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Understanding the extreme sensitivity of the eigenvalues of non-Hermitian Hamiltonians to the boundary
conditions is of great importance when analyzing non-Hermitian systems, as it appears generically and is
intimately connected to the skin effect and the breakdown of the conventional bulk boundary correspondence.
Here we describe a method to find the eigenvalues of one-dimensional one-band models with arbitrary boundary
conditions. We use this method on several systems to find analytical expressions for the eigenvalues, which
give us conditions on the parameter values in the system for when we can expect the spectrum to be insensitive
to a change in boundary conditions. By stacking one-dimensional chains, we use the derived results to find
corresponding conditions for insensitivity for some two-dimensional systems with periodic boundary conditions
in one direction. This would be hard by using other methods to detect skin effect, such as the winding of the
determinant of the Bloch Hamiltonian. Finally, we use these results to make predictions about the (dis)appearance
of the skin effect in purely two-dimensional systems with open boundary conditions in both directions.
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I. INTRODUCTION

In the past few years, the interest in non-Hermitian Hamil-
tonians, and in particular the topological properties of such
systems [1–24], has become huge. The differences between
non-Hermitian systems and their Hermitian counterparts are
many and give rise to interesting effects.

Mathematically, these differences arise from the fact that a
non-Hermitian operator can lose several of the key properties
that make Hermitian operators so nice to work with. Most
importantly, the eigenvalues are no longer necessarily real, the
right and left eigenvectors might not be related to each other
via Hermitian conjugation or be orthogonal amongst them-
selves. Also, the operator might not be diagonalizable, leading
to the existence of exceptional points. This makes comput-
ing probabilities and expectation values nontrivial, something,
which is discussed in, e.g., Ref. [25], where the biorthogonal
inner product is defined and used to replace the standard inner
product in probability calculations.

In particular, there are several new phenomena that oc-
cur in non-Hermitian tight-binding models compared to
Hermitian ones. Perhaps most notably, the bulk-boundary
correspondence breaks down [5,7,13–18], and is replaced by
a biorthogonal bulk-boundary correspondence as described
in [5,14]. The breakdown of the bulk-boundary correspon-
dence is related to the extreme sensitivity of eigenvalues and
eigenvectors to boundary conditions that often occurs in non-
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Hermitian systems. In fact, in a system with open boundary
conditions, the left and right eigenstates tend to be expo-
nentially localized to one of the boundaries of the system,
and the number of such localized states is extensive. This
phenomenon is called the skin effect [13]. The breakdown
of the bulk-boundary correspondence and the skin effect are
intimately connected to each other and have lead to an active
field of research [26–37]. In particular, the phenomena have
been experimentally verified in mechanical systems [38–41],
topoelectrical circuits [42,43], photonic systems [19,44], and
in ultracold atoms [45]. This phenomenology has also been
suggested to be of practical use in sensors whose sensitivity
increases exponentially with the size of the system [46–48].

In one-dimensional systems it is clear what is meant by this
description of the skin effect, but in higher dimensions a little
more care is needed in defining what is meant as states can
be localized to different boundaries of the system in different
ways. Nevertheless, the fact that most of the eigenstates are
exponentially localized to some boundary of the open system,
gives an intuitive explanation of why the spectrum and the
eigenstates should change radically when coupling the ends—
if the boundary is removed, the states cannot be localized to
it anymore and the exponential localization must disappear.
Because the eigenstates drastically change when coupling the
edges, the eigenvalues also undergo a large shift.

Now, it turns out that not all non-Hermitian systems exhibit
a skin effect, and one important question is how to determine
which systems do and which not. In a one-dimensional sys-
tem, described by the Bloch Hamiltonian H (k), it turns out
that there is a relation between the winding number

w(EB) = 1

2π i

∫ π

−π

d

dk
ln det[H (k) − EB]dk, (1)

around some base energy EB ∈ C and the existence of the
skin effect in the corresponding system with open boundary
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conditions. Namely, if there exists an EB ∈ C such that
w(EB) �= 0, then the system with open boundary conditions
has a skin effect [2,8], otherwise not. This also implies that if
we have a nonzero winding number for some EB, the spectrum
of the system will be very sensitive to boundary conditions.
The winding number is related to the types of gaps that can be
found in a non-Hermitian system [8,12]. Namely, if w(EB)
is nonzero for some EB, we say that the system exhibits a
point gap. This shows up as loops in the spectrum of the
Bloch Hamiltonian. On the other hand, if w(EB) = 0 for all
EB, we say we have a line gap, which typically implies that the
spectrum of the Bloch Hamiltonian consists of line segments
that do not form loops.

In [14], it was numerically found that if the ends of an
SSH chain are coupled by a parameter δ, the δ required to
change the spectrum by a fixed amount � is proportional to
e−ξ (�)N , where N is the length of the chain and ξ (�) > 0
also depends on system parameters. This kind of sensitivity
was also studied in [7], and we will call it exponential sensi-
tivity to boundary conditions, because an exponentially small
change in the boundary condition δ leads to a finite change
� in the spectrum. If we do not have this kind of sensitivity,
we say the spectrum has nonexponential sensitivity. Clearly,
when numerically calculating the spectrum of non-Hermitian
operators, one should be careful if the system has exponential
sensitivity to the boundary conditions. For larger system sizes,
even a machine-precision deviation can lead to substantial
errors in the eigenvalues obtained. It is thus advantageous to
know in advance when the system is exponentially sensitive
and when it is not. We note that algorithms calculating the
spectrum of non-Hermitian PT-symmetric systems to arbitrary
precision we considered in [49,50].

In this paper, we aim to study the sensitivity of the
eigenvalues analytically for different systems described by
tight-binding Hamiltonians of the form

H =
∑
mn

tmnc†
mcn, (2)

where, c†
m and cn are creation and annihilation operators

respectively and the tmn are hopping parameters for which
tmn is not necessarily equal to t∗

nm. We begin with purely
one-dimensional tight-binding models where we interpolate
between open and periodic boundary conditions using a pa-
rameter δ. For a class of such systems, we develop a method to
analytically find how the eigenvalues depend on the parameter
δ and the system size. Then we move on to two-dimensional
systems, constructed by stacking one-dimensional chains. In a
rectangular geometry, the Hamiltonian can be represented by
a block-tridiagonal block-Toeplitz matrix, with extra blocks
in the corners to account for the boundary conditions. Such
matrices can in general not be diagonalized exactly, unless we
have periodic boundary conditions, but using the result from
the one-dimensional case, we can still draw some conclusions
about these systems.

From the analytical expressions for the eigenvalues, we
can see for which parameter values the spectrum should be
exponentially sensitive and for which not. It turns out that in
order for the spectrum to have nonexponential sensitivity there
has to be some kind of balancing of the hopping parameters;

somewhat loosely we need the amount of hopping to the right
to be balanced by a similar amount to the left. Because of
this, we will say that a system with parameter values such
that the spectrum has nonexponential sensitivity is balanced.
We find that the parameter values for which the system is
balanced are in agreement with what the winding number
predicts about the skin effect. For a model, with the hopping
parameters explicitly specified, one can often easily obtain the
winding number by looking at the plot of H (k) in the complex
plane. However, finding out for which parameters the model
has (or does not have) a nontrivial winding is often much
more complicated. In those cases, it might be much easier to
determine if the system is balanced or not.

The paper is organized as follows. In Sec. II, we introduce
the method to analyze the non-Hermitian systems we are
interested in, and apply it to several models, including the
Hatano-Nelson model and the SSH chain. In Sec. III, we use
solved one-dimensional systems, and construct several two-
dimensional models, including the triangular lattice, which
shows particularly interesting behavior. We discuss the results
in Sec. IV. The Appendices provide more details on some of
the models we studied.

II. ONE-DIMENSIONAL SYSTEMS

We begin by describing a method to find the eigenvalues
of a one-dimensional, one-band, non-Hermitian system. Any
such system with N sites and a maximum hopping range of
m < �N/2�, can be described by an N × N Toeplitz matrix.
Now, in order to simplify the notation, we will here only
show the method for a system with next-nearest-neighbor
hopping, but it is straightforwardly generalizable to include
longer range hopping. The Hamiltonian of a one-dimensional
system with next-nearest-neighbor hopping and the coupling
strength between the ends determined by the parameter δ can
be represented by the following matrix:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t11 t12 t13 δt31 δt21

t21
. . .

. . .
. . . δt31

t31
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . t13

δt13
. . .

. . .
. . . t12

δt12 δt13 t31 t21 t11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

For δ = 1, we have a system with periodic boundary con-
ditions and for δ = 0, we have a system with open boundary
conditions. In the case of periodic boundary conditions, the
eigenvalues are found by Fourier transforming the system, and
are given by

λδ=1
k = t11 + t12ω

k + t13ω
2k + t21ω

−k + t31ω
−2k, (4)

where k = 0, 1, . . . , N − 1 and ω = exp(2π i/N ). Now, we
make the ansatz that the eigenvalues for the case with general
δ are given by

λα = t11 + t12eiα + t13e2iα + t21e−iα + t31e−2iα, (5)

where α is a complex number, the possible values of which
need to be determined.
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From the Schrödinger equation, Hψα = λαψα , we get a system of equations containing N − 4 bulk equations of the form

t31ψα,n−2 + t21ψα,n−1 + (t11 − λα )ψα,n + t12ψα,n+1 + t13ψα,n+2 = 0 (6)

with n = 3, . . . , N − 2, and four boundary equations

(t11 − λα )ψα,1 + t12ψα,2 + t13ψα,3 + δt31ψα,N−1 + δt21ψα,N = 0,

t21ψα,1 + (t11 − λα )ψα,2 + t12ψα,3 + t13ψα,4 + δt31ψα,N = 0,

δt13ψα,1 + t31ψα,N−3 + t21ψα,N−2 + (t11 − λα )ψα,N−1 + t12ψα,N = 0,

δt12ψα,1 + δt13ψα,2 + t31ψα,N−2 + t21ψα,N−1 + (t11 − λα )ψα,N = 0. (7)

The strategy to find the eigenvalues is to first find the general
solution of Eq. (6) for arbitrary integer n, and then to deter-
mine for which values of α there exists a nontrivial solution
to the boundary equations in (7). Because we solve the bulk
equation in (6) for arbitrary integer n, we can use it to simplify
the boundary equations, which gives

t31(δψα,N−1 − ψα,−1) + t21(δψα,N − ψα,0) = 0,

t31(δψα,N − ψα,0) = 0,

t13(δψα,1 − ψα,N+1) = 0,

t12(δψα,1 − ψα,N+1) + t13(δψα,2 − ψα,N+2) = 0. (8)

Equation (6) is a linear recurrence relation for the elements
of the vector ψα and has a characteristic polynomial of the
form

x4 + t12

t13
x3 + t11 − λα

t13
x2 + t21

t13
x + t31

t13
= 0, (9)

for t13 �= 0. (In case t13 = 0, we get a polynomial of lower
degree.) The zeros of this polynomial xi give us the general
solution of the recurrence relation, namely,

ψα,n =
∑

i

cix
n
i , (10)

where the constants ci are determined by inserting the expres-
sion for ψα,n into the boundary equations in (8). This gives us
a linear system of equations for the constants of the form

M(α)C = 0, (11)

where M(α) is a 4 × 4-matrix and C is the vector containing
the constants ci. To find the values of α for which this system
has a nontrivial solution, we compute the determinant of the
matrix M(α) and solve the equation

det M(α) = 0. (12)

The form of this equation can tell us how sensitive α, and
in turn the eigenvalues λα are to changes in the boundary
conditions.

In general, the bulk and boundary equations cannot be
solved analytically as this involves finding roots of polynomi-
als of high degree, but for some systems the method provides
useful information. We point out that similar methods were
used in, for instance, [51,52] in the special cases of the
Hatano-Nelson model and the SSH chain. In these papers, an
explicit ansatz was used for the eigenvectors, instead of using
the recurrence relation.

