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Bound on resistivity in flat-band materials due to the quantum metric
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The quantum metric is a central quantity of band theory but has so far not been related to many response
coefficients due to its nonclassical origin. However, within a newly developed Kubo formalism for fast relaxation,
the decomposition of the dc electrical conductivity into both classical (intraband) and quantum (interband)
contributions recently revealed that the interband part is proportional to the quantum metric. Here, we show that
interband effects due to the quantum metric can be significantly enhanced and even dominate the conductivity
for semimetals at charge neutrality and for systems with highly quenched bandwidth. This is true in particular
for topological flat-band materials of nonzero Chern number, where for intermediate relaxation rates an upper
bound exists for the resistivity due to the common geometrical origin of quantum metric and Berry curvature.
We suggest to search for these effects in highly tunable rhombohedral trilayer graphene flakes.
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I. INTRODUCTION

Recent experimental progress has made it possible to inves-
tigate new two-dimensional quantum materials with a highly
quenched bandwidth, which exhibit a rich phase diagram
including unconventional superconducting phases, correlated
insulating states and a cascade of magnetic and nonmagnetic
flavor-ordered states [1–14]. While the most interesting phe-
nomena in the ordered states are due to many-body effects,
these findings have also ignited renewed interest in under-
standing the normal state of moir-type and periodic lattice
systems with vanishing Fermi velocity [15–18]. However,
remarkably little is known about the effects of a quenched
bandwidth on the electrical conductivity. In this work, we sys-
tematically investigate the interplay between band structure
and conductivity using a noninteracting Kubo approach which
allows to fully identify and quantify the various contributing
factors.

The two paradigmatic flat-band systems are twisted bilayer
graphene (TBG), a van-der-Waals material where the second
layer is put askew by a small angle [19,20]; and rhombohedral
trilayer graphene (RTG), where three graphene monolayers
are layered on top of each other without twist, with atomic
positions in the sequence A-B-C [21–24]. Here, we will only
discuss the latter material, of which high-mobility devices
exist, which makes it a viable platform to study band structure
effects, and where the mobility can be controlled precisely.
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For theory, superconductivity in flat bands presents a chal-
lenge, because a classic result predicts a vanishing superfluid
stiffness for that case [25]. In the meantime, several indica-
tions have been found that a quantity known as the quantum
metric prevents the superfluid stiffness from going to zero
[26–29]. The quantum metric has previously been connected
to the size of a maximally localized Wannier state [30,31]
and is crucial in the modern theory of polarization [32]. Only
recently, its importance was noticed in other contexts as well
[33–37].

The quantum metric is a central quantity of band theory,
comparable to the Berry curvature. Both form the quantum
geometric tensor, which captures the geometrical properties
of the manifold that is formed by the Bloch eigenstates [38].
Nevertheless, due to its nonclassical origin the quantum met-
ric has not yet been related to many response coefficients. In
particular, the quantum metric has not been measured neither
in the superconducting nor in the normal state of both TBG
and RTG.

Recently, a new formulation of the Kubo formalism in
two-band models for arbitrary band broadening � (i.e., fast
quasiparticle relaxation rate) was developed by one of us,
which revealed that the static charge conductivity does con-
tain an interband contribution proportional to the quantum
metric [39]. However, in a metallic state the interband term
is generically of order �, so that it is strongly suppressed
compared to the intraband (Drude-type) response of order
�−1. The interband effect and its sensitivity to the relaxation
rate can be understood either semiclassically as the overlap of
separated bands upon band broadening; in perturbation theory
one would instead attribute it to virtual excitations across the
energy gap (cf. Fig. 1). This is because at zero temperature
the single-particle gap can only be traversed by placing some
valence band states at energies across the gap. In the semiclas-
sical view, this is the case after taking an ensemble average,
while in the quantum perturbative picture, it is the case after
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FIG. 1. Emergence of the longitudinal interband conductivity
for a band structure with a finite broadening �. (a) According to
semiclassics, there is a finite density of states from the conduction
band (cb) present at the valence band (vb), and vice versa, that
is introduced by the band broadening in the respective other band.
(b) According to perturbation theory the bands are defined sharply;
instead a finite carrier lifetime allows virtual processes involving
remote bands.

averaging over time, due to transient (virtual) occupations.
Similar reasoning has been successfully employed to explain
the subgap response in the nonlinear optical conductivity [40]
and for certain parts of the nonlinear dc conductivity [41]. In
the following, we will establish several cases where interband
effects due to the quantum metric can substantially contribute
to or even dominate the conductivity.

The key observation is that the conventional scaling only
applies in the metallic state with a Fermi surface, where the
quasiparticle velocities and the quantum metric are approxi-
mately constant. In contrast, consider for example a semimetal
where the Fermi surface is just a point in momentum space, at
which the quantum metric diverges. Another example is a flat
band, where the vanishing bandwidth results in a very small
Drude conductivity compared to the quantum metric contribu-
tion. We note that these cases are in line with the interpretation
of the quantum metric as a measure of the deformation of the
wave packet as it traverses the lattice [42], such deformations
are facilitated by the large spread of a wave packet in real or
momentum space.

