,

Z-N, -'QP„-'=0.96 .
k

The energies of Eq. (12) are very close to those of a single
square. Since E+ -E =15t))t, we can ignore transi-
tions between fy; l and jljt;+l and the system can be treat-
ed within the singlet fljt; 1 subspace. We wish to point out
that it is the phase coherence that produces the large ener-

gy separation of the different symmetry state from the
spin-singlet state of the Cu hole and the symmetric 0
hole. The importance of the phase coherence does not
seem to have been recognized in previous work except for
Hirschs who considered the S combination of 0 states in
the case of a fixed spin direction on the Cu site, and a re-
cent paper by Rice and Wang' on optical properties.

Having a set of proper Wannier wave functions with
large binding energy, the next task is to study the motion
of these singlet states due to the hopping process Eq. (2).
Since the 0 holes are created in the background with sing-
ly occupied Cu holes, when ljt moves from site i to j, a
Cu hole moves simultaneously from site j to i This.
motion is represented by the process lit; dj yj d;,
with kinetic energy described by an effective hopping
Hamiltoniaa

Hp g ftj (l//j dr~) pt dj ~ .
i&j,a

(13)

In Eq. (13) the effective hopping matrix element t;J is
given within second-order perturbation theory by

FIG. 1. Schematic diagram of the hybridization of the 0 hole
(2p ) and Cu hole (3d ). The signs + and —represent the
phase of the wave functions.

g&ljf; d, IH'Iw&&wIH'I(yj d; )+&/«„.
M

Using Eqs. (5), (7), (8), and (10), the right-hand side of
Eq. (14) can be evaluated in the original 0-site represen-
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1;('-8) r gpk 'exp[ik. (i —j)j . (i6)

From Eqs. (15) and (16), we obtain r;z= —1.5t for the
nearest neighbor i and j, and all other effcetive hopping
matrix elements are very small. For instance, the' next-
nearest-neighbor term r;, = -0.16t, smaller by one order
in magnitude.

From Eq. (13),when a Cu d hole is created at site i, the
singlet state is destroyed at the same site. Therefore, the
state yr; is equivalent to the empty state of the d hole at
site i. The effective hopping Hamiltonian (13) is then re-
duced to the form, after dropping the empty-state opera-
torS,

H, - g r;, (I-n; .)d;~,.(I n, —.) . (i7)
i&1,e

For the same reason, Eq. (4) holds for the doped sys-

tation pi . There are two different kinds of the two-step-
hopping processes in r,j Q. ne involves spin exchange be-
tween the Cu and 0 holes, denoted by r;J(') .The other is
the effective 0-hole hopping. After some algebra, we get
(i&j)

t" ——tBf,"& 0
(a)

tern, which describes the AF interaction between the d
holes. The singlet state has no magnetic interaction with
all other d holes. Summarizing our results, we finally ob-
tain an effective Hamiltonian H, fr given by

Heft -a, +as, (is)

where H& and H, contain only Cu d holes, and are given
by Eqs. (17) and (4), respectively. The effective hopping
matrix elements are all negligibly small except the
nearest-neighbor term. The Hamiltonian (18) is just the
effective Hamiltonian of the single-band Hubbard model
in the large-U limit.

In conclusion, we have explicitly derived a single-band
effective Hamiltonian for Cu-0 based compounds starting
from a two-band model in agreement with Anderson. 5
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