To analyze the results, we are interested in the properties of
the eigenvectors. For non-Hermitian systems, the left and right

eigenvectors are generically not orthonormal, and one can
therefore consider different ways in which to normalize them.
The eigenvectors considered above ψα with components ψα,n,
are the right eigenvectors, and we denote those by ψ r

α and
ψ r

α,n, respectively, if confusion with the left eigenvectors can
arise. The left eigenvectors, ψ l

α with components ψ l
α,n, are

obtained by diagonalizing HT instead of H . In the cases we
consider below, this means a simple swap of parameters of
the model.

Following [5,14,25], we consider different expectation val-
ues of the site projection operator 
n = c†

ncn. On the one
hand we have the left and right expectation values 〈
n〉l,l

α =
(ψ l

α )†
nψ
l
α = |ψ l

α,n|2 and 〈
n〉r,r
α = (ψ r

α )†
nψ
r
α = |ψ r

α,n|2,
which can be used to determine if the system exhibits skin
effect. Namely, the right and left expectation values tell us
where in the system the eigenvectors are localized, which,
as explained in the introduction tells us if the skin effect is
present or not. In the case of one-dimensional systems, as
we consider in this section, skin effect simply means that an
extensive number of right eigenvectors are localized on one
side of the system, while the left eigenvectors are localized
near the other.

The third kind of expectation value we consider, is the
biorthogonal expectation value, which, as is shown in [25] is
the one most similar to what we call an expectation value in
Hermitian quantum mechanics. The biorthogonal expectation
value is given by 〈
n〉l,r

α = (ψ l
α )†
nψ

r
α = (ψ l

α,n)∗ψ r
α,n and

can be used to distinguish between bulk and boundary states
in the system [5,14].

A. The Hatano-Nelson model

We begin with a simple, non-Hermitian nearest-neighbor-
hopping model, also known as the Hatano-Nelson model
[53–55]. The Hamiltonian for a chain of length N with bound-
ary conditions regulated by the parameter δ is given by

H =
N−1∑
n=1

[trc†
n+1cn + tl c

†
ncn+1 + td c†

ncn]

+ td c†
N cN + δtrc†

1cN + δtl c
†
N c1. (13)

To analyze the situation where we interpolate between
open and periodic boundary conditions, it is easier to write the
Hamiltonian in matrix form. Then, it is given by the N × N
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matrix

H =

⎛
⎜⎜⎜⎝

td tl δtr

tr
. . .

. . .
. . .

. . . tl
δtl tr td

⎞
⎟⎟⎟⎠, (14)

where δ = 1 corresponds to periodic boundary conditions and
δ = 0 corresponds to open boundary conditions. Below, we
only give the Hamiltonians in matrix form as in Eq. (14).
Often, we consider the case 0 � δ � 1, but unless otherwise
stated, the formulas are valid for arbitrary (complex) δ. In
Appendix A 2, we derive the results for more general
boundary conditions, where we allow for different coupling
parameters in different directions.

In accordance with Eq. (5), we get the following ansatz for
the eigenvalues in the case with arbitrary boundary conditions:

λα = td + tl e
iα + tre−iα, (15)

where α is some complex number. The recurrence relation for
the elements in the eigenvector is now given by

trψα,n−1 + tlψα,n+1 − (tl e
iα + tre−iα )ψα,n = 0, (16)

which has the solution

ψα,n = c1einα + c2rne−inα, (17)

where r = tr/tl . We see here that as long as c2 �= 0 and |r| �=
1, we have an exponential localization of all the eigenstates to
one of the ends of the chain, depending on the absolute values
of tr and tl . To find out when it is possible to have c2 = 0 (that
is, when we do not have an exponential localization of the
eigenstates near the edges), we use the boundary equations,
which in this case are given by

tr (δψα,N − ψα,0) = 0, tl (δψα,1 − ψα,N+1) = 0. (18)

By setting c2 = 0, we can use Eq. (18) to determine the values
of δ for which we get N inequivalent solutions for α, giving
a complete set of eigenvalues. This procedure leads to two
possible values of δ, namely δ = ±1. For other values of δ,
we have c2 �= 0. Below, we give the explicit eigenstates for
completeness, even though we do not need them to determine
if the eigenstates are exponentially localized near the edges or
not.

We continue by determining the equation for α, such that
we obtain a nontrivial solution for the coefficients c1 and c2. It
turns out that it is convenient to write the eigenvalues in terms
of

α̃ = α + i ln

(√
tr√
tl

)
. (19)

The eigenvalues are then given by

λα̃ = td + 2
√

tl
√

tr cos(α̃), (20)

while the eigenvectors read

ψα̃,n =
(√

tr√
tl

)n

(c1einα̃ + c2e−inα̃ ). (21)

In this form, one finds, provided the solutions for α̃ are real,
that the eigenvalues lie on a straight line in the complex plane.

Similar variable changes, although in slightly different set-
tings, for example in the context of the generalized Brillouin
zone, were considered in [13,18]. The possible values of α̃

correspond to the solutions of the equation

δ

(
tN/2
l

tN/2
r

+ tN/2
r

tN/2
l

)
− sin[(N + 1)α̃]

sin(α̃)
+ δ2 sin[(N − 1)α̃]

sin(α̃)
= 0,

(22)

which is found by computing the determinant obtained from
the boundary equations, as explained above. We note that the
form of the eigenvalues in Eq. (20) is similar, up to values of
α̃, to the eigenvalues of a tridiagonal Toeplitz matrix.

For completeness, we give a more explicit form of the
(right) eigenvectors for arbitrary δ, although still in terms of
the parameter α̃. Solving the boundary equation (18) results
in

ψα̃,n =
(√

tr√
tl

)n(
sin(nα̃) + δ

(√
tr√
tl

)N

sin[(N − n)α̃]

)
.

(23)
For δ = 0, one can even obtain the possible values for α̃

explicitly. Equation (22) for α̃ then simplifies, with the (inde-
pendent) solutions given by α̃ = πk′

(N+1) , with k′ = 1, 2, . . . N ,
resulting in

ψk′,n =
(√

tr√
tl

)n

sin

(
nk′π

N + 1

)
. (24)

The left eigenvectors can be obtained by diagonalizing HT ,
which means swapping tl ↔ tr .

We have now obtained expressions for the eigenvalues and
eigenvectors, such that we can investigate the their behavior
when we change δ.

1. Interpolating the boundary conditions

We start by noting that as long as |tl | �= |tr |, the equa-
tion for α̃, Eq. (22), contains a term proportional to δ that is
exponential in the system size N . Therefore, the spectrum has
an exponential sensitivity to the boundary conditions when
|tr | �= |tl |. When, on the other hand, |tl | = |tr |, the spectrum
is nonexponentially sensitive to boundary conditions. We note
that this happens when there seems to be an overall balancing
of the hoppings in the system in the different directions, and
therefore, as mentioned in the introduction, we will say that
the hoppings are balanced when this happens. In fact, when
this is the case, r is equal to a phase, say eiθ , which means that
Eq. (22) can be written as

2δ cos(θ ) sin(α̃) = sin([N + 1]α̃) − δ2 sin([N − 1]α̃). (25)

We show in Appendix A 1 that for δ ∈ [−1, 1] and θ real,
this equation only has real solutions for α̃. This implies that
Eq. (20) describes a line segment in the complex plane and
that the system does not have a point gap at the balanced
parameter values. Therefore, the system does not exhibit a
skin effect when it is balanced, which is in correspondence
with the fact that the spectrum has nonexponential sensitivity
to boundary conditions at these parameter values.
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FIG. 1. The left panel shows the eigenvalues of the Hatano-
Nelson model with N = 30 sites for tl = 1 and tr = 2eiπ/4 (upper
left) and tl = 1 and tr = eiπ/4 (lower left). Red circles correspond to
periodic boundary conditions and blue circles to open boundary con-
ditions. The dots show how the eigenvalues change when we change
δ in steps of 0.01 from 0 to 1. The right panel shows the right and
left expectation values of the projection operator in a representative
state for both sets of parameters in the upper right and lower right
respectively.

We show this difference in behavior between balanced
and unbalanced systems when going from periodic to open
boundary conditions in Fig 1. In the upper left panel, we
show the eigenvalues for the model with N = 30 sites, and
parameters tl = 1 and tr = 2eiπ/4 such that |tl | �= |tr |. In the
lower left panel, we show the same results, but for the pa-
rameters tl = 1 and tr = eiπ/4 instead, such that |tl | = |tr |. In
the former case, we see a “jump” in the eigenvalues between
δ = 0 and δ = 1/100, indicating a significant change in the
spectrum, while in the latter case, such a jump is absent and
the eigenvalues stay on the same line in the complex plane, as
explained above.

In the right panel, we plot, for both sets of parameters,
the left and right expectation values, 〈
α̃,n〉l,l = |ψ l

α̃,n|2 and
〈
α̃,n〉r,r = |ψ r

α̃,n|2, for a representative eigenstate, showing a
pronounced skin effect in the upper panel, while in the lower
panel, the skin effect is absent.

The large change in the eigenvalues upon a small change in
δ also shows up in the eigenvectors. In Fig. 2, we plot both the
(logarithm of the) right expectation values 〈
α̃,n〉r,r = |ψ r

α̃,n|2,
as well as all the biorthogonal expectation values 〈
α̃,n〉l,r =
(ψ l

α̃,n)∗ψ r
α̃,n. The right eigenvectors clearly show the presence

of the skin effect, because they are exponentially localised on
the right-hand side (RHS) of the system. For δ = 0, there is
a clear oscillatory behavior, which quickly disappears upon
increasing δ, as follows from Eq. (24).

In addition, the correlation length changes by several or-
ders of magnitude upon changing δ = 0 to δ = 1/100, while
it remains almost the same upon changing δ = 1/100 to δ =

FIG. 2. Plot of the eigenvectors for the HN-model, with N = 30
sites, tl = 1, tr = 2eiπ/4 and δ = 0, δ = 1/100, and δ = 2/100 in the
upper, middle, and lower rows. The left column shows the logarithm
of the right expectation values, ln |ψ r

n |2, while the right column
shows the biorthogonal expectation values, (ψ l

n)∗ψ r
n .

2/100. The left eigenvectors show similar behavior, but are
localised on the left-hand side (LHS) of the system.

The biorthogonal expectation value also shows the expo-
nential sensitivity to small deviations of δ from zero. In this
case, the weight of the eigenvectors is spread out over the bulk
of the system (so we do not have edge states), but the way in
which this occurs changes drastically with δ. For δ = 0, the in-
ner product oscillates as a function of position [see Eq. (24)],
while upon increasing δ, these oscillations disappear in the
bulk, where the biorthogonal inner product becomes constant.

In conclusion, we see a perfect correspondence between
the exponential localisation of eigenstates to one side of
the chain, the sensitivity of the eigenvalues to the boundary
conditions and the existence of point gaps in the system.
In particular, we see that when |tr | = |tl |, we have a non-
Hermitian system whose eigenvalues and eigenstates have
properties that closely resemble what we have in a Hermitian
system in terms of sensitivity to boundary conditions and
localization respectively.

2. Application to impurity-like systems

We can also consider the case δ > 1. In this case, we do
not think of δ as a parameter interpolating between open and
periodic boundary conditions, but rather as a parameter that
sets the strength of an impurity in the system, namely a single
link with enhanced hopping.
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For δ > 1, we observe the following behavior: Both for
balanced |tl | = |tr | as well as unbalanced parameters, |tl | �=
|tr |, there is one impurity state, signified by an exponential lo-
calization of the biorthogonal expectation around the impurity
[56]. The remaining states are bulk states.

B. The SSH chain

A system with more interesting properties than the Hatano-
Nelson model, is the SSH chain. It is described by the N ×
N-matrix

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 tl,1 δtr,2

tr,1 0 tl,2

tr,2
. . . tl,1

tr,1
. . .

. . .

. . .
. . . tl,1

δtl,2 tr,1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

where δ ∈ [0, 1] and interpolates between open and periodic
boundary conditions and N determines the length of the chain.
Here N is assumed to be even since we want to be able to
interpolate between open and periodic boundary conditions,
but the case N odd can be dealt with in a similar way, and the
result is stated in Appendix B.