In the following, we show that the new Kubo formalism
for fast relaxation is capable to treat these nonstandard cases.
The formalism is based on a phenomenological quasiparticle
relaxation rate � of arbitrary size. This regularizes the spectral
occupation, which results in smooth conductivity formulas
and allow for a systematic expansion in �. Since the pre-
vious formulation in Ref. [39] was limited to two bands,
we also present a generalization for multiband systems. For
semimetals at charge neutrality, we find that both quantum
metric and intraband contribution become of same order in �.
For example, the well-known result for the conductivity of a
two-dimensional Dirac cone, σ xx = e2/πh [43], is constituted
half by the intraband part and half by the quantum metric.
For systems with flat bands, as expected we find that the
interband term can become larger than the Drude term. Here,
the conductivity develops a plateau for an intermediate regime
Wflat < � < �gap of band broadening, with the lower limit of
the plateau given by the small bandwidth Wflat of the quenched
band, while the band gap �gap to neighboring bands presents
the upper limit.

We explain this finding as follows: The quantum metric g
and the Berry curvature � are the real and imaginary part of
the quantum geometric tensor, respectively, which is positive
semidefinite [26]. This imposes a constraint on their com-
ponents gαβ and �αβ , leading to a lower bound

∫
p tr g �∫

p |�xy| � |C|/2π in two-dimensional systems [26,44,45],
where C is the Chern number. This property is also known
as “Wannier obstruction” [30,31,46]. In two-dimensional
flat-band systems in the regime Wflat < � < �gap of band
broadening, we find that the trace over the interband terms
is proportional to

∫
p tr g and thus bounded from below. This

implies a new upper bound on the resistivity, unrelated to
previous suggestions for bounds due to strong interactions
and the related fast thermalization of quasiparticles [16,47–
49]. We emphasize that this bound is not universal and only
holds within a certain regime of relaxation rates.

We propose to use RTG devices of varying mobility as
a platform to experimentally search for the quantum metric
effect.1 In particular, we suggest to study the temperature
dependence of the conductivity and predict a conductivity
minimum below room temperature as a result of decreasing
classical (intraband) and increasing quantum metric (inter-
band) contributions. In RTG, both intraband and interband
contributions are of similar size over the full temperature
range in contrast to perfect flat-band systems, where the en-
ergy scales are well separated. Nevertheless, we can clearly
assign the conductivity minimum to the quantum metric, since
a conductivity upturn due to thermal occupation of excited
states takes place at much higher temperatures.

The paper is structured as follows: We present the Kubo
formalism for fast relaxation for a general multiband system
and present our key formulas for the conductivity. The role
of band broadening is discussed for metals, semimetals, and
flat bands, where the bound on the resistivity is derived. The
theory is then applied to a generic flat-band model and RTG.
We summarize our findings in the conclusions.

II. RESULTS

A. Conductivity formulas

We consider a noninteracting quadratic tight-binding
Hamiltonian for an N-band system

H =
∑

p

	†
pλp	p, (1)

where the spinor 	p = (cp,1, . . . , cp,N ) and its complex con-
jugate 	†

p involve the fermionic annihilation and creation
operators of the N bands at (crystal) momentum p, respec-
tively. λp is the Hermitian N × N Bloch Hamiltonian matrix.
We calculate the dc conductivity tensor σαβ , which relates the
spatial components of the current jα and the electric field Eβ

via jα = ∑
β σ αβEβ . Generalizing the approach developed by

one of us [39] as presented in Appendix A, we obtain the
decomposition

σαβ = σ
αβ

intra + σ
αβ,s
inter + σ

αβ,a
inter . (2)

1We note that the existence of high-mobility devices makes it very
likely that in experiment the mobility can be tuned with relative ease.
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The intraband contribution σ
αβ

intra = σ
βα

intra is symmetric,
whereas the interband contribution has both a symmetric part
σ

αβ,s
inter = σ

βα,s
inter and an antisymmetric part σαβ,a

inter = −σ
βα,a
inter . The

three contributions read

σ
αβ

intra = −e2

h̄

∫
dd p

(2π )d

∫
dε f ′(ε)

∑
n

wn
p,intra(ε) vα,n

p vβ,n
p , (3)

σ
αβ,s
inter = −e2

h̄

∫
dd p

(2π )d

∫
dε f ′(ε)

∑
n,m

wnm,s
p,inter(ε) gαβ,nm

p , (4)

σ
αβ,a
inter = −e2

h̄

∫
dd p

(2π )d

∫
dε f (ε)

∑
n,m

wnm,a
p,inter(ε) �αβ,nm

p , (5)

where f (ε) = [exp(ε/kBT ) + 1]−1 and f ′(ε) are the Fermi
distribution and its derivative, respectively. The momentum
integration is performed over the d-dimensional Brillouin
zone.

We discuss the different quantities in the following. The in-
traband contribution (3) involves a summation over all bands
with their respective quasiparticle velocities vα,n

p = ∂αEn
p ,

where ∂α denotes the momentum derivative in α direction and
En

p is the nth eigenvalue of λp with corresponding eigenvector
|np〉. The two interband contributions (4) and (5) involve a
summation over all pairs of bands with

gαβ,nm
p = Re

[
Aα,nm

p Aβ,mn
p

]
, (6)

�αβ,nm
p = −2 Im

[
Aα,nm

p Aβ,mn
p

]
, (7)

where Aα,nm
p = i〈np|∂αmp〉 is the Berry connection. We em-

phasize that the interband contribution can be interpreted as
a pure quantum geometrical quantity. For a two-band system,
note that (6) and (7) are the quantum metric and the Berry
curvature, respectively, whereas a further trace over the bands
is required to establish this connection for more than two
bands [see A]. To highlight the geometric interpretation of
the interband contributions, we will refer to σ

