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Using ab initio calculations, we have analyzed the influence of anharmonic effects on the electronic structure
and the phonon-dispersion relations of body-centered-cubic (bcc) niobium (Nb) and investigated the temperature
dependence of the Kohn anomaly in this metal. A comparison of the results obtained in the framework of the
temperature-dependent effective potential method with those derived within the quasiharmonic approximation
demonstrates the importance of the explicit treatment of the finite-temperature effects upon the theoretical
description of bcc Nb lattice dynamics. In agreement with experimental results, the inclusion of anharmonic
vibrations in our calculations leads to the disappearance of the Kohn anomaly for the acoustic mode in a vicinity
of the � point with increasing temperature. Moreover, the calculated phonon self-energy indicates that the
origin of the temperature dependence is related to the change of the electronic structure. We have calculated the
temperature dependence of the electronic spectral function and analyzed the Fermi surface of Nb. A significant
temperature-induced smearing of the electronic states has been identified as the origin of the disappearance of
the Kohn anomaly in Nb at elevated temperature.

DOI: 10.1103/PhysRevB.101.115119

I. BACKGROUND

Body-centered-cubic (bcc) niobium (Nb) is a refractory
metal with remarkable properties. It has a melting temperature
of 2741 K and the highest superconductive critical temper-
ature of all elements (Tc = 9.25 K) [1]. Consequently, the
temperature dependence of the physical properties of Nb
has attracted substantial interest. It is established that this
metal shows unusual elastic and mechanical properties under
pressure at low temperatures around Tc. Singh et al. [2] inves-
tigated Nb in a diamond anvil cell (DAC) using an x-ray beam
perpendicular to the load axis and predicted an anomalous
behavior of the compressive strength of Nb up to ∼12 GPa.
Trivisonno et al. [3] measured the temperature dependence
of the elastic constants of Nb in its normal metallic and
superconducting states. Kawashima [4] reported an anoma-
lous decrease of the elastic modulus, C′ = (C11 − C12)/2, of
the normally conducting state below Tc using a magnetic
field higher than the critical field combined with ultrasonic
measurements. Landa et al. [5,6] and Koči et al. [7] predicted a
shear elastic softening of Nb from 20 to 150 GPa based on 0 K
density functional theory (DFT) calculations. Based on the
assumption that the thermal excitation of the electrons is the
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most significant temperature effect, Wang et al. [8] performed
static DFT calculations, varying the electronic temperature
and including the thermoelectronic entropy to predict the
temperature dependence of the C44 shear elastic constant. The
occurrence of the shear elastic softening has been suggested
up to 2000 K. However, an absence of any phonon contribu-
tion which is expected to be significant at high temperatures
calls for a reconsideration of this conclusion.

The phonon-dispersion relations of bcc Nb have been mea-
sured via inelastic neutron scattering [9–11] and also calcu-
lated in the framework of the density functional perturbation
theory [12,13]. All report a “kink” in the vicinity of the �

point in the phonon-dispersion relations at room temperature.
This peculiarity is believed to be a Kohn anomaly. Kohn

showed [14] that the conduction electrons, i.e., the electrons
at the Fermi energy, can interact with each other and phonons,
causing singularities in the phonon-dispersion relations for
metals under certain conditions. Specifically, electron-phonon
coupling can occur if there is a phonon wave vector q that
can connect two points on the Fermi surface. If the Fermi sur-
face is composed of parallel flat sheets, the electron-phonon
coupling for the wave vector q that connects the sheets—the
nesting vector—diverges, resulting in a sharp kink in the
phonon-dispersion relations at that specific wave vector q. In
reality, no true divergences occur since the argument relies on
a somewhat simplified picture, i.e., the predicted divergencies
appear as smooth kinks.

The question this paper is addressing is the nature of
the mechanism for the smoothing of the divergencies in the
phonon-dispersion relations in bcc Nb. We are approach-
ing the problem via lifting the assumption of well-defined,
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temperature-independent electron and phonon quasiparticles.
As the temperature is increased to 1030 K, the smoothing
of the divergencies is so strong that they are no longer
observable [15]. As temperature is increased, anharmonicity
and electron-phonon coupling cause phonon bands to shift
and broaden. Similarly, the thermal motion of ions breaks
the perfect translational symmetry and ripple that the effec-
tive potential electrons feel, causing shifts and broadenings
of the electronic states. In this paper, we show how finite-
temperature effects can explain the disappearance of the Kohn
anomaly with increased temperature as an almost purely
geometrical effect originating in quasiparticle broadening.