It has previously been observed [13,14] that there is a
pronounced skin effect for most parameter values, and that
the eigenvalues are highly sensitive to changes in boundary
conditions. This can be seen in the upper panel of Fig. 3,
where we to the left plotted the eigenvalues for a generic
system for different values of δ, and to the right an example of
what the left and right eigenstates look like (for more details
on this figure, see below).

FIG. 3. The left panel shows the eigenvalues of the SSH chain
with N = 30 sites for tl,1 = 1, tl,2 = 3, tr,1 = 2, and tr,2 = 4 (upper
left) and tl,1 = i, tl,2 = 4, tr,1 = 0.5, and tr,2 = 8 (lower left). Red
circles correspond to periodic boundary conditions and blue circles
to open boundary conditions. The dots show how the eigenvalues
change when we change δ in steps of 0.01 from 0 to 1. The right
panel shows the right and left expectation values of the projection
operator in a representative state for both sets of parameters in the
upper right and lower right respectively.

In this section we study this sensitivity in more detail. Even
though this system is not described by a Toeplitz matrix, and
the method described in the beginning of this section at first
glance thus seems to be unusable in this case, we notice that
the square of the Hamiltonian is given by

H2
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tl,1tr,1 + δ2tl,2tr,2 0 tl,1tl,2 0 . . . 0 tr,1tr,2δ 0

0 tl,1tr,1 + tl,2tr,2 0 tl,1tl,2 tr,1tr,2δ

tr,1tr,2 0 . . .
. . .

. . . 0

0 tr,1tr,2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . tl,1tl,2 0

0 . . .
. . .

. . . 0 tl,1tl,2
tl,1tl,2δ tr,1tr,2 0 tl,1tr,1 + tl,2tr,2 0

0 tl,1tl,2δ 0 . . . 0 tr,1tr,2 0 tl,1tr,1 + δ2tl,2tr,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

This is almost a Toeplitz matrix with changes only in the
parts of the matrix that would affect the boundary equations,
so we can use the previously described method for H2

0 , and
instead solve the problem H2

0 ψα = λαψα , with the appropriate
boundary equations. The eigenvalues of H2

0 will be the squares
of the eigenvalues of H0 [which come in (λ,−λ) pairs when
N is even]. Using the eigenvalues of the periodic SSH chain
together with the bulk equations of H2

0 , we get the following

ansatz for the eigenvalues of H2
0 and general δ:

λ2
α = tl,1tr,1 + tl,2tr,2 + tl,1tl,2eiα + tr,1tr,2e−iα. (28)

The bulk equations now give us the following recurrence
relation for the elements of ψα:

tr,1tr,2ψα,n−2 + tl,1tl,2ψα,n+2

− (tl,1tl,2eiα + tr,1tr,2e−iα )ψα,n = 0. (29)
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This is solved, for arbitrary integer n, by

ψα,n = [c1 + (−1)nc2]eiαn/2

+ [c3 + (−1)nc4]

(√
tr,1

√
tr,2√

tl,1
√

tl,2

)n

e−iαn/2, (30)

where the constants ci are determined by the boundary equa-
tions

(δ2 − 1)tl,2tr,2ψα,1 + tr,1tr,2(δψα,N−1 − ψα,−1) = 0,

tr,1tr,2(δψα,N − ψα,0) = 0,

tl,1tl,2(δψα,1 − ψα,N+1) = 0,

(δ2 − 1)tl,2tr,2ψα,N + tl,1tl,2(δψα,2 − ψα,N+2) = 0. (31)

As for the Hatano-Nelson model, it turns out that it is conve-
nient to apply a shift to α

α̃ = α + i ln
√

tr,1
√

tr,2√
tl,1

√
tl,2

. (32)

Then, the eigenvalues of H are given by

λα̃ = ±
√

tl,1tr,1 + tl,2tr,2 + 2 cos(α̃)
√

tl,1
√

tl,2
√

tr,1
√

tr,2,

(33)

where α̃ follows from the determinant equation, which takes
the form

− sin (α̃(N/2 + 1))
sin(α̃)

+ (δ2 − 1)
√

tl,2
√

tr,2√
tl,1

√
tr,1

sin(α̃N/2)

sin(α̃)
+ δ2 sin (α̃(N/2 − 1))

sin(α̃)

+ δ

[(√
tr,1

√
tr,2√

tl,1
√

tl,2

)N/2

+
(√

tl,1
√

tl,2√
tr,1

√
tr,2

)N/2]
= 0. (34)

We find that unless

|tr,1tr,2| = |tl,1tl,2|, (35)

the spectrum has exponential sensitivity. In this special case,
we have √

tl,1
√

tl,2√
tr,1

√
tr,2

= e2π iθ , (36)

for some θ ∈ [0, 1]. As was the case for the HN model,
Hermiticity is not required to get eigenvalues that are in-
sensitive to the boundary conditions. In Fig. 3, we illustrate
these results. In the upper left panel, we plot the eigenval-
ues of a system with N = 30 sites, and hopping parameters
tl,1 = 1, tr,1 = 2, tl,2 = 3, tr,2 = 4, with δ varying from δ = 0
to δ = 1. We see that the system has a point gap, and that the
spectrum is exponentially sensitive to the variation in δ. In
the lower left panel of Fig. 3, we plot the case tl,1 = −i, tr,1 =
1/2, tl,2 = 4, tr,2 = 8, for which, on the contrary, the eigenval-
ues show a nonexponential sensitivity to the variation in δ. In
this case, the system has a line gap.

In the rightmost panel of Fig. 3, we plot, for both sets of
parameters, the left and right expectation values, 〈
α̃,n〉l,l =
|ψ l

α̃,n|2 and 〈
α̃,n〉r,r = |ψ r
α̃,n|2, for a representative eigenstate,

showing a pronounced skin effect in the upper panel, while in
the lower panel, the skin effect is absent.

As was the case for the HN model, we observe a strong skin
effect in the unbalanced case, which also exhibits a point gap,
and a strong δ dependence of the eigenvalues, in accordance
with results in previous papers.

For both sets of parameters in Fig. 3, we observe a double
zero-mode E ≈ 0 for δ = 0, which gradually merges with the
rest of the spectrum upon varying δ from δ = 0 to δ = 1. Even
in the case tl,1 = 1, tr,1 = 2, tl,2 = 3, tr,2 = 4, where the rest of
the spectrum is exponentially sensitive to varying δ away from
zero, the energy of the δ = 0 zero mode changes gradually
with δ. This corresponds to what was seen in, e.g., Ref. [46],
where it was shown that the zero mode can be insensitive to
boundary conditions even though the rest of the spectrum is
not. In Appendix B, we obtain the condition for having a zero
mode, which happens for | tl,2tr,2

tl,1tr,1
| > 1 in the large N limit. This

agrees with what was found in [57] and generalizes the con-
dition found in, e.g., Ref. [14]. We note that in the balancing
condition, for which the spectrum is insensitive to changes
in δ, the left and right hopping parameters are “paired up”,
while in the condition for having a zero mode, the hopping
parameters with index one and index two are “paired up”.

To make the system more useful for later, we add alternat-
ing on-site potentials according to

H = H0 + V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1 tl,1 δtr,2
tr,1 v2 tl,2

tr,2
. . . tl,1

tr,1
. . .

. . .
. . .

. . . tl,1
δtl,2 tr,1 v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(37)
To find the eigenvalues, we note that

H = H ′ + I
v1 + v2

2
, (38)

where

H ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v tl,1 δtr,2
tr,1 −v tl,2

tr,2
. . . tl,1

tr,1
. . .

. . .
. . .

. . . tl,1
δtl,2 tr,1 −v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

and

v = v1 − v2

2
. (40)

Since

H ′2 = H2
0 + Iv2, (41)

we can directly use the result from Eq. (28) and add v2. The
final result, then, is

λα̃ = v1 + v2

2

±
√

v2+tl,1tr,1+tl,2tr,2+2 cos(α̃)
√

tl,1
√

tl,2
√

tr,1
√

tr,2,

(42)

115107-7



ELISABET EDVARDSSON AND EDDY ARDONNE PHYSICAL REVIEW B 106, 115107 (2022)

where α̃ is again given by Eq. (34), and we see that alternating
on-site potentials do not change the sensitivity of the eigenval-
ues to boundary conditions.

C. Longer range hopping

Both the Hatano-Nelson model and the SSH chain are
examples of models with nearest-neighbor hopping. In this
section we study some examples of models with longer range
hopping and see if they can be balanced. In general, longer
range hopping makes the recurrence relation in Eq. (45) more
complicated, but when one restricts to the case of two param-
eters, the equations simplify.

1. Unidirectional hoppings

First, we consider a system with nearest- and next-nearest-
neighbor hopping to the left, but no hopping to the right. This
is described by the matrix

H =

⎛
⎜⎜⎜⎜⎜⎝

0 tl ul
. . .

. . .
. . .

. . .
. . . ul

δul
. . . tl

δtl δul 0

⎞
⎟⎟⎟⎟⎟⎠. (43)

We note that for δ = 0, the matrix only has one eigenvector
and all its eigenvalues are zero. For δ �= 0, we make the
s ansatz

λα = tl e
iα + ule

2iα. (44)

The recurrence relation for the elements of ψα becomes

tlψα,n+1 + ulψα,n+2 − λαψα,n = 0, (45)

and is solved by

ψα,n =
(
− tl

ul
− eiα

)n

c1 + eiαnc2. (46)

The constants c1 and c2 are again found using the boundary
equations

δuψα,1 − uψα,N+1 = 0, (47)

δtψα,1 + δuψα,2 − tψα,N+1 − uψα,N+2 = 0. (48)

Dropping an unimportant overall factor, this gives us the fol-
lowing determinant equation for α:

(−δ + eiαN )

(
δ −

[
− tl

ul
+ eiα

]N
)

= 0. (49)

One can use either factor to determine α, both give rise to
the same eigenvalues. By using the first factor, one finds
that the solutions for α only depend on δ, not on the other
parameters of the model. Parametrising δ = |δ|eiφ , we obtain
the following eigenvalues, with j = 0, 1, . . . , N − 1

λ j = tl |δ| 1
N eiφ/N+2π i j/N + ul |δ| 2

N e2iφ/N+4π i j/N , (50)

FIG. 4. Eigenvalues for the unidirectional model plotted for tl =
1, ul = 2. Red circles correspond to periodic boundary conditions
and blue circles to open boundary conditions. The dots show how
the eigenvalues change when we change δ in steps of 0.01 from
0 to 1.

which means that if δ is real and δ ∈ (0, 1), the solutions will
approach the solutions of the periodic case for large N . In the
special case that δ = 0, all eigenvalues will be 0 regardless
of N . This implies an extreme sensitivity to the boundary
conditions for all values of tl and ul , which makes sense, since
there is no way to balance the hopping to the left with hopping
in the opposite direction.

In Fig. 4, we plot the eigenvalues of a chain of length
N = 50 with tl = 1 and ul = 2 for values of δ between 0 and
1, and see that even for very small values of δ, the eigenvalues
deviate a lot from 0 and approach the eigenvalues of the
periodic case.

2. Hoppings in different directions

Next, we study the Hamiltonian given by the matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ul δtr

tr
. . .

. . .
. . .

. . .
. . .

. . . ul

δul
. . .

. . . 0
0 δul tr 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (51)

which describes a system with hoppings both to the right and
to the left, but with different range. We make the following
ansatz for the eigenvalues:

λα = ule
2iα + tre−iα. (52)
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FIG. 5. The eigenvalues of the chain with longer range hopping in different directions for different parameter values. Red circles correspond
to periodic boundary conditions and blue circles to open boundary conditions. The dots show how the eigenvalues change when we change δ

in steps of 0.01 from 0 to 1. We note that the change in the eigenvalues when we go from δ = 0 to δ = 0.01 is much larger when tr �= ul . There
is, however, still a significant change in the spectrum also for tr = ul .

