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Local invariants identify topology in metals and gapless systems
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Although topological band theory has been used to discover and classify a wide array of novel topological
phases in insulating and semimetal systems, it is not well suited to identifying topological phenomena in metallic
or gapless systems. Here, we develop a theory of topological metals based on the system’s spectral localizer and
associated Clifford pseudospectrum, which can both determine whether a system exhibits boundary-localized
states despite the presence of degenerate bulk bands and provide a measure of these states’ topological protection
even in the absence of a bulk band gap. We demonstrate the generality of this method across symmetry classes in
two lattice systems, a Chern metal and a higher-order topological metal, and prove the topology of these systems
is robust to relatively strong perturbations. The ability to define invariants for metallic and gapless systems allows
for the possibility of finding topological phenomena in a broad range of natural, photonic, and other artificial
materials that could not be previously explored.
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I. INTRODUCTION

Topological band theory has enabled enormous progress in
the discovery and classification of novel states of matter. The
preponderance of these developments have been predicted and
realized in insulators [1–34] and semimetals [35–50], where
these systems’ topological features are easily identified due
to their isolation in energy and wave vector (E , k) space.
However, in metals and other materials lacking a bulk band
gap, any states of topological origin are degenerate with bulk
states, generally resulting in hybridization between the two
sets of states. This hybridization makes it difficult to say
whether a particular set of states remains localized to the
system’s boundaries, or retains any of the other topological
properties that they would possess in an insulating system.
Moreover, even if boundary-localized states could be identi-
fied, the absence of a bulk band gap means that traditional
topological band theories would be unable to predict whether
these states would be robust to perturbations, or quantify the
strength of that protection. Although detailed studies in par-
ticular metallic and gapless systems have demonstrated the
existence of some topological behaviors [51–59], a general
theory for predicting topological phenomena in any metallic
or gapless system has remained elusive.

Theories of topological materials predicated upon diag-
onalizing a system’s Hamiltonian to determine its topology
possess an inherent challenge when considering metals or
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other gapless materials. In general, the Hamiltonians, H , of
topologically nontrivial systems do not commute with posi-
tion operators, X , i.e., [H, X ] �= 0. Thus, it is impossible to
find eigenstates of both operators simultaneously. In insulators
and semimetals, where any energy eigenstates of topological
origin can be spectrally isolated, position expectation values
provide a measure of the state’s location and localization.
However, in metals or gapless systems, any potential topo-
logical energy eigenstate is a member of a large degenerate
subspace consisting primarily of bulk states, which renders
position expectation values meaningless without some other
discriminant between possible choices of basis within this
subspace. This argument suggests that a theory of topolog-
ical metals should be pursued using real-space definitions
of topology that do not require diagonalizing the Hamil-
tonian [60–66]. Such real-space topological theories have
recently been used to identify distinct phases in aperiodic
systems, such as quasicrystals [67–69], amorphous structures
[64,70–76], and fractal lattices [77].

Here, we develop a general theory of topological metals
and other gapless materials defined using local invariants de-
rived from the system’s “spectral localizer” [78]. This theory
has three inherent features that allow it to directly solve the
difficulties facing any topological theory of gapless systems:
First, as the spectral localizer treats the system’s Hamiltonian
on equal footing with its position operators, it is able to simul-
taneously identify the approximate energy and position of the
system’s states. Second, in the absence of a state, the spectral
localizer returns a measure of the strength of the perturbation
required to move a state to that position and energy—in par-
ticular, one can calculate the Clifford pseudospectrum (a set
defined by the spectral localizer) in the immediate vicinity
of a boundary-localized state to determine the strength of
its protection against disorder. Third, the spectral localizer
is mathematically proven to be connected to the system’s
K-theory and thus can be used to define local invariants that
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classify the system’s topological phase at a given energy
and position [78–80]. To demonstrate the generality of this
method, we explicitly determine the topological character and
quantify the strength of its protection in two disparate models,
a Chern metal and a higher-order topological metal. As part of
this study, we also provide a definition of a local, real-space
invariant for higher-order topological phases. Altogether, the
theory we present here provides the groundwork for classify-
ing the topology of metals and other gapless systems of any
dimension and in any symmetry class [78,81] across a broad
range of physical platforms.