αβ,s
inter and σ

αβ,a
inter

respectively as the quantum metric and the Berry curvature
contribution. The three contributions to the conductivity (3)–
(5) involve three spectral weighting factors

wn
p,intra(ε) = π

[
An

p(ε)
]2

, (8)

wnm,s
p,inter(ε) = π

(
En

p − Em
p

)2
An

p(ε)Am
p (ε), (9)

wnm,a
p,inter(ε) = 2π2

(
En

p − Em
p

)2[
An

p(ε)
]2

Am
p (ε), (10)

which are particular combinations of the quasiparticle spectral
functions

An
p(ε) = 1

π

�

�2 + (
ε + μ − En

p

)2 , (11)

where � is the relaxation rate, which is assumed to be
frequency- and momentum-independent as well as equal for
all bands. Note that wnn,s

p,inter(ε) = wnn,a
p,inter(ε) = 0 for the diago-

nal components.
We repeat that no assumptions on the size of � have

been imposed to obtain the conductivity in Eq. (2); and its
contributions as given by Eqs. (3)–(5) hold for � of arbi-
trary size. However, the results rely on the featureless form

of the phenomenological relaxation rate �. A generalization,
for instance, by using a frequency and momentum depen-
dent �(p, ω) or a band dependent �n seems possible, but
is beyond the scope of this work. Furthermore, we do not
specify the physical origin of �, which could be due to inter-
actions, impurity scattering, or coupling to the environment.
Potential vertex corrections are not taken into account in our
calculation.

B. Role of band broadening

We discuss the dependence on the phenomenological re-
laxation rate �, which is captured by the spectral weighting
factors (8)–(10). We distinguish three different cases: the
clean limit for a metal, charge neutrality points in (higher-
order) Dirac semimetals, and flat bands. We note that the
scaling behavior for large � and the (topological) proper-
ties of the Berry curvature contribution σ

αβ,a
inter were already

discussed in Ref. [39] and will not be considered further
here.

a. Clean limit for a metal. In the following, we generalize
the results for two-band systems given in Refs. [39,50]. We
assume a d − 1-dimensional Fermi surface. If � is so small
that for given directions α, β, and bands n, m the quantities
vα,n

p v
β,n
p , gαβ,nm

p , and �
αβ,nm
p are almost constant in a momen-

tum range in which the variation of En
p and Em

p is order �, we
can approximate the spectral weighting factors in Eqs. (8)–
(10) by Dirac delta functions with a particular leading-order
dependence on �: wn

p,intra ∼ 1/�, wnm,s
p,inter ∼ �, and wnm,a

p,inter ∼
1. After performing the frequency integration and one of the
band traces, we see that the intraband, the quantum metric and
the Berry curvature contributions further decompose into in-
dividual band contributions σ

αβ

intra,n ∼ vn,α
p v

n,β
p , σ

αβ,s
inter,n ∼ gαβ,n

p ,

and σ
αβ,a
inter,n ∼ �

αβ,n
p , respectively, involving the respective

quasiparticle velocities, quantum metric, and Berry curvature.
Thus we recover the well-known semiclassical results for the
intraband contribution [51] as well as the dissipationless in-
trinsic anomalous Hall conductivity due to the Berry curvature
[52,53]. The quantum metric contribution of the longitudinal
conductivity is suppressed by �2/(En

p − Em
p )2 compared to

the intraband contribution. It provides significant contribution
only at small direct band gaps, for instance, at the onset of
order at quantum critical points [50,54].

b. Charge neutrality points in Dirac semimetals. Let us first
give a few examples for which the intraband and the quantum
metric contributions are of the same order in �. For two-
and three-dimensional Dirac cones we find the conductivity
independent of �. This also holds for a nodal dispersion with
quadratic band touching in two dimensions, whereas we find
an unconventional scaling of 1/

√
� in x direction and

√
� in

y direction for a mixed linear and quadratic band touching. In
all these cases, the size of the quantum metric contribution is
of the same order as the intraband contribution. For instance,
both σ xx

intra and σ xx,s
inter contribute equally to the longitudinal

conductivity of a two-dimensional Dirac cone. Nevertheless,
the ratio between the quantum metric and the intraband con-
tribution is nonuniversal as explicitly shown for the model
of quadratic band touching. A table which summarizes these
results can be found in Appendix B.
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c. Flat-band geometry. We study the intraband and the
quantum metric contribution for a flat-band system. For con-
venience, we relabel the bands such that the zeroth band
is the momentum-independent flat band, E0

p = Eflat. We fix
the chemical potential at the flat-band energy μ = Eflat and
assume that the flat band is isolated such that � � |En

p − Eflat|
for all bands n �= 0 and momenta p. Note that the following
arguments also hold for bands E0

p that are flat on the scale of
�, i.e., |μ − E0

p | � � for all momenta p. For improved clarity,
we will present all results for zero temperature. The spectral
weighting factors involving the flat band are

w0
p,intra(0) ≈ 1

π�2
, (12)

w0n,s
p,inter(0) = wn0,s

p,inter(0) ≈ 1

π
(13)

for n �= 0. The higher-order terms and the other contributions
with n, m �= 0 are of order �2/(En

p − Eflat)2 and, thus, sup-
pressed. Using the formula in Eq. (4), we see that the quantum
metric contribution is given by the integral of the quantum
metric over the Brillouin zone,

σ
αβ,s
inter = 2

π

e2

h̄

∫
dd p

(2π )d
gαβ,0

p . (14)

Rewriting the quantum metric as gαβ,n
p = 〈np|r̂α r̂β |np〉 −

〈np|r̂α|np〉〈np|r̂β |np〉 with position operator r̂α = i∂α we see
that σ

αβ,s
inter for a chemical potential inside the flat band is given

by the mean spread of the Bloch wave functions of the flat
band [30,31,46,55].