The recurrence relation for the elements of ψα becomes

trψα,n−1 + ulψα,n+2 − λαψα,n = 0, (53)

which has the characteristic equation

x3 − e2iα
(

1 + tr
ul

e−3iα
)

x − tr
ul

= 0. (54)

This equation has roots such that the elements of ψα are given
by

ψα,n = c1eniα + c2e−niαxn
+ + c3e−niαxn

−, (55)

where

x± = 1

2
± 1

2

√
4r + 1 with r = tr

ul
e−3iα. (56)

We note that

x+x− = −r and x2
± − x± − r = 0. (57)

The constants c1, c2, c3 are determined using the boundary
equations, which in this case read

− trψα,0 + δtrψα,N = 0,

δulψα,1 − ulψα,N+1 = 0,

δulψα,2 − ulψα,N+2 = 0. (58)

The values of α for which this system of equations has solu-
tions correspond to when the determinant of the system equals
zero. The expression for the determinant is long, but can be
simplified a lot using Eq. (57). Introducing the polynomial
p(n), recursively defined by

p(n) = −p(n − 1) + r p(n − 2), (59)

with p(0) = 0 and p(1) = −1, the equation for α can be
written in the following way:

− y3N+3[(2 + r)p(N ) − 2r p(N − 1) + (−r)N+1] + δy2N+3[2 + 2p(N ) + 2r(r − 1)p(N − 1) + (2 − r)y2N (−r)N ]

+ δ2y3N+3[−y−2N (2 − r) + 2r p(N ) + 2r(1 − r)p(N − 1) − 2(−r)N ] − δ3y2N+3r[1 + 2p(N − 1) + p(N )] = 0, (60)

where we introduced y = eiα and we dropped a factor (x− −
x+). Although not manifestly so, the equation is proportional
to (r − 2y3) [we note that r = tr/(uly3)]. After dividing out by
this factor, the remaining polynomial equation has degree 3N
in terms of y, and degree N in terms of tr/ul . Thus, we find 3N
solutions for y (and hence α), but they come in triples, which
give rise to the same eigenvalue, so we obtain N eigenvalues
as wanted.

For δ = 0, the equation reduces to

−y3N+3((2 + r)p(N ) − 2r p(N − 1) + (−r)N+1) = 0 (61)

and for δ = 1, we have (up to unimportant factors)

yN+3(yN − 1) × (1 − yN p(N ) + 2ryN p(N − 1)

+ (−r)N y2N ) = 0. (62)

We note that Eq. (60) contains terms with different powers
of r. Since r depends on tr/ul , one could expect the behavior
of the eigenvalues to be insensitive to perturbations when
|ul | = |tr |, but this is not the case for this model, in contrast
to previous models. We can, however, see that the winding
number of the Bloch Hamiltonian is nonzero when |ul | = |tr |,
so the result is somewhat expected. Technically, the reason for
this behavior is that the eigenvectors (55) generically have an
exponential behavior, even when the parameters appear to be
“balanced” as |ul | = |tr |.

We illustrate this in Fig. 5, where we plot the eigenval-
ues for a chain of length N = 30, with parameters (ul , tr ) =
(2, 1); (1, 1); (1, 2), and δ varying from δ = 0 to δ = 1. We
observe that in all three cases, the eigenvalues are sensitive
to the boundary conditions, and there is a nonzero winding
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FIG. 6. Model with longer range hopping that cannot be solved
by the method. If ul = tr and ur = tl , this is a chain of triangles.

number for δ = 1, even in the case where the hopping to the
left and right seem to be balanced. Also the eigenstates have a
pronounced skin effect (not shown).

3. Example of a system not solvable by the method

Since the described method to find eigenvalues relies on
finding zeros of a polynomial equation of a degree propor-
tional to the hopping range, it will typically fail for more
complicated systems since we cannot solve such equations ex-
actly. Nevertheless, we will briefly look at one such system,
which will be of interest for later use.

We show this model in Fig. 6. The periodic version of this
chain is described by the Bloch Hamiltonian

H (k) = tl e
ik + tre−ik + ul e

2ik + ure−2ik . (63)

We first note that an interesting special case of the model
described by Eq. (63) is the case ul = tr and ur = tl . For these
parameters, one ends up with a chain of triangles and a Bloch
Hamiltonian given by

H (k) = tl e
ik + tre−ik + tre2ik + tl e

−2ik

= cos

(
3k

2

)
[treik/2 + tl e

−ik/2]. (64)

Unless tr/tl is a phase, the eigenvalues in general form a loop
in the complex plane, and the system will thus be exponen-
tially sensitive to boundary conditions.

We note that there are several choices of the parameters,
such that H (k) in Eq. (63) does not wind.

One way of achieving this is by setting tl = tei(φ+φ1/2),
tr = tei(φ−φ1/2), ul = uei(φ+φ2/2), ur = uei(φ−φ2/2). For these
parameters, the Hamiltonian becomes

H (k) = 2eiφ[t cos(k + φ1/2) + u cos(2k − φ2/2)]. (65)

Assuming that t, u, and the angles φ are real, this forms a
straight line segment in the complex plane, and thus there
is no winding of the spectrum in this case, which means
that for these parameter values the spectrum has nonexpo-
nential sensitivity. We note that the condition we get on
the hopping parameters for this to be the case, is slightly
different from previous conditions in systems with nearest-
neighbor hopping. Namely, we get a conditions also on the
relative phases of the parameters, and not only on the absolute
values.

A second way of achieving this is the case that tl =
teiφ1 ul = teiφ1+iφtr = teiφ2 uR = teiφ2−iφ . For these parame-

ters, the Hamiltonian becomes

H (k) = 4tei(φ1+φ2 )/2 cos ((k + φ)/2)

× cos ((3k + φ + φ1 − φ2)/2). (66)

Again, for t and the phases φ real, this forms a straight line
segment in the complex plane, implying that the spectrum has
nonexponential sensitivity.

Finally, there is a third case, tl = teiφ1tr = teiφ1+φul =
teiφ2 uR = teiφ2+2iφ . In this case, the Hamiltonian becomes

H (k) = 2(teiφ1+φ/2 cos(k − φ/2) + ueiφ2+φ cos(2k − φ)).
(67)

In this case, the values of H (k) (with t, u, and the phases φ

real) do not generically form a straight line in the complex
plane. However, because the argument of the second cosine
is twice the argument of the first cosine, one obtains a curve
where the part with π � k � 2π traces back the part of the
curve with 0 � k � π . Again, we conclude that there is no
winding for these parameters, and hence the spectrum has
nonexponential sensitivity.

We believe that the three cases above exhaust the ways in
which one can obtain an H (k) that does not wind.

III. TOWARDS TWO-DIMENSIONAL SYSTEMS

In this section, we consider two-dimensional systems that
we construct by stacking one-dimensional chains studied in
Sec. II. Contrary to the one-dimensional case, we will here
allow for more complicated boundary conditions, so in the
direction of stacking, we will have two parameters, δ2 and
δ′

2 determining the boundary conditions. The one-dimensional
chains, however, have the regular coupling by a single param-
eter δ1, which takes values in the interval [0,1]. Suppose we
stack N2 chains, each containing N1 sites. The Hamiltonian
for such a system can be described by the N1N2 × N1N2-
matrix

H =

⎛
⎜⎜⎜⎝

A(δ1) B(δ1) δ2C(δ1)

C(δ1) A(δ1) . . .
. . .

. . . B(δ1)
δ′

2B(δ1) C(δ1) A(δ1)

⎞
⎟⎟⎟⎠, (68)

where A(δ1), B(δ1) and C(δ1) are N1 × N1-matrices describing
the one-dimensional chains and the coupling between them
respectively (we drop the dependence of A, B, and C on the
other parameters of the model) [58].

To find analytic expressions for this kind of matrix for
arbitrary δ1 and δ2, δ

′
2 is in general a very hard problem.

In particular it is difficult to find the eigenvalues for open
boundary conditions in both directions, i.e., for all δ’s being
zero. If one were to try to implement the method used for
one-dimensional systems, by considering a unit cell of size
N2, one would end up with several bulk equations that depend
on the size of the system, and this would not be solvable.
Alternatively, one can simplify the bulk equations, by making
use of the two-dimensional nature of the problem, and write
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the elements of the eigenvectors as ψi, j . This indeed leads to a
simple bulk equation, but also results in the complication that
the boundary equations in one direction should be satisfied for
all possible locations in the other direction. It turns out that
this approach does not work either.

Below, we consider two special types of boundary con-
ditions, for which we can obtain an analytic solution, but
we start even simpler, by briefly noting that one can con-
struct solvable models on the square lattice (for details, see
Appendix C). To do this, we simply take a one-dimensional
model that we solved, i.e., for which we know the functional
form of the eigenvalues λα , as well as the equation for α,
denoted by eqα . The square lattice model now has the hopping
parameters of this model in the horizontal direction, and the
hopping parameters of a second solved model in the vertical
direction, with eigenvalues λβ , where β satisfies eqβ . The
eigenvalues of the square lattice model are then simply given
by λα,β = λα + λβ , since the two directions are completely
independent of each other.

We will, however, be interested in studying more compli-
cated models that cannot be solved exactly if we have open
boundary conditions. Thus, in this section, we will study
two special cases of boundary conditions that can be solved
analytically and then use them to try and make predictions of
the system with open boundary conditions.

BC 1. We will begin by assuming that δ2 = δ′
2 = 1, making

the system periodic in one direction, while we can interpolate
between open and periodic boundary conditions in the other
direction. Taking the Fourier transform of H in the periodic
direction, we get a Bloch Hamiltonian of the form

H̃j = A(δ1) + ω jB(δ1) + ω−1
j C(δ1), (69)

where now ω j = exp(2π i j/N2), which has the property that if
λ jk is an eigenvalue of H̃j with corresponding eigenvector v jk ,
then λ jk is an eigenvalue of H with corresponding eigenvector

(v jk v jkω j v jkω
2
j . . . v jkω

N2−1
j )

T
.

BC 2. Next, we consider the case δ′
2 = δ−1

2 . Define the
matrix

T =

⎛
⎜⎜⎜⎝

δ
1/N2
2

δ
2/N2
2

. . .

δ2

⎞
⎟⎟⎟⎠ ⊗ IN1 . (70)

Then

T −1HT =

⎛
⎜⎜⎜⎝

A Bδ
1/N2
2 Cδ

−1/N2
2

Cδ
−1/N2
2 A . . .

. . .
. . . Bδ

1/N2
2

Bδ
1/N2
2 Cδ

−1/N2
2 A

⎞
⎟⎟⎟⎠. (71)

This describes a system with periodic boundary conditions
in one direction, and its eigenvalues are given by the eigenval-
ues of the matrices

H̃j = A(δ1) + ω jδ
1/N2
2 B(δ1) + ω−1

j δ
−1/N2
2 C(δ1), (72)

where ω j = exp(2π i j/N2). For δ2 = 1, this case reduces to
BC 1 as it should.

FIG. 7. The lattice consisting of stacked Hatano-Nelson chains.

A. Stacking Hatano-Nelson chains

Now we study an explicit model, which is insensitive to
boundary conditions, for correctly chosen parameters. Con-
sider the lattice shown in Fig. 7 with boundary conditions
according to BC 1. In this system, we have

A(δ1) =

⎛
⎜⎜⎜⎜⎜⎝

td tl δ1tr
tr td tl

tr
. . .

. . .
. . .

. . . tl
δ1tl tr td

⎞
⎟⎟⎟⎟⎟⎠, (73)

B(δ1) =

⎛
⎜⎜⎜⎜⎜⎝

ud vdl δ1vdr

vdr ud vdl

vdr
. . .

. . .
. . .

. . . vdl

δ1vdl vdr ud

⎞
⎟⎟⎟⎟⎟⎠, (74)

and

C(δ1) =

⎛
⎜⎜⎜⎜⎜⎝

uu vul δ1vur

vur uu vul

vur
. . .