The remainder of this paper is organized as follows. First,
in Sec. II we provide a brief, physically motivated review
of the spectral localizer and Clifford pseudospectrum, and
discuss how they can be used to determine a system’s topology
and the strength of its topological protection. In Sec. III we
provide a demonstration of how the spectral localizer can be
used to identify both the topology and associated boundary-
localized states of a metallic Chern lattice. In Sec. IV we
demonstrate the generality of this method by identifying the
topology of a higher-order topological metal, and derive a
local invariant for classifying such systems. Finally, in Sec. V
we offer some concluding remarks.

II. REVIEW OF THE SPECTRAL LOCALIZER

From a broad perspective, the spectral localizer takes a
view of a material’s topology that is similar to that of topolog-
ical quantum chemistry [82–84]: a material is topologically
nontrivial if it cannot be continued to an atomic limit without
either closing a gap or breaking a symmetry. But, whereas
topological quantum chemistry determines whether given ma-
terial can be continued to an atomic limit by analyzing its
band representations, the spectral localizer seeks to make the
same determination by instead using the material’s real-space
description. This real-space picture of topology is predicated
on the following:

Definition 1. A material is in an atomic limit if and only if
its Hamiltonian, H , commutes with all of its position opera-
tors, Xj , [H, Xj] = 0 ∀ j.

Using this definition, the question of whether a material is
topologically nontrivial becomes synonymous with whether
there is an obstruction to continuing a material’s Hamilto-
nian and position operators to be commuting without closing
a gap or breaking a symmetry, enabling one to leverage
developments from the study of C∗-algebras to make this de-
termination [78,85] (in particular, see Fig. 1.1 from Ref. [85]).
We note that this definition of the atomic limit is consistent
with previous statements about the real-space behavior of this
limit [86].

Over the last decade, the spectral localizer has emerged as
a versatile tool for identifying whether a given set of matri-
ces can be continued to commuting matrices [78–80]. For a
physical material in d dimensions, the spectral localizer is

Lλ=(x1,...,xd ,E )(X1, . . . , Xd , H )

=
d∑

j=1

κ (Xj − x jI ) ⊗ � j + (H − EI ) ⊗ �d+1, (1)

where I is the identity matrix and the matrices � j form
a nontrivial Clifford representation, �

†
j = � j , �2

j = I , and
� j�l = −�l� j for j �= l . Here, κ > 0 is a scaling coeffi-
cient that ensures Xj and H have compatible units, and λ =
(x1, . . . , xd , E ) ∈ Rd+1 is a choice of position and energy
where the spectral localizer is evaluated. There are no restric-
tions on the choices of x = (x1, . . . , xd ) and E in λ; these
quantities can be chosen to be anywhere inside or outside
of the material’s spatial and spectral extent. Also, note that
the underlying theorems that prove the utility of the spec-
tral localizer currently assume that the system’s operators
X1, . . . , Xd , H are Hermitian, operate on a finite-dimensional
Hilbert space, and represent a system with open boundaries.

Intuitively, the spectral localizer can be viewed as a com-
posite of the eigenvalue equations [which have the form
(M − λ)v = 0] of multiple not-necessarily-commuting opera-
tors using a Clifford representation. However, unlike in typical
eigenvalue problems where the eigenvalues, λ, are quantities
that are solved for, the spectral localizer takes λ as an input
and determines whether the system possesses a state with ap-
proximate energy E that is approximately at x. If the spectral
localizer possesses an eigenvalue that is sufficiently close to
zero,

min[ |σ (Lλ(X1, . . . , Xd , H ))| ] �
d∑

j=1

‖[H, κXj]‖, (2)

where σ (Lλ) denotes the spectrum of Lλ, ‖ · ‖ is the L2 ma-
trix norm, and it is assumed here that [Xi, Xj] = 0, then the
physical system supports a state in the vicinity of (x, E ). If
Lλ does not possess such an eigenvalue, the system exhibits a
local gap at (x, E ), i.e., a region in position-energy space that
cannot support a state (see Ref. [87], Sec. II, for what are cur-
rently the best known estimates on how the spectral localizer
predicts state localization). Thus, it is convenient to define the
“localizer gap” as min[ |σ (Lλ)| ], which, heuristically, can be
viewed as a spatially resolved band gap.