We now focus on a two-dimensional system, which we
assume to lie in the x-y plane. The trace of the quantum
metric is bounded by the absolute value of the Berry curvature
[26,45,56], that is, gxx,n

p + gyy,n
p � |�xy,n

p |, since the quantum

geometric tensor T αβ
p is positive semidefinite. Thus the sum

of the quantum metric contribution in x and y direction is
bounded from below, that is,

σ xx,s
inter + σ

yy,s
inter �

2

π

e2

h̄

∫
dd p

(2π )d

∣∣�xy,0
p

∣∣ � 2

π

e2

2π h̄
|C0|, (15)

where the Chern number is defined by Cn = 2π
∫ d2p

(2π )2 �
xy,n
p ∈

Z. We see that the quantum metric contribution and thus the
longitudinal conductivity is bounded for systems with nonzero
Berry curvature.

The intraband contribution (3) involves the quasiparticle
velocities, which are identically zero in a perfect flat band.
Thus the conductivity is entirely given by the quantum metric
contribution. In almost flat bands, both intra- and interband
processes contribute in general. Due to the different scaling in
� [see Eqs. (12) and (13)] the intraband contribution can still
dominate for sufficiently small �. We can give an estimate
on the crossover scale by setting σ xx

intra + σ
yy
intra = σ xx,s

inter + σ
yy,s
inter,

from which we conclude that the interband contribution is
dominant for values of the band broadening above a threshold
�c, with �c � (π/|C0|[(vx,0

max)2 + (vy,0
max)2])

1/2
by using (15)

and approximating the quasiparticle velocities by their upper
bounds vα,0

max. However, note that a large estimate for �c does
not imply a negligible interband contribution for smaller �.
We find that the estimate of �c becomes less indicative of

(a) (b)

FIG. 2. The dispersions of the flat-band model (a) and of the
model for rhombohedral trilayer graphene (b). The dispersion of the
considered flat band (blue) and the chemical potentials are shown in
the inset. The band width is much smaller than the gap to the closest
band (orange).

the crossover scale with increasing bandwidth of the (nearly)
flat band. In particular, in our examples �c can be used to
understand the result of the flat-band toy model but is less
helpful in the description of rhombohedral trilayer graphene.

C. Flat-band model

We apply our theory to a two-band model hosting a topo-
logical nontrivial flat lower and a dispersive upper band which
was introduced in Ref. [57]. We show the band structure in
Fig. 2. The complete Hamiltonian, the explicit form of the two
bands E±

p as well as the quantum metrics gxx,±
p and gyy,±

p are
provided in Appendix C. We use t as our unit of energy and
set the lattice constant a = 1. We fix the chemical potential
to the center of the lower band and analyze the longitudinal
conductivity and its different contributions in the following. In
Fig. 3(a), we show the total longitudinal conductivity σtotal =
σ xx + σ yy (blue) calculated via (2) at zero temperature as a
function of �/t . We have σ xx = σ yy as expected by the C4

symmetry of the model. We clearly identify three different
regimes with the crossover scales given by the band width
of the flat band W−/t = 0.036 (left vertical gray line) and
the band gap �/t = 4 (right vertical gray line). For small
� � W− the conductivity is dominated by the intraband con-
tribution (3) (orange) due to the small but finite quasiparticle
velocities with maximal values vx,−

max = v
y,−
max = 0.076 t of the

flat band (dashed orange). For an intermediate relaxation rate,
W− � � � �, the quantum metric contribution (4) (red) is
independent of � and bounded from below by the finite Chern
number C− = 2 of the flat band according to (14) and (15), re-
spectively. Above the threshold �c/t ≈ 0.134 (dashed vertical
gray line) the total conductivity is dominated by the quantum
metric contribution. For large � � � (right vertical gray line),
the interband contribution is no longer given by Eq. (14), so
that the lower bound (15) no longer applies. If � exceeds
the band width of all bands, �/t � (E+

max − E−
min)/t ≈ 5.7 >

�/t , both the intraband and the interband contribution are
strongly suppressed like �−2 [39].

In this simple model, the integral of Eq. (14) over the
quantum metric can be calculated explicitly, yielding

∫
d2p

(2π )2

(
gxx,−

p + gyy,−
p

) = K (−1/8)√
2π

>
|C−|
2π

, (16)
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(a)

(b)

FIG. 3. The longitudinal conductivity for the flat-band model
with chemical potential fixed to the center of the lower and (almost)
flat band, μ = (μmax

− + μmin
− )/2 = −2.432 t . (a) The total conduc-

tivity σ xx
total + σ

yy
total (blue) with its intraband (orange) and geometric

interband contribution (red) as a function of �/t . The conductivity
is dominated by the geometric interband contribution beyond �c/t ≈
0.134 (dashed vertical line), which is bounded from below (horizon-
tal line) due to the finite Chern number |C| = 2, in an intermediate
regime approximately given by the band width of the flat band
W−/t = 0.036 and the band gap �/t = 4 (solid vertical lines). At
small �, the conductivity is dominated by the intraband contribution
of the (almost) flat band (dashed orange). As expected, the bound
ceases to be effective for very large �. (b) The scaling behavior of the
different contributions. At low and large �, the total conductivity and
its contributions scale as expected [39]. In the intermediate regime,
the conductivity is independent of �.

where K (m) = ∫ π/2
0 (1 − m sin2 θ )

−1/2
dθ is the complete el-

liptic integral of the first kind. The numerical value of Eq. (16)
is 0.34, less than 10% above the threshold 1/π ≈ 0.32.
We see that in a nearly perfect flat band, the bound holds
tight.