. . .
. . .

. . . vul

δ1vul vur uu

⎞
⎟⎟⎟⎟⎟⎠. (75)

The eigenvalues of the matrix H can be found by diagonal-
izing the matrix H̃j defined in Eq. (69). In this case, we have

H̃j =

⎛
⎜⎜⎜⎜⎜⎝

hd hl δ1hr

hr hd hl

hr
. . .

. . .
. . .

. . . hl

δ1hl hr hd

⎞
⎟⎟⎟⎟⎟⎠, (76)

where

hd = td + ω jud + ω−1
j uu,

hr = tr + ω jvdr + ω−1
j vur,

hl = tl + ω jvdl + ω−1
j vul . (77)
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The matrix H̃j is precisely of the form discussed in Eq. (14)
and its eigenvalues are thus given by

λ jα = hd + 2
√

hl

√
hr cos(α̃), (78)

where α̃ is determined by the equation

δ1

(
hN1/2

l

hN1/2
r

+ hN1/2
r

hN1/2
l

)
− sin[(N1 + 1)α̃]

sin(α̃)

+ δ2
1

sin[(N1 − 1)α̃]

sin(α̃)
= 0. (79)

We note that for∣∣∣∣ hl

hr

∣∣∣∣ =
∣∣∣∣∣ tl + ω jvdl + ω−1

j vul

tr + ω jvdr + ω−1
j vur

∣∣∣∣∣ = 1, (80)

the spectrum has nonexponential sensitivity. This condition is
independent of td , ud and uu, which is reasonable since these
parameters are either on-site potentials or hoppings in the
direction of periodic boundary conditions. In case Eq. (80)
is fulfilled, as was previously shown, α̃ is real and thus
cos(α̃) ∈ [−1, 1]. This means that the eigenvalues given in
Eq. (78) are contained in the set given by the values of the
function

f (t, c) = z1(t ) + cz2(t ), (81)

where

z1(t ) = td + eit ud + e−it uu, (82)

and

z2(t ) = 2
√

tr + eitvdr + e−itvur

√
tl + eitvdl + e−itvul , (83)

with c ∈ [−1, 1] and t ∈ [0, 2π ]. We obtained z1(t ) and z2(t )
from hd and 2

√
hl

√
hr respectively by replacing ω j with eit .

We note that for each t , the values of f (t, c) form a line
segment in the complex plane between the points z±(t ) =
z1(t ) ± z2(t ). That is,

z±(t ) = td + eit uu + e−it ud ± 2
√

tr + eitvur + e−itvdr

×
√

tl + eitvul + e−itvdl (84)

where t ∈ [0, 2π ]. This means that irrespective of the value of
δ1, the eigenvalues of H will be contained in the area formed
by connecting the points z±(t ) on the two curves by straight
lines. We also note that as we increase N1, the number of
different solutions to the equation for α̃ will increase, and as
we increase N2 the number of ω j increases, and thus, as we
make the system larger, more and more of the area will be
covered by eigenvalues. Therefore, as we will see is useful
later, we argue that in the thermodynamic limit, the spectrum
in this area will be dense.

We are interested in finding out when the parameter values
fulfill Eq. (80). This happens when hl = e2π ir/N2 hr , which
means that

tl + ω jvdl + ω−1
j vul = e2π ir/N2

(
tr + ω jvdr + ω−1

j vur
)
, (85)

where r is a real number. Here we will study some particu-
larly interesting cases. From now on we will assume that the
parameters of H are real.

Case 1. For hr = h∗
l , Eq. (80) is fulfilled and we have r =

− arg(hr )N2/π . Furthermore, we get tr = tl , vur = vdl and
vdr = vul . We note that the Hermitian case is a special case of
this. In the upper panel of Fig. 8, we plot the curves z±(t ) to-
gether with the eigenvalues of a system with tr = tl = 2, vur =
vdl = 4, vdr = vul = 3, td = 1, uu = −3, and ud = 2 for N1 =
N2 = 30 when we change δ1 in steps of 0.01 from δ1 = 0 (blue
dots) to δ1 = 1 (red dots). We see that the eigenvalues lie along
straight line segments connecting the two curves and that the
spectrum has nonexponential sensitivity. In the lower panel,
we plot the right expectation value 〈
α̃,n〉r,r = |ψ r

α̃,n|2 for a
representative eigenvector, which shows that we have no skin
effect at these parameter values.

Case 2. The case r = 0 implies hr = hl , i.e., tl = tr, vul =
vur, vdl = vdr , which means that the three matrices A, B, and
C are Hermitian, while the full Hamiltonian H might not be.
The eigenvalues are in this case given by

λ jα̃ = hd + 2hr cos(α̃), (86)

where α̃ is given by the equation

2δ1 − sin[(N1 + 1)α̃]

sin(α̃)
+ δ2

1
sin[(N1 − 1)α̃]

sin(α̃)
= 0. (87)

In this case, z±(t ) reduces to

z±(t ) = td ± 2tr + eit (ud ± 2vdr ) + e−it (uu ± vur ), (88)

where t ∈ [0, 2π ]. That is, two ellipses centered at td ± 2tr .
In the upper panel of Fig. 8, we plot the curves z±(t ) to-
gether with the eigenvalues of a system with tr = tl = 2,
vur = vul = 3, vdr = vdl = 4, td = 1, uu = −3, and ud = 2
for N1 = N2 = 30 when we change δ1 in steps of 0.01 from
δ1 = 0 (blue dots) to δ1 = 1 (red dots). In the lower panel,
we plot the right expectation value 〈
α̃,n〉r,r = |ψ r

α̃,n|2 for a
representative eigenvector, which shows that we have no skin
effect at these parameter values.

Case 3. The case r = j (i.e., e2π ir/N2 = ω j) implies that
tl = vur, vdl = tr, vul = vdr = 0. This is a non-Hermitian ma-
trix with eigenvalues given by

λ jα̃ = td + ω jud + ω−1
j uu

+ 2 cos(α̃)
√

tl + ω jtr
√

ω−1
j (tl + ω jtr ), (89)

where α̃ is given by the equation

δ2
1 sin[α̃(N1 − 1)] + 2δ1 cos

(
π j

N1

N2

)
sin(α̃)

− sin[α̃(N1 + 1)] = 0. (90)

Rewriting the eigenvalues as

λ jα̃ = td + ω jud + ω−1
j uu + 2 cos(α̃)(tl e

−π i j/N1 + treπ i j/N1 ),
(91)

shows that z±(t ) in this case reduce to

z±(t ) = td + ud eit + uue−it ± 2(tl e
−it/2 + treit/2), (92)

where t ∈ [0, 2π ]. These two curves are actually two seg-
ments that together form a closed loop s(t ′) in the complex
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FIG. 8. Plots for the stacked HN model, with system sizes N1 = N2 = 30. Upper panel: Eigenvalues of systems representative of the
different cases, including one unbalanced case. The dots show how the eigenvalues change when we change δ in steps of 0.01 from 0 (blue
dots) to 1 (red dots). We also plot the curves z±(t ) and see that the eigenvalues lie on straight lines connecting them. Lower panel: Right
expectation values of a representative state for each of the respective cases. For the parameter values in the four cases, we refer to the main
text.

plane, described by

Re[s(t ′)] = td + (uu + ud ) cos(2t ′) + 2(tl + tr ) cos(t ′),

Im[s(t ′)] = (ud − uu) sin(2t ′) + 2(tr − tl ) sin(t ′), (93)

where t ′ ∈ [0, 2π ]. The eigenvalues of H will thus lie on line
segments joining two points on this curve.

In the upper panel of Fig. 8, we plot the curves z±(t )
together with the eigenvalues of a system with tr = vdl = 1,
tl = vur = 2, vdr = vul = 0, td = 1, uu = −3, and ud = 2 for
N1 = N2 = 30 when we change δ1 in steps of 0.01 from
δ1 = 0 (blue dots) to δ1 = 1 (red dots). In the lower panel,
we plot the right expectation value 〈
α̃,n〉r,r = |ψ r

α̃,n|2 for a
representative eigenvector, which shows that we have no skin
effect at these parameter values.

Case 4. The case r = − j (i.e., e2π ir/N2 = ω−1
j ) implies that

tl = vdr, vdl = vur = 0, vul = tr . This case is similar to the
previous one, and therefore not shown in Fig. 8.

Unbalanced. Finally, we consider an unbalanced case, with
parameters td = 1, tr = 2, tl = 3, uu = 4, vur = 5, vul = 6,
ud = 7, vdr = 8, vdl = 9. From the plot in the upper panel
of Fig. 8, where we have plotted the eigenvalues of this
system for N1 = N2 = 30 when changing δ1 in steps of 0.01
from δ1 = 0 (blue dots) to δ1 = 1 (red dots), it is clear that
the eigenvalues do not lie on straight lines between two
curves. In the lower panel, we plot the right expectation value
〈
α̃,n〉r,r = |ψ r

α̃,n|2 for a representative eigenvector, which
shows that in this case, we do have a skin effect.

Comparing the plots in Fig. 8, we see a clear difference in
behavior of the eigenvalues between the balanced and unbal-
anced cases. Similar to what we saw for the Hatano-Nelson
model and the SSH chain, we see that the eigenvalues of the
unbalanced system change significantly even for a very small
change in δ1, while there is a much less drastic change for the
balanced system.

1. Special case: A triangular lattice

Up until now, we have effectively been studying a one-
dimensional system with a large unit cell. We can, however,
attempt to make some predictions of the behavior of the eigen-
values of the system with nonperiodic boundary conditions
in both directions. Namely, let us implement the balancing
conditions from Case 3 in both directions of the lattice. Then,
we end up with

A(δ1) =

⎛
⎜⎜⎜⎝

0 tl δ1tr

tr
. . .

. . .
. . .

. . . tl
δ1tl tr 0

⎞
⎟⎟⎟⎠, (94)

B(δ1) =

⎛
⎜⎜⎜⎝

tr δ1tl

tl
. . .
. . .

. . .

tl tr

⎞
⎟⎟⎟⎠, (95)
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FIG. 9. The triangular lattice resulting from implementing the
balancing conditions from Case 3 in both directions.

and

C(δ1) =

⎛
⎜⎜⎜⎝

tl tr
. . .

. . .

. . . tr
δ1tr tl

⎞
⎟⎟⎟⎠, (96)

which describes a triangular lattice, schematically shown in
Fig. 9. For this subclass of Case 3, it turns out that if one
implements the boundary conditions BC 1, the eigenvalues
are actually contained within the curve Eq. (93). One would
expect that having implemented the balancing condition in
both directions, the eigenvalues would show nonexponential
sensitivity to changes in δ1 and δ2. Surprisingly enough, how-
ever, we find this to be the case only when N1 = N2. We
numerically study the triangular lattice with open boundary
conditions in one direction when going from open to periodic
boundary conditions in the other. As expected, the eigenvalues
still lie within the region bounded by the curve in Eq. (93)
for all values of N1 and N2. Moreover, the spectrum seems
to have nonexponential sensitivity when N1 = N2. However,
when N1 �= N2, and in particular when N2 � N1 or N1 � N2,
we start to see a higher sensitivity to boundary conditions and
that the eigenstates start to localize at the end of the lattice.
This can be seen in Fig. 10, where we plot a part of the
eigenvalue spectrum for a triangular lattice with tl = 1 and
tr = 5 for different values of N2 when keeping δ2 = δ′

2 = 0
and changing δ1 from 0 to 1 in steps of 0.01. In this figure, we
also plot the right expectation value 〈
α̃,n〉r,r = |ψ r

α̃,n|2 for a
representative eigenvector, for the different values of N2. We
see how the states show a significant localization to one of the
sides of the system when N2 � N1, but not when N2 = N1.
We already encountered this behavior in Sec. II C 3 for the
Hamiltonian in Eq. (64), which describes the case N2 = 2,
where we saw that we do have a skin effect. Here, we thus
see a gradual disappearance of the skin effect when we let N2

approach N1. We checked that the localization of the eigen-
states is always “in the long direction of the system”, so the
localization due to the skin effect we observe here, is similar
to the localization due to skin effect in the one-dimensional
systems we studied earlier. To explain the presence of the skin
effect in the triangular lattice model, we interpret the model
as a one-dimensional model with a large unit cell of size N2

and length N1, such that N2 � N1. In this way, we can use
the phase winding formula (1), which implicitly assumes the
thermodynamic limit N1 → ∞. To apply Eq. (1), we assume,
for simplicity, that the system is open in the “2” direction. That
means that the Bloch Hamiltonian is a N2 × N2 tridiagonal

FIG. 10. Upper panel: Part of the spectrum of the triangular
system for tl = 1, tr = 5, N1 = 30 and different values of N2. The
dots show how the eigenvalues change when we change δ1 in steps of
0.01 from 0 (blue dots) to 1 (red dots). Lower panel: Plot of the right
expectation value of a representative state for each of the respective
system sizes. We see the gradual disappearance of the skin effect as
N2 approaches N1 when the right eigenstates become delocalized and
the eigenvalues become less sensitive to boundary conditions.

matrix

H (k) =

⎛
⎜⎜⎜⎝

a b 0

c . . .
. . .