The ability of the spectral localizer to calculate a quan-
tity similar to a band gap without determining the system’s
band structure plays a crucial role in using Lλ to categorize
a system’s topology. Formally, a set of matrices {M (0)

j } can

be continued to some other set {M (1)
j } if a continuous path

of matrices can be defined between the two sets, {M (τ )
j } for

0 � τ � 1. Assessing a material’s topology via continuation
is typically done for infinite systems, and requires that every
set along the path {X (τ )

1 , . . . , X (τ )
d , H (τ )} must both preserve

the system’s symmetries and maintain the bulk gap (i.e., the
system’s band gap if it is periodic and infinite). This process
also assumes some locality criteria on H (τ ) and X (τ )

j , such
that two sites that are sufficiently far apart cannot be coupled
[86]. Instead, if H (τ ) and X (τ )

j represent a finite system (as
is necessary to use the spectral localizer), the concept of a
bulk gap in the continuation process needs to be replaced
in some way. One option is to impose periodic boundary
conditions and insist that H (τ ) remains gapped; cf. [86]. In
the case of open boundary conditions, a concept of a local gap
is necessary, as the system may possess boundary-localized
states (of trivial or topological origin) that would otherwise
obscure the spectrum of a system with an insulating interior.
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In particular, the criteria of preserving a local gap in
{X (τ )

1 , . . . , X (τ )
d , H (τ )} can be guaranteed by monitoring its

localizer gap along this path—a system’s topology at λ cannot
change so long as the localizer gap at that λ remains open.
Specifically, it has been proven that a symmetry-preserving
perturbation to the Hamiltonian, δH , is unable to close the
localizer gap at λ so long as ‖δH‖ < min[ |σ (Lλ)| ], Ref. [78],
Lemma 7.2, and a similar statement can be made about pertur-
bations to the position operators, δXj . Moreover, this measure
of the strength of the topological protection inherently in-
cludes the possibility of correlated disorder that is “designed”
to defeat the system’s topology. As such, in most systems,
the localizer gap will underestimate the strength of the sys-
tem’s topological robustness for uncorrelated disorder. There
has also been recent progress in understanding the effects
of perturbations that only approximately respect the system’s
symmetry class [88].

With these definitions in place, we can present a complete
picture of how the spectral localizer determines a material’s
topology. Overall, there is a constellation of theorems that dic-
tate how the spectral localizer can be used to assess whether a
given set of matrices can be continued to commuting matrices
for systems of any physical dimension and in any symmetry
class [78–80]. In general, there will be some property of Lλ

that identifies whether such a continuation is possible at a
given λ while preserving the system’s symmetries and without
closing the localizer gap at that λ; this same property also de-
fines a local topological invariant. If there is an obstruction to
finding a continuation to commuting operators, the nontrivial
topology at that λ is protected against perturbations that do
not close the localizer gap. Moreover, as the localizer gap
is a continuous (but not smooth) function of λ, neighboring
choices of λ in position-energy space possess similarly sized
localizer gaps (and thus, topology). Finally, bulk-boundary
correspondence is built right into this picture; the localizer gap
associated with a topologically nontrivial region of position-
energy space must close around the perimeter of the system
where the topological boundary-localized states have strong
support, as far away from the finite material the spectral local-
izer must exhibit trivial topology.

To provide an example for a specific class of topology,
consider 2D systems with broken time-reversal symmetry
that may possess a nonzero Chern number. For this sym-
metry class, the system’s operators are H , X , and Y , and
the system possesses nontrivial topology for some region in
position-energy space if H − EI , X − xI , and Y − yI cannot
be continued to commuting while preserving their Hermitic-
ity. In this case, the property of Lλ that identifies the possible
obstruction is its signature, sig(Lλ), which is the number of its
positive eigenvalues minus the number of its negative eigen-
values. In particular:

(1) If H , X , and Y commute, then sig[Lλ(X,Y, H )] = 0
for any choice of λ (Ref. [89], Lemma 4).

(2) The signature of Lλ(X,Y, H ) cannot change through
continuation of H − EI , X − xI , and Y − yI without closing
the localizer gap at λ [90].

Thus, even if H , X , and Y do not commute, if
sig[Lλ(X,Y, H )] = 0 for every choice of λ, then the sys-
tem can be continued to an atomic limit without closing
the band gap/localizer gap and thus the system (assum-

ing it is sufficiently large) is topologically trivial every-
where [91]. Conversely, if there is a choice of λ for
which sig[Lλ(X,Y, H )] �= 0, then the system possesses non-
trivial topology within the localizer gap surrounding this
choice of λ.