II. METHODOLOGY

To estimate the finite-temperature electronic structure, we
need to take the motion of ions into account and approxi-
mate the appropriate configuration average. The conventional
quasiharmonic picture is inadequate for our goals since once
the ions are in a thermally excited state the electron-phonon
coupling will be different than for the static lattice, resulting
in changed phonons. A self-consistent phonon procedure nat-
urally deals with the interdependence of the electronic struc-
ture and phonons in a satisfactory manner [16,17]. Our self-
consistent procedure is based on the temperature-dependent
effective potential (TDEP) [18–20] approach, where a set of
positions and forces is given as input and results in an effective
harmonic (or higher-order) model,

HTDEP = U0 +
N∑

i=1

{x,y,z}∑
α

(
pα

i

)2

2mi
+ 1

2

{x,y,z}∑
α,β

N∑
i, j=1

�
αβ
i j uα

i uβ
j .

(1)

U0 in Eq. (1) is a temperature-dependent parameter that
should be fitted in addition to the force constants. pα

i and uα
i

denote the α component of momentum and displacement for
ion i. mi stands for the mass of the ith particle. �

αβ
i j is the

second-order TDEP force constant matrix.
The positions that enter Eq. (1) need to sample a canonical

ensemble. The Hamiltonian defined by the TDEP second-
order force constant matrix provides the means to sample an
ensemble from the effective phonons, and a self-consistent
cycle can be constructed as described in the computational
details below.

To enable us to evaluate the effect of including an-
harmonicity on phonon-phonon interactions, we calculate
the phonon spectral function. Starting from the self-energy
[21–23], �qs(�) = �qs(�) + i�qs(�), where �

q
s (�) is the

real part, �qs(�) is the imaginary part, and � gives the
energy of the lattice excitation by E = h̄� for mode ωqs at
wave vector q. The imaginary part of the self-energy can be
calculated as [21–23]

�qs(�) = h̄π

16

∑
q′q′′s′s′′

|�qq′q′′ss′s′′ |2

×{(nq′s′ + nq′′s′′ + 1)δ(� − ωq′s′ − ωq′′s′′ )

+ (nq′s′ − nq′′s′′ )[δ(� − ωq′s′ + ωq′′s′′ )

− δ(� + ωq′s′ − ωq′′s′′ )]}, (2)

where �qq′q′′ss′s′′ is derived from the third-order force constant
matrix �

αβγ

i jk as

�qq′q′′ss′s′′ =
{x,y,z}∑
α,β,γ

N∑
i, j,k=1

εiα
qsε

jβ
q′s′ε

kγ

q′′s′′
√

ωqsωq′s′ωq′′s′′

× �
αβγ

i jk√
mimjmk

ei(q·ri+q′ ·r j+q′′ ·rk ). (3)

Here, εiα
qs denotes the polarization vector of the mode ωqs at

wave vector q, and ri is the equilibrium position for the ith
ion. In Eq. (2), nqs stands for the Bose-Einstein mean phonon
occupation number at temperature T . The real part of the
phonon self-energy is calculated from its imaginary part using
the Kramers-Kronig transformation,

�qs(�) = 1

π
P

∫ ∞

−∞

�qs(ω)

ω − �
dω, (4)

where P denotes the Cauchy principal value. From the self-
energy, we obtain a spectrum,

S(q, E ) ∝
∑

s

2ωqs�qs(�)[
� − ωqs

2 − 2ωqs�qs(�)
]2 + 4ω2

qs�
2
qs(�)

,

(5)

for a phonon described by the wave vector q and its excitation
energies E , which is what we call a phonon spectral function.