. . .
. . . b

0 c a

⎞
⎟⎟⎟⎠, (97)

where a = tl e−ik + treik , b = tr + tl eik , c = tl + tre−ik . We
denote the determinant by det(N2). It is straightforward to
show that det(N2) = a det(N2 − 1) − bc det(N2 − 2), while
det(1) = a and det(2) = a2 − bc. Generically, det(N2) will
wind around some point in the complex plane, implying that
the system shows a skin effect, consistent with our results that
we for generic parameters observe a skin effect when N2 �=
N1. The argument above does not imply that we should have a
skin effect for all values N1, because we need the assumption
that N1 � N2. Indeed, when N1 is of the order of N2, the
system cannot be considered one-dimensional. Nevertheless,
it is interesting to see that we do not observe a skin effect when
N1 ∼ N2 and both large, because in principle, there could have
been.

Using the above approach, we can also try to find param-
eters for which the skin effect is absent, regardless of the
system sizes. It turns out that by setting tr/tl = eiφ , with φ

real, the determinant takes the form det(N2) = eiN2φ/2 f (k, φ),
where f (k, φ) is real and periodic in k. So in this case, det(N2)
does not wind in the complex plane, and we do not have a skin
effect. This is consistent with what we saw in Sec. II C 3.

The dependence of the skin effect on the ratio N1/N2 we
observe here seems to contradict the results in [59]. Namely,
in this reference, it is claimed that we have a skin effect in
a two-dimensional system if and only if the spectral area is
finite. As we have argued before, the spectral area of the
triangular lattice is finite when we let the system size go to
infinity, also when keeping the ratio N1/N2 �= 1 constant. This
does also not seem to be taken into account by the exception
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of the geometry dependent skin effect, described in the same
reference, where it is said that if the boundary of the system
coincides with a mirror symmetry line of the lattice, the skin
effect will disappear, even if the spectral area is finite. In our
case, the boundaries of the system do coincide with mirror
symmetry lines, but we still have, for N1 �= N2, a localization
of the eigenstates to one of the sides of the lattice, which
implies that the mirror symmetry is not enough to prevent the
skin effect from appearing.

We do not have analytical expressions for the eigenvalues
in the case that δ2 = δ′

2 = 0, and δ1 interpolates between 0 and
1, so we cannot see analytically how the difference between
N1 and N2 would affect the behavior of the eigenvalues in this
case. However, we can get a hint of this if we instead consider
the system with the different boundary conditions from BC 2.
Then we get

H̃j =

⎛
⎜⎜⎜⎜⎜⎝

hd hl δ1hr

hr hd hl

hr
. . .

. . .
. . .

. . . hl

δ1hl hr hd

⎞
⎟⎟⎟⎟⎟⎠, (98)

where

hd = trω jδ
1/N2
2 + tlω

−1
j δ

−1/N2
2 ,

hl = tl + trω
−1
j δ

−1/N2
2 ,

hr = tr + tlω jδ
1/N2
2 . (99)

We know the eigenvalues of this matrix. They are given by

λ jk = trω jδ
1/N2
2 + tlω

−1
j δ

−1/N2
2

+ 2
√

tl + trω
−1
j δ

−1/N2
2

√
tr + tlω jδ

1/N2
2 cos(α̃), (100)

where α̃ is determined by the equation

δ1
([

ω−1
j δ

−1/N2
2

]N1/2 + [
ω jδ

1/N2
2

]N1/2)
− sin[(N1 + 1)α̃]

sin(α̃)
+ δ2

1
sin[(N1 − 1)α̃]

sin(α̃)
= 0, (101)

and we see that unless N1 = N2 there will be an exponential
dependence on system size in α̃. To derive Eq. (101), we
assumed that N1 is even, so that we do not have to worry
about square roots. We note that this exponential dependence
on the system size is somewhat different form the exponential
dependence we encountered so far. Here, it is the perturbing
parameter δ2 that is raised to the power N1/N2, while earlier,
it was some combination of the hopping parameters that was
raised to the system size.

As we stated above, the boundary conditions we consid-
ered here are not the same as in Fig. 10. However, with the
boundary conditions BC 2, we do get similar behavior of the
spectrum as in Fig. 10. Namely, depending on the ratio N1/N2,
there is a skin effect (that is pronounced when N1 � N2). In
the presence of the skin effect, the eigenvalues are also sen-
sitive to changes in δ2. Because of the similarity in behavior,
we think that the mechanism at play in the case of Fig. 10, is

FIG. 11. The kagome lattice.

similar to the mechanism we just obtained analytically for the
boundary conditions BC 2.

We close the discussion on the triangular lattice system, by
making a few remarks about the sensitivity of the eigenvalues
when we do have a skin effect. Because the exponential de-
pendence on the system size in Eq. (101) has exponent N1/N2,
one has to specify in which way one takes the large system
size limit, when discussing the sensitivity of the eigenvalues as
a function of system size. If one fixes the ratio N1/N2, and take
both N1 and N2 large, the sensitivity of the eigenvalues does
not change in the large system size limit. If, on the other hand,
one fixes the size of one of the directions, the exponential
sensitivity increases when making the other direction large.
In any case, if the eigenvalues are sensitive, this is due to the
presence of the skin effect. As stated above, the interesting
aspects of the triangular lattice system are the presence of the
skin effect, despite the fact that we have “balanced” param-
eters in both directions, and that the appearance of the skin
effect depends on the ratio N1/N2.

2. The kagome lattice

Perhaps a more interesting system, which, as is shown
in [5], supports boundary states, is the kagome lattice. This
system has similarities with the triangular lattice, and the
results from the triangular case seem to be generalizable to
the kagome bulk states. Here we look at the kagome lattice
with hoppings according to Fig. 11.

Also in this case, we observed numerically that for N1 =
N2, the bulk spectrum has nonexponential sensitivity to the
boundary conditions, while for N2 � N1, we seem to have a
higher sensitivity among the bulk states. By studying the right
eigenvectors of these insensitive eigenvalues, we notice that,
just as in the case of the triangular lattice, for each eigenvector
ψ , 〈
n〉rr becomes more localized the bigger the difference
between N1 and N2 is, which implies that we get a skin effect
when N1 and N2 deviate from each other. This phenomenon
with the emerging skin effect shows that the explanation for
the absence of the skin effect given in [5] is incomplete.
There, the closed loops formed in the system were used as
an explanation for not getting this build-up of the eigenstates
in the system, but since the loops exist also in the case of
N1 �= N2 there must be something more behind this. We do
currently not have an explanation for this behavior, but as
we observed for the triangular lattice in the case of BC2, the
sensitivity depends on N1/N2, which is at least an indication
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FIG. 12. The lattice consisting of stacked SSH chains.

that it is not unreasonable to expect a similar dependence on
system size also in this case.

B. Stacking SSH chains

Finally, we study the lattice in Fig. 12, which is obtained
by stacking SSH chains. In this case, we have (for N1 even)

A(δ1) =

⎛
⎜⎜⎜⎜⎜⎝

td,1 tl,1 δ1tr,2
tr,1 td,2 tl,2

tr,2
. . .

. . .
. . .

. . . tl,1
δ1tl,2 tr,1 td,2

⎞
⎟⎟⎟⎟⎟⎠, (102)

B(δ1) =

⎛
⎜⎜⎜⎜⎜⎝

ud,1 vdl,1 δ1vdr,2

vdr,1 ud,2 vdl,2

vdr,2
. . .

. . .
. . .

. . . vdl,1

δ1vdl,2 vdr,1 ud,2

⎞
⎟⎟⎟⎟⎟⎠, (103)

C(δ1) =

⎛
⎜⎜⎜⎜⎜⎝

uu,1 vul,1 δ1vur,2

vur,1 uu,2 vul,2

vur,2
. . .

. . .
. . .

. . . vul,1

δ1vul,2 vur,1 uu,2

⎞
⎟⎟⎟⎟⎟⎠, (104)

which means that we get

H̃j =

⎛
⎜⎜⎜⎜⎜⎝

hd,1 hl,1 δ1tr,2
hr,1 hd,2 hl,2

hr,2
. . .

. . .
. . .

. . . hl,1

δ1hl,2 hr,1 hd,2

⎞
⎟⎟⎟⎟⎟⎠, (105)

where

hd,1 = td,1 + ω jud,1 + ω−1
j uu,1,

hd,2 = td,2 + ω jud,2 + ω−1
j uu,2,

hl,1 = tl,1 + ω jvdl,1 + ω−1
j vul,1,

hl,2 = tl,2 + ω jvdl,2 + ω−1
j vul,2,

hr,1 = tr,1 + ω jvdr,1 + ω−1
j vur,1,

hr,2 = tr,2 + ω jvdr,2 + ω−1
j vur,2, (106)

and ω j = e2π i j/N2 . From Eqs. (42) and (34) in Sec. II B, we
know how to find the eigenvalues of this matrix. Namely, they
are given by

λ jα̃ = hd,1 + hd,2

2
±

[(
hd,1 − hd,2

2

)2

+ hr,1hl,1 + hr,2hl,2

+ 2 cos(α̃)
√

hr,1

√
hl,1

√
hr,2

√
hl,2

]1/2

, (107)

where α̃ is determined by the equation

0 = − sin[α̃(N1/2 + 1)]

sin(α̃)
+ δ2

1
sin[α̃(N1/2 − 1)]

sin(α̃)

+ (
δ2

1 − 1
)√

hl,2
√

hr,2√
hl,1

√
hr,1

sin(α̃N1/2)

sin(α̃)

+ δ1

[(√
hr,1

√
hr,2√

hl,1
√

hl,2

)N1/2

+
(√

hl,1
√

hl,2√
hr,1

√
hr,2

)N1/2]
.

(108)

As before, we note that if

∣∣∣∣
√

hr,1
√

hr,2√
hl,1

√
hl,2

∣∣∣∣ = 1, (109)

the exponential sensitivity of the spectrum disappears. Similar
to the results in the previous section, we see that this gives rise
to several different cases, and we will now list some of them
together with plots of the eigenvalues of some representative
systems. Assuming that all parameters are real, we first list
four cases where individual hoppings are related to each other.

Case 1. The case hr,1 = hl,1 and hr,2 = hl,2. This implies

tr,1 = tl,1, vdr,1 = vdl,1, vur,1 = vul,1,

tr,2 = tl,2, vdr,2 = vdl,2, vur,2 = vul,2. (110)

In Fig. 13, we plot the eigenvalues of a system
with tr,1 = tl,1 = 1, vdr,1 = vdl,1 = 3, vur,1 = vul,1 = 5, tr,2 =
tl,2 = 2, vdr,2 = vdl,2 = 4, vur,2 = vul,2 = 6, td,1 = 1, td,2 =
4, uu,1 = 2, uu,2 = 5, ud,1 = 3, and ud,2 = 6 for N1 = N2 =
20 when we change δ1 in steps of 0.01 from δ1 = 0 (blue dots)
to δ1 = 1 (red dots).