In comparison with traditional theories of topology, the
local nature of the topology predicted by the spectral localizer
can seem unusual, but this is simply the language required to
describe widely appreciated properties of topological systems
within a real-space picture. Consider a two-band topological
insulator. Filling only the lower band results in a system that
is not Wannierizable (and cannot be continued to the atomic
limit), but if both bands are filled the system becomes Wan-
nierizable again. For the spectral localizer, the first case is
represented by choosing λ for E within the band gap (and
x in the system’s bulk) and finding nontrivial local topology,
while the second case corresponds to choosing λ with an
E greater than the maximum energy of the upper band and
finding trivial local topology. In the latter case (E outside both
bands), the process of continuing the system’s operators to
commuting will maintain the localizer gap at that E , but will
close the localizer gap for energies between the bands. Finally,
we note that the process of continuing a system’s operators to
commuting will generally involve changes to both H and Xj .

A. The Clifford pseudospectrum

For completeness and to aid a reader in understanding
previous works on the spectral localizer, we provide a brief
discussion of how the spectral localizer can be used to calcu-
late a system’s Clifford pseudospectrum. Mathematically, the
localizer gap defines the system’s Clifford ε-pseudospectrum,

	ε (X1, . . . , Xd , H )

= {λ | min[ |σ (Lλ(X1, · · · , Xd , H ))| ] � ε}. (3)

A system’s Clifford spectrum is given by 	0(X1, . . . , Xd , H ),
i.e., the set of λ for which the localizer gap vanishes. Thus, a
system’s Clifford pseudospectrum is a useful tool for finding
surfaces in position-energy space with constant localizer gap.

Intuitively, a system’s Clifford pseudospectrum (regardless
of the system’s topology) can be viewed as a method for
constructing an approximate joint spectrum of noncommuting
operators. In other words, if min[ |σ (Lλ(X1, . . . , Xd , H ))| ]
is small (relative to the norms of the commutators), the
system exhibits an approximate eigenstate that almost diag-
onalizes all of the operators simultaneously with approximate
eigenvalues given by λ [78,87]. But, note that even if
λ is a member of the system’s Clifford spectrum (i.e.,
min[ |σ (Lλ(X1, . . . , Xd , H ))| ] = 0), that does not imply that
there is an exact eigenstate that exactly diagonalizes all of
the constituent operators. Finally, the Clifford pseudospectra
are not the only tool that can be used to understand the ap-
proximate joint spectra of noncommuting matrices, which can
be tackled using both traditional two-operator pseudospectra
[92–94] (in the present context, these could only be used
for 1D lattices), or other constructions of multioperator pseu-
dospectra [87] (i.e., different ways of combining eigenvalue
equations that need not use a Clifford representation). How-
ever, as the Clifford pseudospectra are computed using Lλ,
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they are the only (currently known) tool for finding approxi-
mate joint spectra that is also related to the system’s topology.

B. A note on numerical computation

We conclude this brief review of the spectral localizer with
a few comments about the numerical calculation of its proper-
ties. Although the spectral localizer is agnostic to the choice
of basis used for its constituent operators, if a material’s
Hamiltonian is written in a tight-binding basis, the position
operators, Xj , are simply diagonal matrices that index the jth
coordinate of each of the lattice sites (different orbitals at the
same site have the same position). Thus, in the tight-binding
basis, Lλ(X1, . . . , Xd , H ) is a (usually large) sparse Hermitian
matrix and the localizer gap, min[ |σ (Lλ(X1, . . . , Xd , H ))| ],
can be efficiently calculated using standard sparse eigenvalue
solvers as only a single eigenvalue is needed. The properties
of the spectral localizer that reveal the system’s K-theory only
need to be calculated a few times, and only once per region in
position-energy space where the localizer gap is large, as these
properties cannot change without the localizer gap closing.

Moreover, we note that for at least some of the relevant
properties of Lλ, there are significant numerical speedups
available. For example, to find a matrix’s signature, it is
not necessary to find its full set of eigenvalues. Instead,
as Lλ(X1, . . . , Xd , H ) is Hermitian, one can make use of
Sylvester’s law of inertia [95,96], which states that

sig(Lλ) = sig(D), (4)

where Lλ = PDP† is the LDLT decomposition of the spectral
localizer. Thus, as D is diagonal (or block diagonal in some
numerical implementations with 1 × 1 and 2 × 2 blocks),
the computational cost of finding sig(Lλ) is entirely dictated
by the speed of the sparse LDLT decomposition algorithm,
which is, in general, more efficient than finding the full
spectrum of Lλ.