In Fig. 3(b), we plot the logarithmic derivative of the
different conductivity contributions as a function of �/t .
For � � W− we have σintra,- ∼ 1/� and σ s

inter ∼ � as ex-
pected for the clean limit behavior of a metal as discussed
above. The intraband contribution of the upper band scales
as σintra,+ ∼ �2 [39]. For � � �, we have σintra,± ∼ σ s

inter ∼
1/�2 [39]. In the intermediate regime W− � � � �, we have
σintra,− ∼ 1/�2 and σ s

inter ∼ 1 as expected by (12) and (13),
respectively.

D. Rhombohedral trilayer graphene

We apply our theory to a realistic six-band low-energy
model of two-dimensional rhombohedral trilayer graphene
in the regime of low carrier density where the fourfold
flavor-symmetry in valley and spin is broken and only one
flavor is occupied [11]. The full Hamiltonian and the pa-
rameters, which we adapted from Ref. [11], can be found in
Appendix D. The material is highly tunable via an electri-
cal displacement field, which introduces an energy gap �1.
The band structure is shown in Fig. 2. Bands 3 (orange)
and 4 (blue) are almost flat within a momentum range of
|p|/a0 � 0.05, where a0 is the lattice constant. In the follow-
ing, we probe the longitudinal conductivity at the lower edge
μ4,min of the nearly flat conduction band 4. The integration
was performed on a square region up to a momentum cutoff
πa0 � 0.05a0.

In Fig. 4(a), we show the total conductivity σtotal = σ xx +
σ yy (blue) and its quantum metric (red) and intraband (orange)
contribution as a function of � at zero temperature. We fix
�1 = 40 meV and μ = μ4,min + 1.4 meV. Although the band
structure is more complicated than for the flat-band model,
we find similar characteristic regimes. For intermediate relax-
ation rates between � ≈ 0.03–3eV there is a large geometric
interband contribution exceeding the lower bound (15) due to
the Berry charges totaling C4 = 3/2 near the band bottom of
the fourth band. For small values of �, the main part of the
quantum metric contribution is due to the interband coupling
of the close bands 3 and 4, i.e., σ s

inter ≈ σ s
inter,34 + σ s

inter,43.
For larger �, the quantum metric contribution of all other 28
interband couplings σ s

inter,other are required to exceed the lower
bound. This might become important when using projections
on a single band. Note that in contrast to the flat-band model
discussed before, the intermediate regime cannot be easily
connected to the characteristic energy scales of the system
(vertical gray lines for the band width of the fourth band
W4 and the gaps to the third and fifth band �34 and �45,
respectively). The main reason is the finite momentum range
in which the fourth band remains flat: The relevant spectral
weighting factors w4n,s

p,inter(0) and wn4,s
p,inter(0) with band index

n �= 4 of the other five bands fulfill Eq. (13) only for momenta
|p|/a0 � 0.05 and are strongly suppressed otherwise. Thus
the range of the momentum integration in (14) is restricted and
does not capture the full quantum metric, which is maximal
for 0.03 � (gxx,4

p + gyy,4
p )/a0 � 0.12. The maximal value of

σ s
inter at � ≈ 0.2 eV is due to a subtle interplay between the

spectral weighting factors and the quantum metric in (4). The
upper scale is given by the momentum cutoff. At very low
� ∼ W4 = 0.4 meV of the order of the band width of the
flat band W4, the conductivity is dominated by the intraband
contribution as expected due the existence of a Fermi sur-
face. Due to the upturn of the flat band at |p|/a0 ≈ 0.05 and
the corresponding finite quasiparticle velocities, the interband
contribution is nonzero over the full range of �, in particular,
when � exceeds the gaps to bands 3 and 5 with �34 = 70 meV
and �45 = 317 meV. The upper scale is again given by the
momentum cutoff.

The temperature dependence of the conductivity in RTG
beyond 100 K has not yet been investigated in detail, but
the presence of flat bands and the emergence of supercon-
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(a)

(b)

FIG. 4. The contributions to the total longitudinal conductivity of
rhombohedral trilayer graphene. (a) The total conductivity (blue) and
its intraband (orange) and geometric interband (red) contributions
as a function of � for μ = 1.05 μ4,min and �1 = 40 meV at T = 0.
The main contribution to σ s

intra at intermediate � are due to interband
couplings of bands 3 and 4 (red dashed) but all other 28 couplings
contribute (purple dashed) significantly. (b) The total (blue) con-
tributions and its intraband (orange) and geometric interband (red)
contributions as a function of temperature T for the same parameters
with � = kBT . At low T , the intraband contribution is dominated
by band 4 (orange dashed). At higher T , the other bands (purple
dashed) contribute significantly. The geometric contribution causes a
conductivity minimum within the temperature range T ≈ 50–400 K.