Case 2. The case hr,1 = h∗
l,1 and hr,2 = h∗

l,2. This implies

tr,1 = tl,1, vdr,1 = vul,1, vur,1 = vdl,1,

tr,2 = tl,2, vdr,2 = vul,2, vur,2 = vdl,2. (111)
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FIG. 13. Plots of the eigenvalues of different lattices of stacked SSH chains. The dots show how the eigenvalues change when we change
δ1 in steps of 0.01 from 0 (blue dots) to 1 (red dots). In all cases, the system size is N1 = N2 = 30, with δ2 = δ′

2 = 0, and the other parameters
in each case can be found in the main text.

In Fig. 13, we plot the eigenvalues of a system
with tr,1 = tl,1 = 1, vdr,1 = vul,1 = 3, vur,1 = vdl,1 = 5, tr,2 =
tl,2 = 2, vdr,2 = vul,2 = 4, vur,2 = vdl,2 = 6, td,1 = 1, td,2 =
4, uu,1 = 2, uu,2 = 5, ud,1 = 3, and ud,2 = 6 for N1 = N2 =
20 when we change δ1 in steps of 0.01 from δ1 = 0 (blue dots)
to δ1 = 1 (red dots).

Case 3. The case hr,1 = hl,2 and hr,2 = hl,1. This implies

tr,1 = tl,2, vdr,1 = vdl,2, vur,1 = vul,2,

tr,2 = tl,1, vdr,2 = vdl,1, vur,2 = vul,1. (112)

In Fig. 13, we plot the eigenvalues of a system
with tr,1 = tl,2 = 1, vdr,1 = vdl,2 = 3, vur,1 = vul,2 = 5, tr,2 =
tl,1 = 2, vdr,2 = vdl,1 = 4, vur,2 = vul,1 = 6, td,1 = 1, td,2 =
4, uu,1 = 2, uu,2 = 5, ud,1 = 3, and ud,2 = 6 for N1 = N2 =
20 when we change δ1 in steps of 0.01 from δ1 = 0 (blue dots)
to δ1 = 1 (red dots).

Case 4. The case hr,1 = h∗
l,2 and hr,2 = h∗

l,1. This implies

tr,1 = tl,2, vdr,1 = vul,2, vur,1 = vdl,2,

tr,2 = tl,1, vdr,2 = vul,1, vur,2 = vdl,1. (113)

In Fig. 13, we plot the eigenvalues of a system
with tr,1 = tl,2 = 1, vdr,1 = vul,2 = 3, vur,1 = vdl,2 = 5, tr,2 =
tl,1 = 2, vdr,2 = vul,1 = 4, vur,2 = vdl,1 = 6, td,1 = 1, td,2 =
4, uu,1 = 2, uu,2 = 5, ud,1 = 3, and ud,2 = 6 for N1 = N2 =
20 when we change δ1 in steps of 0.01 from δ1 = 0 (blue dots)
to δ1 = 1 (red dots).

We notice that all these cases imply an overall balancing of
the hoppings in the unit cell. In general, however, Eq. (109)
implies

hr,1hr,2 = e2π ir/N2 hl,1hl,2, (114)

where r ∈ R, which means that we also can get conditions
consisting of relations between products of hopping parame-
ters. We list a few such cases.

Case 5. For r = 0, we get

tr,1tr,2+vdr,1vur,2+vur,1vdr,2 = tl,1tl,2+vdl,1vul,2+vul,1vdl,2,

tr,1vdr,2 + vdr,1tr,2 = tl,1vdl,2 + vdl,1tl,2,

tr,1vur,2 + vur,1tr,2 = tl,1vul,2 + vul,1tl,2,

vdr,1vdr,2 = vdl,1vdl,2,

vur,1vur,2 = vul,1vul,2. (115)
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Case 6. For r = j, we get

tr,1tr,2+vdr,1vur,2+vur,1vdr,2 = tl,1vul,2 + vul,1tl,2,

tr,1vdr,2 + vdr,1tr,2 = tl,1tl,2+vdl,1vul,2+vul,1vdl,2,

tr,1vur,2 + vur,1tr,2 = vul,1vul,2,

vdr,1vdr,2 = tl,1vdl,2 + vdl,1tl,2,

vur,1vur,2 = 0,

vdl,1vdl,2 = 0. (116)

Case 7. For r = 2 j, we get

tr,1tr,2+vdr,1vur,2+vur,1vdr,2 = vul,1vul,2

tr,1vdr,2 + vdr,1tr,2 = tl,1vul,2 + vul,1tl,2,

tr,1vur,2 + vur,1tr,2 = 0,

vdr,1vdr,2 = tl,1tl,2+vdl,1vul,2+vul,1vdl,2,

vur,1vur,2 = 0,

tl,1vdl,2 + vdl,1tl,2 = 0,

vdl,1vdl,2 = 0. (117)

In Fig. 13, we plot the eigenvalues of a system
with tr,1 = tl,1 = 1, vdl,1 = vdl,2 = vur,1 = vur,2 = 0, tr,2 = 6,
tl,2 = 8, vdr,1 = 8/3, vul,1 = 2, vul,2 = 3, td,1 = 1, td,2 = 4,
uu,1 = 2, uu,2 = 5, ud,1 = 3, and ud,2 = 6 for N1 = N2 = 20
when we change δ1 in steps of 0.01 from δ1 = 0 (blue dots) to
δ1 = 1 (red dots).

While the cases 1–4 give us equalities between individual
hopping parameters, we see that cases 5–7 give us relations
between products of adjacent hopping parameters. We also
note that in the cases 5–7 we still need some kind of balance in
the left-right direction, even though it is not as straightforward
as in previous cases. It is interesting to see that by stacking
SSH chains, there are indeed more complicated ways in which
the system can be balanced, because of the fact that one has
more parameters to play with. We note, just as in the case
with stacked HN chains, that the hopping parameters in the
direction of the periodic boundary conditions do not affect the
sensitivity of the spectrum at all.

For comparison, we also plot the eigenvalues of an un-
balanced system with parameters td,1 = 1, uu,1 = 2, ud,1 = 3,
td,2 = 4, uu,2 = 5, ud,2 = 6, tr,1 = 1, tr,2 = 2, tl,1 = 3, tl,2 = 4,
vdr,1 = 1, vdr,2 = 2, vdl,1 = 3, vdl,2 = 4, vur,1 = 1, vur,2 = 2,
vul,1 = 3, and vul,2 = 4 for N1 = N2 = 20 when we change δ1

in steps of 0.01 from δ1 = 0 (blue dots) to δ1 = 1 (red dots).
From the plots in Fig. 13, we see a significant difference

in the behavior of the spectrum between the balanced and a
representative unbalanced case when we change the boundary
conditions.

We would like to comment on Case 4 in Fig. 13. This case
does not look “as neat” at the Cases 1–3. One could wonder if
this is due to numerical inaccuracy, despite the fact that this is
a balanced case. We therefore checked the numerical results
against our analytical results, and found perfect agreement
between the two (that is, agreement up to machine precision).

IV. DISCUSSION

In this paper, we obtain (almost) analytical expressions
for the eigenvalues of non-Hermitian one-dimensional one-
band models with arbitrary boundary conditions. We use the
analytical expressions to analyze the sensitivity of the eigen-
values to the boundary conditions in several one-dimensional
systems. Using the one-dimensional models, we construct
two-dimensional models with arbitrary boundary conditions
in one direction, and either periodic or a particular deforma-
tion of periodic boundary conditions in the other direction.

We find that for most parameter values, we have eigenval-
ues that are exponentially sensitive to boundary conditions,
but that there are parameter values for which this exponential
sensitivity disappears. In this case, the behavior of the eigen-
values, apart from the fact that the eigenvalues can still be
complex, is similar to what we expect in a Hermitian system.

In one-dimensional chains with nearest-neighbor hop-
pings, we find the rather intuitive result that in order for the
spectrum to behave similar to the Hermitian case, the hop-
pings to the left should balance those to the right. This seems
to be a necessary, but not sufficient condition for “Hermitian
behavior”, which is a bit surprising. Even more surprising is
the fact that in the case of longer range hoppings it might not
be possible at all to balance the system. This indicates that the
intuitive understanding of why the system shows “Hermitian
behavior” in some cases is lacking, and it would be interesting
to understand why this is.

In two dimensions, the situation is more complicated. Ide-
ally, one would analytically like to study arbitrary boundary
conditions in both directions, but this turns out to be out of
reach. One can, however, study the case with open boundary
conditions in one direction, and a deformation of periodic
boundary conditions in the other. One can then use these
results to explain the numerically obtained behavior of two-
dimensional systems with open boundaries in both directions.

In particular, we studied a rather general two-dimensional
model obtained by stacking HN chains. This model contains
a hopping model on the triangular lattice as a special case. By
studying this model, with periodic boundary conditions in one
direction, and arbitrary boundary conditions in the other, we
obtain a condition on the hopping parameters, such that the
system is not exponentially sensitive. This condition amounts
to a local balancing of the hopping in the direction with
arbitrary boundary conditions, as in the one-dimensional case.
If one implements this balancing condition in both directions,
one could expect that the system is not exponentially sensitive.
Our numerical results show that this is however not the case.
Only if the system size is the same in both directions, the
spectrum has nonexponential sensitivity. We obtained similar
results for the kagome lattice.

Clearly, obtaining a full understanding of the behavior
and sensitivity of the eigenvalues of two-dimensional systems
with open or arbitrary boundary conditions in both directions
is a question of great interest for future investigation. So far, in
contrast to the one-dimensional case where the winding num-
ber can be used, there is no general condition for the existence
of the skin effect in two-dimensional systems, even though
there have been attempts to come up with such conditions
[59], but these conditions fail to capture the dependence on the
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aspect ratio of the system. In addition, our results also indicate
that the picture put forward in [5], namely that “loops” in the
system would prevent the skin effect, is incomplete.

Apart from stacking HN chains to obtain two-dimensional
models, we also studied two-dimensional models obtained by
stacking non-Hermitian SSH chains. In this case, the balanc-
ing conditions become more complicated, in comparison to
the case where we stacked HN chains. Namely, the balancing
condition for the SSH case, becomes an equation for sums of
product of hopping parameters. Despite the more complicated
condition, one can still find nontrivial solutions, and indeed
cases for which the system is balanced, thus without the ex-
ponential sensitivity to the boundary conditions.

In the current paper, we considered the eigenvalue stabil-
ity of non-Hermitian hopping models. It would certainly be
interesting to extend the current analysis to models including
pairing terms. To deal with pairing terms, one could use the
method of Lieb, Schultz, and Mattis [60], and apply it to
the non-Hermitian case. One can speculate that it should be
possible to find balanced systems, even in the presence of
pairing terms.
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APPENDIX A: SOME DETAILS FOR THE NH MODEL

In this Appendix, we give some more details of the non-
Hermitian hopping model we consider in Sec. II A. Namely,
we show that α̃ is real under certain conditions, and we pro-
vide the solution for a slightly more general model.

1. Proof that α̃ is real for the HN model under certain conditions

In this section, we show that Eq. (25), repeated here for
convenience,

sin([N + 1]α̃) − δ2 sin([N − 1]α̃) = 2δ cos(θ ) sin(α̃),

(A1)

only has real solutions for α̃, provided that −1 � δ � 1 and
θ ∈ R, that is, for |tl | = |tr |. Under these conditions, the
eigenvalues of the Hatano-Nelson model lie on a line segment
in the complex plane. We recall that the trivial solutions α̃ =
0, π should be discarded (unless there are multiple solutions
at these values), because they do not lead to valid eigenstates.
From the argument below, it will become clear that we can as-
sume that cos(θ ) = ±1, because | cos(θ )| < 1 follows easily.
For concreteness, we assume that cos(θ ) = 1.