III. TOPOLOGICAL CHERN METAL

To illuminate how the spectral localizer can be used to clas-
sify topological metals, we first consider a 2D Chern insulator
with an added intervening band that is degenerate with the
Chern insulator’s chiral edge states. A minimal tight-binding
model for this system can be constructed from a Haldane
lattice coupled to a single-band triangular lattice whose ver-
tices are located in the center of each honeycomb [51,55], and
whose Hamiltonian is schematically illustrated in Fig. 1(a).
The Haldane lattice is parametrized by the nearest neighbor
coupling, t1, next-nearest neighbor couplings with amplitude
and phase tC and φ, and the on-site sublattice energy differ-
ence 2m. The triangular lattice has nearest neighbor coupling
t2 and on-site energy m2. The coupling strength between the
two lattices is t3. In the absence of coupling between the
two lattices, t3 = 0, the Haldane model exhibits topological
and trivial insulating phases separated by semimetal phases
and protected by the Chern number, C, see Fig. 1(b), while
the triangular lattice exhibits a single band centered around
E = m2. When the coupling between the two lattices is turned
on, |t3| > 0, the intervening band from the triangular lat-
tice prohibits the unique identification of chiral edge states

FIG. 1. (a) Schematic of the tight-binding model for a Haldane
lattice, green and orange circles, coupled to a trivial lattice, blue
triangles. Some couplings are only shown in a portion of the system
for clarity. (b) Haldane model phase diagram, with the topological
(red) and trivial (blue) systems considered indicated. (c)–(f) Simula-
tions of a metallized Haldane lattice, with m/t1 = 0, tC/t1 = 0.5, φ =
π/2, m2/t1 = −0.35, t2/t1 = 0.2, and t3/t1 = 0.3. (c) Ribbon band
structure with two zigzag edges. Chiral edge states can be identified
outside of the intervening band. �E is the bulk gap between the top
and bottom bands. (d) Local density of states at E = 0. Each lattice
site is represented as a 2D Gaussian with radial width r0 = 0.5a.
(e) 2D localizer gap, min[ |σ (Lλ(X,Y, H ))| ]/�E at λ = (x, y, E =
0) with κ = 1. Overlay shows the local Chern number, CL(x, y, 0) =
1 (red) or = 0 (clear). (f) Localizer spectrum along the green line in
(e). The eigenvalue which yields a change in topology is highlighted
in magenta. (g)–(j) Same as (c)–(f), except for a trivial metal, with
m/tC = 4

√
3.

within its extent, as the chiral edge states will generally hy-
bridize with the degenerate states of the interstitial triangular
lattice.
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Previous numerical studies have shown that this metallized
Haldane model exhibits unusual transport properties that are
robust against disorder, even for choices of the Fermi energy
that are within the range of the middle band across the entire
Brillouin zone [e.g., E = 0 in Fig. 1(c)] [51,55]. However,
for choices of the Fermi energy within the middle band,
the states responsible for these transport properties cannot
be uniquely identified using conventional analysis methods,
as any boundary-localized states are degenerate with the
bulk states of the triangular lattice. For example, the local
density of states (LDOS) at E = 0 cannot distinguish be-
tween topological [Fig. 1(d)] and trivial [Fig. 1(h)] metals
as the contributions from the degenerate bulk in the sys-
tem’s LDOS outweigh the contributions of any topological
boundary-localized phenomena. Moreover, the absence of a
bulk band gap at E = 0 not only poses problems for defining
an invariant for this system using band theory, but also inhibits
the use of other real-space definitions of topology such as
topological markers [61] as a system’s ground-state projection
operators are only exponentially localized in gapped systems
[97–99].

Here, we use the spectral localizer to show that boundary-
localized resonances exist in the metallized Haldane model,
even for energies within the extent of the middle band, quan-
tify the topological protection of these boundary-localized
phenomena, and identify a topological invariant that classifies
this behavior. For a 2D system, the spectral localizer can be
explicitly written as

Lλ=(x,y,E )(X,Y, H )

=
(

H − EI κ (X − xI ) − iκ (Y − yI )
κ (X − xI )+iκ (Y − yI ) −(H − EI )

)
.