ducting phases at low temperatures suggests that the material
offers a similar phenomenology to TBG. The latter has been
shown to exhibit a very large linear-T resistivity, possibly
making it a Planckian metal [17] in which the relaxation
rate is close to a putative upper bound O(kBT ). Therefore,
for the discussion of the temperature dependence and pos-
sible experimental signatures in RTG, we feel it is justified
to assume the “best case scenario” for our purposes, where
� ∼ kBT with a coefficient close to 1. In Fig. 4(b), we show
the conductivity σ xx (blue) and its quantum metric (red) and
intraband (orange) contributions as a function of tempera-
ture. We used the same parameters for �1 and μ as in the
upper figure and assumed a relaxation rate of � = kBT . We
obtain σ xx = σ yy within our numerical accuracy. Accord-
ing to Eqs. (3) and (4) a finite temperature enters not only
through the band broadening, but also via the Fermi-Dirac

function in the spectral weights. Nevertheless, the character-
istic behavior of the different contributions are qualitatively
similar to the zero temperature case. In the low-temperature
regime, T ∼ W4/kB ≈ 5 K, the conductivity is mainly given
by the intraband contribution of the fourth band (orange
and dashed), which can be understood by the scaling ar-
gument σ xx

intra ∼ 1/� ∼ 1/T . At high temperatures beyond
T ∼ �34/kB ≈ 800 K, the other bands contribute significantly
(green and dashed). In the intermediate range, the quantum
metric contribution becomes crucial. We see that the tempera-
ture broadening by the Fermi function enhances the intraband
contribution, whereas the quantum metric contribution is little
affected.

The conductivity σ xx exhibits a minimum at approximately
Tmin ≈ 170 K. The decomposition into its contributions shown
in Fig. 4 reveals the origin of this minimum. It is caused by the
decrease of the intraband contribution of the almost flat fourth
band and the increase of the quantum metric contribution.
It is important to notice that the thermal activation of the
other bands leading to further intraband contributions is not
sufficient to a cause a minimum at such a low-energy scale
kBTmin ∼ 15 meV, which is much smaller than the smallest
gap �34 = 70 meV. The intraband contributions of the other
bands lead to a second kink at much higher temperature. Thus
we have identified a minimum of the longitudinal conductivity
due to virtual processes, i.e., effects of the quantum metric in
rhombohedral trilayer graphene.

In Fig. 5, we discuss the stability and trends of the
minimum for different parameter values. In Fig. 5(a), we
show σ xx (solid) and the corresponding intraband contribution
(dashed) for different �1 at fixed � = kBT and μ/μ4,min =
1.05, that is μ − μ4,min = 1.4, 0.9, and 0.4 meV for �1 =
40, 30, and 20 meV. We see a pronounced minimum for
all three parameter sets. The comparison to the intraband
contribution clearly shows that this minimum is caused by
virtual processes captured by the quantum metric and not
by thermal activation of intraband processes. Only a small
minimum at signficiant higher temperature can be found for
�1 = 20 meV (blue) and �1 = 30 meV (orange). We summa-
rize the temperature of the conductivity minimum in Fig. 5(b)
for these and further parameters of �/kBT , μ/μ4,min, and
�1. The minimum found in Fig. 4(b) is taken as a reference
(empty red box). We see that decreasing the temperature
dependence of � shifts the minimum to higher temperature.
We understand this shift by both an increase of the intra-
band and a decrease of the quantum metric contribution by
the following argument: The conductivity minimum at tem-
perature Tmin satisfies dσ xx/dT = 0. Assuming the scaling
σ xx

intra ∼ 1/akBT and σ xx,s
inter ∼ akBT leads to Tmin ∼ 1/a with

a = 0.4, 0.6, 0.8, and 1.0. Note that the assumed scaling
is only expected for small temperature. An increase of the
chemical potential μ/μ4,min = 1.01, 1.05, and 1.1, that is
μ − μ4,min = 0.3, 1.4, and 2.8 meV, respectively, increases
the Fermi velocity on the Fermi surface (cf. Fig. 2). This
increases the intraband contribution (3), whereas the quantum
metric contribution remains unchanged. Thus the minimum
shifts to higher temperatures. Modifying �1 decreases the gap
between bands 3 and 4, which increases the quantum metric.
This and a decrease of the intraband contribution shifts the
minimum to lower temperature. Whereas the full conductivity
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(a)

(b)

FIG. 5. The quantum-metric induced conductivity minimum in
trilayer graphene. (a) The total (solid) and the intraband (dashed)
conductivity as a function of temperature for different �1 at fixed
μ = 1.05 μ4,min and � = kBT . (b) The temperature of the minimal
total (red filled and empty box) and intraband (blue star) conductivity
for different parameters compared to μ = 1.05 μ4,min, � = kBT , and
�1 = 40 meV (empty box).

σ xx exhibits a conductivity minimum for all considered pa-
rameters, the intraband contribution σ xx

intra does not show any
minimum in the reasonable temperature range for most of the
parameters.

We end with a discussion of the limitations of our ap-
proach. Since the formalism makes exclusive use of the band
broadening parameter �, a legitimate concern is whether
vertex corrections and extrinsic scattering due to impurities
can qualitatively affect the results presented here. While both
these effects can indeed become problematic in semimetals
which necessarily have a small density of states and a large
Fermi velocity [52,58], for a flat band dispersion it is the
opposite, as it has a large density of states and a vanishing
quasiparticle velocity. It therefore behaves like ordinary met-
als with a large Fermi surface, where the quantum lifetime
and the transport lifetime are identical and impurities effects
are weak.