To show that Eq. (A1) [with cos(θ ) = 1] only has real so-
lutions for −1 � δ � 1, we start by noticing that for δ = ±1,
the equation simplifies to

2 cos(N α̃) sin(α̃) = ±2 sin(α̃) .

We find that the independent solutions for α̃ are indeed real,
and given by α̃ = pπ/N , with p even for δ = 1 and p odd
for δ = −1. Discarding the solutions coming from sin(α̃) =
0, we find that all solutions are double solutions. To pick an
independent set of solutions, we take the double solutions with
0 < p < N , but only one solution for p = 0 and p = N .

The idea behind the proof is to show that upon decreasing
δ from δ = 1, one does not loose any of these real solutions.
To this end, we will show below that

sin([N + 1]α̃) − δ2 sin([N − 1]α̃) > 2δ sin(α̃)

for α̃ = pπ/N with p even and

sin([N + 1]α̃) − δ2 sin([N − 1]α̃) < −2δ sin(α̃)

for α̃ = pπ/N with p odd. In other words, sin([N +
1]α̃) − δ2 sin([N − 1]α̃) is alternatingly larger than 2δ sin(α̃)
and smaller than −2δ sin(α̃). We plot sin([N + 1]α̃) −
δ2 sin([N − 1]α̃) and ±2δ sin(α̃) in Fig. 14, together with the
points α̃ = pπ/N , to show this behavior. This implies that
the double real solutions for α̃ = pπ/N with 1 � p � N − 1
for δ = 1, become distinct real solutions for 0 � δ < 1. It
remains to be shown that the solutions α̃ = 0, π for δ = 1,
remain real upon decreasing δ to zero. To do this, we take
the derivative of both sides of Eq. (A1) at α̃ = 0; a simple
calculation shows that the derivative at α̃ = 0 of the LHS is
larger than the derivative of the RHS for 0 � δ < 1 (see also
Fig. 14). It follows that the solution α̃ = 0 for δ = 1 remains
real for 0 � δ < 1. That this also is true for the solution α̃ = π

follows similarly.

FIG. 14. Plot of the LHS of Eq. (A1), as well as the RHS (with cos(θ ) = +1, −1), as a function of α̃ for N = 14, 15, and δ = 0.6, in green,
red, and blue, respectively. The black dots indicate the LHS, at the values α̃ = pπ/N , for integer p.
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To complete the argument, we need to show that sin([N +
1]α̃) − δ2 sin([N − 1]α̃) − 2δ sin(α̃) > 0 for α̃ = pπ/N with
p even and 0 � δ < 1. Evaluating the LHS, one finds
(d − 1)2 sin(pπ/N ), giving the required result. Similarly, we
find that sin([N + 1]α̃) − δ2 sin([N − 1]α̃) + 2δ sin(α̃) < 0
for α̃ = pπ/N with p odd and 0 � δ < 1.

The proof works similarly when −1 � cos(θ ) < 1, as well
for −1 � δ < 0, which means we covered all cases, and we
are done.

2. Solution for a slightly more general hopping model

In this section, we provide the solution for a slightly more
general non-Hermitian hopping model. In particular, we con-
sider the following Hamiltonian (here given for N = 5 sites)

H =

⎛
⎜⎜⎜⎝

ε1 tl 0 0 δrtr
tr 0 tl 0 0
0 tr 0 tl 0
0 0 tr 0 tl

δl tl 0 0 tr εN

⎞
⎟⎟⎟⎠. (A2)

The method to obtain the eigenvalues is identical to the one
used in the main text in Sec. II A, so we simply state the result
here. The eigenvalues of this modified non-Hermitian hopping
model are given by

λα̃ = 2
√

tr
√

tl cos(α̃), (A3)

where α̃ satisfies the transcendental equation

− sin ((N + 1)α̃)
sin α̃

+ (ε1 + εN )√
tr
√

tl

sin(N α̃)

sin α̃
+

(
δrδl − ε1εN

tltr

)

× sin ((N − 1)α̃)
sin α̃

+ δl
tN/2
l

tN/2
r

+ δr
tN/2
r

tN/2
l

= 0. (A4)

For δl = δr = 0, this case was studied in [61].

APPENDIX B: SOME DETAILS ON THE SSH CHAIN

In this Appendix, we give some more details on the non-
Hermitian SSH model.

1. Solution for even length chains

For completeness, we state the solution for the eigenvalues
of the non-Hermitian SSH chain, Eq. (26), but in the presence
of the perturbations δr and δl in the upper right and lower left
corner respectively (i.e., with matrix elements δrtr,2 and δl tl,2
respectively).

The eigenvalues are as before,

λα̃ =
√

tl,1tr,1 + tl,2tr,2 + 2 cos(α̃)
√

tl,1
√

tr,1
√

tl,2
√

tl,2, (B1)

where α̃ now is a solution of the equation

− sin (α̃(N/2 + 1))
sin(α̃)

+ δlδr
sin (α̃(N/2 − 1))

sin(α̃)

+ (δlδr − 1)
√

tl,2
√

tr,2√
tl,1

√
tr,1

sin(α̃N/2)

sin(α̃)

+
[
δr

(√
tr,1

√
tr,2√

tl,1
√

tl,2

)N/2

+ δl

(√
tl,1

√
tl,2√

tr,1
√

tr,2

)N/2]
= 0. (B2)

2. Solution for odd length chains

In the main text, we give the solution of the system for even
system sizes. Here we provide the solution for chains of odd
length. In this case, the most natural perturbing elements are
δl

√
tl,1

√
tl,2 and δr

√
tr,1

√
tr,2. That is, the Hamiltonian takes

the form

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 tl,1 δr
√

tr,1
√

tr,2
tr,1 0 tl,2

tr,2
. . . tl,1

tr,1
. . .

. . .
. . .

. . . tl,2
δl

√
tl,1

√
tl,2 tr,2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(B3)

The method to obtain the eigenvalues is the same as for the
chains of even length, that is, one determines λ2

α̃ by consider-
ing H2. The functional form of λα̃ is given in Eq. (B1). The
equation to determine α̃ is now given by

λ2
α̃

( sin (α̃(N + 1)/2)
sin(α̃)

− δlδr
sin (α̃(N − 1)/2)

sin(α̃)

)2

= δ2
r tr,1tr,2

( tr,1tr,2
tl,1tl,2

)(N−1)/2
+ δ2

l tl,1tl,2
( tl,1tl,2

tr,1tr,2

)(N−1)/2

+ 2δlδr
√

tl,1
√

tr,1
√

tl,2
√

tr,2. (B4)

In terms of x = eiα̃ , this equation has degree 2L (after multi-
plying with xL), with solutions coming in (x, 1/x) pairs, both
members of a pair giving rise to the same value of λ2

α̃ . In
contrast with the case N even, the spectrum is not symmetric,
so for each independent solution α̃, one needs to determine
the actual sign of the eigenvalue.

To obtain the correct signs of the eigenvalues, we use the
fact that the equation determining α̃, Eq. (B4), contains λ2

α̃ .
We can use this to construct a sign, that depends on the
particular value of α̃. After factoring the right-hand side of
equation (B4), one finds that

σα̃ =
√

tl,1tr,1 + tl,2tr,2 + 2 cos(α̃)
√

tl,1
√

tr,1
√

tl,2
√

tl,2

×
[

sin(α̃(N + 1)/2)

sin(α̃)
− δlδr

sin(α̃(N − 1)/2)

sin(α̃)

]

× (
√

tl,1
√

tr,1
√

tl,2
√

tr,2)(N−1)/2

δl t
N/2
l,1 tN/2

l,2 + δrt
N/2
r,1 tN/2

r,2

(B5)

is indeed a sign, that depends on the particular value of α̃ and
the parameters of the model. By studying chains of small, odd
length numerically, we convinced ourselves that the sign σα̃

gives the correct sign of the eigenvalues, which can hence be
written as

λα̃ = σα̃

√
tl,1tr,1 + tl,2tr,2 + 2 cos(α̃)

√
tl,1

√
tr,1

√
tl,2

√
tl,2.

(B6)

We note that the evaluation of σα̃ can be somewhat unstable
numerically, for given values of α̃, in particular when δl , δr are
large in comparison to the hopping parameters in the model.
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3. Zero mode for even length chains

It is well known that for open chains of odd length, there
is an exact zero mode, regardless of the parameters of the
model. This also easily follows from Eq. (B4) by setting
δl = δr = 0. For open chains of even lengths, there can be
a zero mode, with an energy that is exponentially small in
system size. Here, we derive the region in parameter space,
for which this zero mode occurs. We do this in a different
way compared to [14,57]. Namely, we find the criterion for
α̃, in order to have an exact zero eigenvalue, and determine
for which parameters the equation for α̃ is satisfied, up to
corrections that are exponentially small in system size.

We introduce the ratio r1 =
√

tl,2
√

tr,2√
tl,1

√
tr,1

, and write x = eiα̃ as
usual. The condition for having a zero eigenvalue then be-
comes x + 1

x = −(r1 + 1
r1

), with solutions x = −r1 and x =
− 1

r1
. For δ = 0, Eq. (34) for α̃ becomes

sin (α̃(N/2 + 1))
sin(α̃)

+
√

tl,2
√

tr,2√
tl,1

√
tr,1

sin(α̃N/2)

sin(α̃)
= 0, (B7)

which in terms of x and r1 reads (recall that N is even)

x−N/2(1 + r1x + x2 + r1x3 + . . . + r1xN−1 + xN ) = 0.

(B8)

For both conditions to have a zero mode, x = −r1 or x =
−1/r1, the LHS evaluates to r−N/2

1 . This means that the equa-
tion is satisfied in the large N limit, provided that |r1| > 1.
In terms of the original parameters in the model, we find that
there is a zero mode, provided that | tl,2tr,2

tl,1tr,1
| > 1.

APPENDIX C: SOME 2D MODELS SQUARE
LATTICE MODELS

As stated in the main text in Sec. III, it is possible to
construct square lattice models by “interlacing” solvable, one-
dimensional models. These 2D models can be solved trivially,
given the solutions for the one-dimensional models. We start
with a one-dimensional model given by a non-Hermitian ma-
trix A that we have solved, which depends on some hopping
parameters {t} and perturbation δ. By this we mean that we
know both the functional form of the eigenvalues λα and the
form of the equation that α should satisfy, which we denote
by eqα . That is, we know there exists a matrix V , such that
D = V −1AV , where D is diagonal, with diagonal elements
(λα1 , λα2 , . . . , λαN1

) (for simplicity, we assume the system is
diagonalizable). We can now stack N2 such models, and form
a square lattice, by coupling them, by (say) forming HN mod-
els in the second direction. This gives rise to the following

two-dimensional model

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A dI 0 · · · 0 δ2uI

uI A dI

0 uI A dI
...

. . .

0 uI A dI

δ2dI uI A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C1)

We can diagonalize the A blocks, by means of the transforma-
tion H ′ = W −1HW , where W is given by W = IN2 ⊗ V . This
results in

H ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D dI 0 · · · 0 δ2uI

uI D dI

0 uI D dI
...

. . .

0 uI D dI

δ2dI uI D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)

We now observe that H ′ is similar to the matrix

H ′′ =

⎛
⎜⎜⎜⎜⎝

H1

H2

. . .

HN1

⎞
⎟⎟⎟⎟⎠, (C3)

where the Hi take the form

Hi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λαi d 0 · · · 0 δ2u

u λαi d

0 u λαi d
...

. . .

0 u λαi d

δ2d u λαi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C4)

As expected, this takes the form of a HN model, with known
eigenvalues λβ and known equation for β, which we here
denote by eqβ .

So, in general, the eigenvalues of this model are given
by λα,β = λα + λβ , where α and β run over the independent
solutions of eqα and eqβ . Here, we showed this result for a
square lattice, with an arbitrary model we can solve in the
one direction, and the HN-model in the other direction. The
result straightforwardly generalizes to a square lattice, with
two arbitrary, solved models, one in each direction. The reason
why this works is trivial, simply because for the current setup,
the two directions are completely independent of one another.
Clearly, this construction can be done in arbitrary dimension.
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