(5)

As the spectral localizer directly incorporates information
about the system’s spatial and spectral properties on equal
footing, it is able to identify the approximate presence (or
absence) of a state at a given position and energy regardless of
other degenerate states elsewhere in the system. Thus, the lo-
calizer gap, min[ |σ (Lλ(X,Y, H ))| ], immediately reveals the
difference between the topological and trivial phases of the
metallized Haldane model. In its topological phase [Fig. 1(e)],
the presence of the chiral edge states causes the localizer gap
to close around the entire perimeter of the system regardless
of whether the boundary-localized states hybridize with the
bulk states of the interstitial triangular lattice. This behavior
is qualitatively distinct from the metallized Haldane model’s
trivial phase [Fig. 1(i)], where the lack of any boundary-
localized states means that the localizer gap remains open
around the system’s boundary. Moreover, the sizable localizer
gap just inside the boundary closing of the topological system
indicates that these boundary-localized states (or resonances)
are robust against disorder despite the absence of a bulk band
gap. Since the localizer gap is not, in this case, a local mani-
festation of any sort of a bulk band gap, it is a mathematical
mystery why it occurs, related to the discovery in [50] of
how the spectral localizer can exhibit larger gaps than the
underlying system in semimetals.

FIG. 2. 2D localizer gap, min[ |σ (Lλ(X,Y, H ))| ]/�E at λ =
(x, y, E = 0) with κ = 1, for a metallized Haldane lattice (same
as Fig. 1) with added on-site disorder with strength W/�E = 0.89
(a) and W/�E = 1.77 (b). The colored overlay shows the local
Chern number, sig[Lλ(X,Y, H )]/2 = 1 (red) or = 0 (clear). Here,
�E is the gap between the first and third bands of the system; see
Fig. 1(c).

The topological invariant at any λ = (x, y, E ) with nonzero
localizer gap for 2D systems in symmetry class A is given
by

CL(x, y, E ) = 1
2 sig[L(x,y,E )(X,Y, H )] ∈ Z. (6)

Thus, this formulation of the local Chern number is nec-
essarily an integer, even for finite systems. Calculating this
invariant for the metallized Haldane model in Figs. 1(c)–1(f)
proves it is topological (i.e., X − xI , Y − yI , H − EI cannot
be continued to be commuting for some λ), as it exhibits a
nontrivial local Chern number in its bulk even for energies
residing within the extent of the middle band. Furthermore,
this nontrivial bulk topology can be viewed as forcing the
localizer gap to close around the Chern metal’s entire edge,
as the local Chern number must be trivial far away from
the system and, thus, the localizer gap along any path con-
necting the system’s interior and exterior must close for one
of the localizer’s eigenvalues to switch signs; see Figs. 1(f)
and 1(j).

As the spectral localizer yields a set of local, real-
space definitions for finding boundary-localized states and
determining topological invariants, its entire mathematical
machinery is immediately applicable in the presence of dis-
order, without any alteration. Thus, we can show that the
topology of the metallized Haldane lattice is robust against
perturbations that do not close the gap between the system’s
first and third bands, �E in Fig. 1(c), i.e., those bands which
originate from the insulating Haldane lattice. To demonstrate
this, we add on-site disorder to the system with strength W ,
such that each vertex has an independent, uniformly dis-
tributed random on-site energy in the range [−W/2,W/2].
For W < �E , the topological character of the system remains
unchanged, and the entire bulk still possesses a nontrivial local
Chern number [Fig. 2(a) shows one disorder realization]. As
the strength of the disorder is further increased, W > �E , the
system begins to revert to a trivial phase [Fig. 2(b)]. Never-
theless, even at this strength of disorder, regions within the
system can still be in a topological phase, and these topolog-
ical islands can be identified using the local Chern number,
Eq. (6).
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FIG. 3. (a) Schematic of the tight-binding model for a higher-
order topological metal with intra-unit-cell couplings v, and
inter-unit-cell couplings w. (b) Bulk band structure with w/v = 3.
�E/v = 2 is the bulk gap between the bottom and middle bands.
(c) Local density of states at E = 0. Each lattice site is represented
as a 2D Gaussian with radial width r0 = 0.5a. (d) 2D localizer
gap, min[ |σ (Lλ(X,Y, H ))| ]/�E at λ = (x, y, E = 0) with κ = 0.1.
(e)–(f) Same as (c)–(d), except for a trivial metal, with v/w = 3.
Here, (c) and (e) use the same color scale.