We also limited the analysis to the noninteracting case.
Upon introducing interactions, additional interband processes

become possible which are mediated by these interactions.
Since this introduces additional virtual transitions, we expect
it to increase both the effective � and the effective g. As a
result, it could be that the bound on resistivity is only weakly
fulfilled. Since the bound is already only weakly fulfilled
due to the finite residual Fermi velocity in RTG, it does not
affect our main conclusions. A more serious complication
is the possible presence of ordered states near charge neu-
trality. Experimentally, a correlated insulating state seems to
emerge for carrier densities below ne = 0.05 × 10−12cm−2,
corresponding to a chemical potential of 1–2 meV above
the band termination, which is comparable to the densities
considered here. It is presently unclear whether such a state
will also exist in samples of lower mobility.

III. CONCLUSIONS

We systematically explored the role of the quantum metric
for the electrical conductivity for various semimetallic and
metallic model systems, finding that it contributes at leading
order both if the density of states vanishes at semimetallic
band crossing points, but also when the density of states
diverges in systems with quenched bandwidth and vanishing
Fermi velocity. We reported an upper bound on the resistiv-
ity for flat-band materials with nonzero Berry curvature and
elucidated the range of validity and why this bound is limited
to an intermediate range of relaxation rates. As a platform to
explore the resistivity bound, we suggested to employ rhom-
bohedral trilayer graphene, and gave a detailed account of the
various crossover scales which are expected in the system.
After completion of this work, the simultaneously finished
Ref. [59] was brought to our attention, who identified lower
bounds to the quantum metric in flat-band systems whose
Wannier centers are obstructed from the atoms and which
do not necessarily have a finite Berry curvature. This result
suggests that the bound on the resistivity due to the quantum
metric applies to a much broader class of materials as long as
our other assumptions are fulfilled.

It is of timely relevance to explore how interactions will
change the phenomenology reported here, in particular with
respect to the quantum metric, a band structure parameter like
the Berry curvature which is probably quite robust against
interaction effects.
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APPENDIX A: KUBO FORMALISM FOR FAST
RELAXATION

We calculate the dc conductivity given by

σαβ = − lim
ω→0

1

iω
�αβ (ω), (A1)

where α and β denote the spatial directions of the current and
the electric field, respectively, in d dimensions for the Hamil-
tonian given in Eq. (1). The following derivation generalizes
the approach developed by one of us from two to N bands
[39]. The polarization tensor �αβ (ω) is obtained by the Kubo
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TABLE I. The intraband and the quantum metric contribution to the longitudinal conductivity in x and y directions for different models of
semimetals (B1)–(B4) at the charge neutrality point μ = 0. The intraband and the quantum metric contribution are of the same order in � in
all cases. However, their ratio is nonuniversal. The numerical prefactors for λ(III )

p are rounded for simplicity. The conductivities are given in
units of e2/h.

σ xx
intra σ xx,s

inter σ
yy
intra σ

yy,s
inter σ zz

intra σ zz,s
inter σ xx,s

inter/σ
xx
intra σ

yy,s
inter/σ

yy
intra σ zz,s

inter/σ
zz
intra

λ(I )
p

1
2

a
b

1
π

1
2

a
b

1
π

1
2

b
a

1
π

1
2

b
a

1
π

- - 1 1 -

λ(II )
p

1
π

a2

a2+b2
1
π

1
π

a2

a2+b2
1
π

- - a2

a2+b2
a2

a2+b2 -

λ(III )
p 0.197 1√

�
0.098 1√

�
0.324

√
� 0.216

√
� - - 1

2
2
3 -

λ(IV )
p

1
6

1
(bc)2

1
π

1
3

1
(bc)2

1
π

1
6

1
(ac)2

1
π

1
3

1
(ac)2

1
π

1
6

1
(ab)2

1
π

1
3

1
(ab)2

1
π

2 2 2

formula

�
αβ
iq0

= e2

h̄

kBT

V

∑
ip0,p

tr
[
Gip0+iq0,pλ

β
pGip0,pλ

α
p − (iq0 = 0)

]
(A2)

after analytic continuation of the bosonic Matsubara fre-
quency iq0 → ω + i0+ to real frequency ω. The polarization
tensor (A2) involves the generalized velocities, that is, the mo-
mentum derivatives of the Bloch matrix in Eq. (1), λα

p = ∂αλp,
and the Green’s function matrix

Gip0,p = [ip0 + μ − λp + i�sign(p0)]−1 (A3)

with fermionic Matsubara frequency ip0. We denote the trace
over the N bands as tr. T is the temperature and V the volume
of the Brillouin zone. The second term in Eq. (A2) is the
diamagnetic term, which is equal to the first term with iq0 set
to zero.

The key in the used approach is to consider a phenomeno-
logical relaxation rate � > 0, which is not restricted in size
in the following derivation [39]. For simplicity, � is assumed
to be frequency- and momentum-independent as well as equal
for all bands.

We diagonalize the Bloch Hamiltonian λp by its N eigen-
vectors |np〉 with corresponding eigenvalues En

p . The elements
of the Green’s function and the generalized velocities in the
eigenbasis then read

Gn
ip0,p = [ip0 + μ − En

p + i�sign(p0)]−1, (A4)

(
λ̃α

p

)
nm

= δnmvα,n
p + i

(
En

p − Em
p

)
Aα,nm

p , (A5)

where we denote the quasiparticle velocities as vα,n
p = ∂αEn

p
and the Berry connection as Aα,nm

p = i〈np|∂αmp〉. δnm is the
Kronecker delta. Note that the quasiparticle Green’s func-
tion (A4) is diagonal, whereas the generalized velocity (A5)
has both diagonal and off-diagonal contributions leading to
both intraband and interband contributions to the conductivity
tensor σαβ . Furthermore, we uniquely decompose σαβ into
its symmetric and antisymmetric parts under the exchange
of α ↔ β. After performing the Matsubara summation, an-
alytic continuation, and the thermodynamic limit 1/V

∑
p →∫

dd p/(2π )d , we obtain Eq. (2) with the three contributions
(3)–(5).