IV. HIGHER-ORDER TOPOLOGICAL METAL

To demonstrate the generality of using the spectral local-
izer to identify topological metals in any symmetry class, we
show the existence of robust higher-order topological metallic
phases with in-band corner-localized states and find the asso-
ciated local topological invariant. Moreover, one may argue
that in the metallized Haldane model it is possible to continue
the system to a Haldane insulator with an intervening decou-
pled flat band from the interstitial triangular lattice, enabling
the topology of the Haldane insulator to perhaps be inferred
from traditional methods. Instead, in this section, we consider
a system where the intervening metallic bands are intrinsic to
the underlying lattice.

Here, we consider a 2D chiral and C4v symmetric lattice
with four sites per unit cell, whose tight-binding model is
schematically shown in Fig. 3(a), and in which v and w are
the intra- and inter-unit-cell couplings, respectively. When
a magnetic flux is uniformly threaded through this system,
it becomes an insulator at E = 0, and when the system is
in its topological phase, w > v, zero-energy corner-localized

states appear [28–31]. Without this flux, the middle two bulk
bands of this system are degenerate and centered at E = 0,
Fig. 3(b). Previous studies of this fluxless system with w > v

have shown that so long as C4v (and chiral) symmetry are pre-
served, corner-localized states exist that are prohibited from
hybridizing with the degenerate bulk states [57,58], and are
associated with a nontrivial fractional corner charge invariant
[59]. However, these arguments do not hold in the absence
of C4v symmetry, nor do they readily generalize to other gap-
less systems suspected of exhibiting higher-order topological
behaviors.

The local density of states at E = 0 for the fluxless higher-
order topological metal [Fig. 3(c)] shows that there are, at a
minimum, resonances that have strong support on the lattice’s
corners, but cannot reveal whether these states possess any
protection guaranteeing their corner-localization, nor verify
their topology. In this regard, the 2D spectral localizer, Eq. (5),
is able to provide more information: the moderately sized
localizer gap seen between the corners and the metallic bulk
forces the corner resonances to maintain strong support on
their respective corners until any added disorder is strong
enough to close this localizer gap [Fig. 3(d)]. For comparison,
the local density of states and 2D localizer gap are shown for
the analogous trivial metal in Figs. 3(e) and 3(f). However,
as the metallic system in Fig. 3(a) is in symmetry class AIII,
the 2D spectral localizer is not connected to a nontrivial topo-
logical invariant [81,86,100]. Nevertheless, strong topological
invariants in 1D protect 0D edge states, and the 0D corner
states of higher-order topological phases are, in the absence
of crystalline symmetries, boundary obstructed, rather than
bulk obstructed [29]. Thus, it seems reasonable to try to treat
this system as if it were 1D and borrow the mathematics of
the 1D class AIII invariant (Ref. [78], Sec. 4.1), which can
protect states at E = 0 against disorder that preserves chiral
symmetry (i.e., C4v can be broken), by projecting the lattice
into a lower dimension.

To isolate a corner of the system in the reduced dimension,
we use the diagonal position operator D = (X + Y )/2. As a
gedanken experiment, we are tilting the system and looking
in from a corner, and this choice of diagonal position suc-
cessfully isolates two of the corners. By symmetry, similar
behavior will be assured at the remaining two corners. The
1D spectral localizer can be explicitly written as

Lλ=(d,E )(D, H )

=
(

0 κ (D − dI ) − i(H − EI )
κ (D − dI ) + i(H − EI ) 0

)
,

(7)

which allows for the local topological index (assuming
nonzero localizer gap) along the diagonal coordinate d =
(x + y)/2 to be defined as

νL(d, 0) = 1

2
sig

[
(0 I )L(d,0)(D, H )

(
�

0

)]

= 1

2
sig{[κ (D − dI ) + iH]�} ∈ Z, (8)

where � is the system’s chiral operator, �H� = −H (and
�D� = D) [78,79]. Note, νL is only well defined for E = 0,
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FIG. 4. (a) 1D localizer gap, min[ |σ (Lλ(D, H ))| ]/�E , for a dis-
ordered higher-order topological metal projected along the diagonal
position λ = ((x + y)/2, 0), with κ = 2. Added disorder has strength
W/�E = [0, 0.5, 1, 1.5, 2], increasing from cyan to magenta. Solid
lines show the average of an ensemble of 100 different disorder
realizations, while filled regions show the average ±1 standard devi-
ation. Data are offset vertically for clarity; each horizontal gray line
corresponds to a change in �E = 1, and in the bulk of the system
(x + y)/2 > 2 the ensemble average of the localizer gap is nearly
zero for each strength of disorder. The outermost lattice site is at
d = 0.75, and is indicated by the vertical dashed line. (b) Similar to
(a) for the local topological invariant νL given by Eq. (8).

which is a mathematical consequence of the fact that the
topological states that these chiral-symmetric systems exhibit
(if they exist) are guaranteed to be at zero energy. For a true 1D
system, νL is a local generalization of the 1D winding number.
For higher-order topological phases in higher-dimensional
systems, we conjecture that it is a local version of the cor-
responding multipole chiral number [101] and is related to the
infinite-volume invariants in Ref. [102]. In all cases, as νL de-
pends on a matrix’s signature, it is guaranteed to be an integer,
and it is identifying whether D and H can be continued to be
commuting while preserving both their Hermiticity and chiral
symmetry (and local localizer gap).

Calculating Eq. (8) along the diagonal of the metallic sys-
tem in Fig. 3(a) reveals its higher-order topology: the system
acquires a nontrivial invariant after the localizer gap first
closes at a corner of the system, indicating the presence of
a corner-localized state (cyan curves in Fig. 4). Note, this
closing is slightly inside from the outermost corner lattice site,
as the corner-localized state has some spatial extent away from
the corner and thus its centroid does not exactly match the
corner lattice site. Moreover, the nearby localizer gap prevents
this state from moving into the system’s bulk for disorder
strengths W < 0.5�E . (�E is the bulk band gap between the
top or bottom band and the middle bands.) Thus, even though
the corner-localized states will hybridize with the bulk for any
strength of disorder, the system’s spectral localizer identifies
that these states must maintain support on the system’s corners
until the disorder is strong enough to close the localizer gap.

We can explicitly confirm this topological protection by
adding disorder to the couplings in the system, with each cou-
pling acquiring the random disorder (1/

√
2)(ξ (re) + iξ (im)),

where ξ ∈ [−W/2,W/2]. Thus, this choice of disorder breaks
all crystalline symmetries and time-reversal symmetry, but
preserves chiral symmetry. Numerically, we observe that at
diagonal positions near d = 1.2 the ensemble-averaged local-
izer gap remains open with little variance and the topological

index remains pinned to νL = 1 even for W = 1.5�E , see
Fig. 4, confirming that chiral symmetry is the only necessary
symmetry to protect these corner-localized resonances. These
simulations also provide numerical evidence for the notion
that for uncorrelated disorder, the localizer gap is usually an
underestimate of the strength of the topological protection in
a system. Note that the traces of νL in Fig. 4(b) are ensemble
averages, and thus will generally deviate from having an inte-
ger value, but each constituent curve is always an integer for
any choice of d .

V. DISCUSSION

In conclusion, we have developed a general theory for
assessing a metallic or gapless system’s topology using its
spectral localizer, even in the presence of disorder. This
theory both is able to demonstrate the existence of boundary-
localized modes despite a degenerate background continuum,
and yields a measure of the strength of these systems’ topolog-
ical protection. To our knowledge, other methods of defining
a local or global index all rely on some notion of a gap
in the bulk spectrum, perhaps a mobility gap, and are not
designed to work in a gapless setting. Indeed, the localizer
index was initially designed to work in the presence of a
bulk gap, since a bulk gap causes a localizer gap [78–80].
Nevertheless, we have found that useful localizer gaps can still
appear even in the absence of a bulk gap, due to the spatial
separation between degenerate states that can be revealed us-
ing pseudospectral methods. Although we have only explicitly
demonstrated this theory for Chern and higher-order topolog-
ical metals, this theory should extend without difficulty to all
symmetry classes and for systems in any dimension, as the
necessary local invariants based on the spectral localizer have
already been derived [78–80], enabling the discovery of novel
topological phases of matter in natural and artificial metals
and other gapless materials. On a more speculative note, as the
spectral localizer is an approach for understanding a material’s
topology without needing to calculate its band structure, it
may represent a path toward a general theory of topology
in interacting systems. However, additional developments are
still required to create a many-body variant of the spectral
localizer and Clifford pseudospectrum.
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