Note that the two quantities gαβ,nm
p and �

αβ,nm
p defined

in (6) and (7) are invariant under the U (1) gauge freedom
|np〉 → eiφp |np〉 for n �= m due to the particular combination
of the Berry connections. The summation

∑
n �=m Aα,nm

p Aβ,mn
p

yields the quantum geometric tensor T αβ,n
p , which decom-

poses into the symmetric real part gαβ,n
p and antisymmetric

imaginary part −�
αβ,n
p /2, that is, the quantum (or Fubini-

Study) metric and the Berry curvature, respectively [38],∑
m �=n

gαβ,nm
p =

∑
m �=n

gαβ,mn
p = gαβ,n

p , (A6)

∑
m �=n

�αβ,nm
p = −

∑
m �=n

�αβ,mn
p = �αβ,n

p . (A7)

APPENDIX B: CHARGE NEUTRALITY POINTS IN
DIRAC SEMIMETALS

We calculate the longitudinal conductivity explicitly for
four different models of (higher-order) Dirac semimetals

λ(I )
p = a px σx + b py σy, (B1)

λ(II )
p = a

2

(
p2

y − p2
x

)
σx + a px py σy + b

2
|p|2 σz, (B2)

λ(III )
p = px σx + p2

y σy, (B3)

λ(IV )
p = a px σx + b py σy + c pz σz, (B4)

with parameters a, b, c > 0. σi are Pauli matrices. The Hamil-
tonian (B1) and (B4) describe two- and three-dimensional
Dirac cones. A quadratic band touching and a mixed linear
and quadratic band touching in two dimensions are described
by (B2) and (B3), respectively. We fix the chemical potential
μ to the charge neutrality point, so that the Fermi surface
reduces to a single momentum point. The considerations for
a metal do not apply since the quantum metric diverges at
that momentum, so that a different scaling behavior can be
expected. We perform the momentum integration over Rd and
at zero temperature. We summarize the results in Table I.

APPENDIX C: FLAT-BAND MODEL

As a toy model for topological flat bands, we employ a
square bipartite lattice where one band is flattened by longer-
ranged hopping [57]. It reads explicitly,

λp/t = −1 − √
2

2
[cos(2(px + py)) + cos(2(px − py))]

×1 − 2
√

2sin(px )sin(py) σz −
√

2[cos(py)

+ cos(px )] σx −
√

2[cos(py) − cos(px )] σy. (C1)
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The eigenvalues are

E±
p = −(1 −

√
2) cos 2px cos 2py ± √

6 + 2 cos 2px cos 2py.

(C2)

Numerically, we find for the energies where the bands ter-
minate the values E+

max/t = 3.243, E+
min/t = 1.586, E−

max/t =
−2.414, and E−

min/t = −2.450. We place the chemical poten-
tial in the middle of the flat band, at μ = (E−

max + E−
min)/2 =

−2.432. The quantum metric reads

gxx,±
p = 2(sin py)2[1 + (cos px )2(cos py)2] + (cos py)2(sin px )2

(3 + cos 2px cos 2py)2
, (C3)

gyy,±
p = 2(sin px )2[1 + (cos px )2(cos py)2] + (cos px )2(sin py)2

(3 + cos 2px cos 2py)2
. (C4)

We have vx,±(px, py) = vy,±(−py, px ), vy,±(px, py) = −vx,±(−py, px ), and gxx,±(px, py) = gyy,±(−py, px ). Thus it follows that
σ xx

intra = σ
yy
intra and σ xx,s

inter = σ
yy,s
inter.

APPENDIX D: RHOMBOHEDRAL TRILAYER GRAPHENE

The six-band model for trilayer graphene is adapted from Ref. [11]. It holds for each valley degree of freedom and both spin
degrees of freedom, meaning that the total number of bands is 24. At low electron or hole density, the system spontaneously
breaks the fourfold degenerate ground state symmetry and resides in a single flavor-polarized state. Using πp = ξ px + ipy with
ξ = ±1 for the valley degree of freedom, it is (choosing ξ = 1),

λp =

⎛
⎜⎜⎜⎜⎜⎜⎝

�1 + �2 + δ γ2/2 v0π
†
p v4π

†
p v3πp 0

γ2/2 �2 − �1 + δ 0 v3π
†
p v4πp v0πp

v0πp 0 �1 + �2 γ1 v4π
†
p 0

v4πp v3πp γ1 −2�2 v0π
†
p v4π

†
p

v3π
†
p v4π

†
p v4πp v0πp −2�2 γ1

0 v0π
†
p 0 v4πp γ1 �2 − �1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (D1)

where we used the shorthand vi = √
3a0γi/2. The parameters take the following values [11]: γ0 = 3.1 eV, γ1 = 0.38 eV, γ2 =

−0.015 eV, γ3 = −0.29 eV, γ4 = −0.141 eV, δ = −0.0105 eV, and �2 = −0.0023 eV.
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