TDEP gives insight into the temperature dependence of the
phonons. The configuration average that provides the effective
phonons can also be used to determine the effective electronic
structure. A complication is that we are using a supercell
technique: the Brillouin zone in the configuration average
is a significantly smaller and severely folded version of the
bcc Brillouin zone. To translate the average over supercells
to a single-particle effective band structure, we average the
electronic band structure via unfolding [24–26],

PKm(k) =
∑

n

|〈Km|kn〉|2

=
∑

g∈PCRL

∣∣CSC
Km(g + k − K)

∣∣2
, (6)

A(k, E ) = 1

Nc

∑
c

{∑
m

Pc
Km(k)δ

(
Ec

Km − E
)}

. (7)

In Eq. (6), PKm(k) is the spectral weight for a supercell Bloch
state represented by the wave vector K and band index m
at the primitive-cell wave vector k. n is the band index for
the primitive cell. The second equality is summed over the
reciprocal lattice vectors g belonging to the primitive cell. CSC

Km
is the coefficient of the supercell plane waves. By summing
over all the supercell bands m with the energy EKm equal to
E for the wave vectors K that unfold to k, a spectral function
is obtained for the primitive-cell wave vector k and energy
E , as the inner summation in Eq. (7). By summing over
spectral weights for individual configurations and dividing
by the number of configurations Nc, as the whole expression
in Eq. (7), a configurationally averaged spectral function is
acquired. In Eq. (7), Pc

Km is the spectral weight calculated as
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in Eq. (6) and Ec
Km is the energy of band m at the wave vector

K for the configuration c.
The above procedure projects the supercell states of a set of

configurations onto the unit cell, defining a broadened spectra
that we interpret as an electron spectral function.

As we are interested in the geometrical features of cou-
pling of electrons and phonons at finite temperature, the
temperature-dependent electronic and phononic spectral func-
tions are the only ingredients we need to start discussing the
temperature dependence of the Kohn anomaly. The unfolding
procedure captures all orders of adiabatic electron-phonon
coupling, but we must note that purely nonadiabatic terms are
not included. At present, the exclusion of nonadiabatic terms
seems to be an acceptable approximation for our needs.

III. COMPUTATIONAL DETAILS

We used a short ab initio molecular dynamics simulation
(AIMD) as the initial seed for the self-consistent phonon
calculations. Using TDEP, we calculated phonons from this
initial seed. From these first “crude” phonons, we sampled the
phase space in the following way [27,28]:

uα
i =

3Na∑
s=1

εα
s Ais

√
−2 ln ξ1 sin 2πξ2, (8)

u̇α
i =

3Na∑
s=1

ωsε
α
s Ais

√
−2 ln ξ1 cos 2πξ2, (9)

were uα
i and u̇α

i are the Cartesian component in the α direction
for the displacement from the thermal average and velocity for
ion i. ξ1 and ξ2 are uniformly distributed variables with values
between 0 and 1. εα

s stands for the Cartesian component of the
polarization vector of the mode ωs. The amplitude of these
oscillations was set to be

Ais =
√

2h̄

miωs

(
ns + 1

2

)
, (10)

which will include zero-point motion. ns is the occupation
number according to Bose-Einstein statistics and mi is the
mass of ion i. In practice, to “sample the phase space”
means to populate supercells as microstates with the statistics
according to a canonical ensemble given by the previously
calculated phonons. Energies and forces were calculated by
using density functional theory (DFT) for these populated
supercells, which are what we previously have, and will con-
tinue to call configurations. We again use TDEP to calculate
phonons and redo the phase-space sampling, obtaining a new
set of configurations for which we again use DFT to calculate
their energies and forces, which are sequentially used together
with the displacement from the new set of configurations
to calculate phonons using TDEP. For each iteration in the
self-consistent phonon calculation, we used 30 configurations
to guarantee convergence of the phonon-dispersion relations
and phonon free energy; see the Appendix for more details
regarding the convergence with respect to the number of
configurations. After three iterations, the phonons showed no
significant difference.

Materials expand with increasing temperature. To account
for thermal expansion, we executed calculations on a volume-
temperature grid. The volumes of the grid were equal to a
(6 × 6 × 6) supercell bcc structure of Nb with the lattice
parameters 3.135, 3.238, 3,335, 3.427, and 3.513 Å. The
temperatures were 0, 300, 1200, 2000, and 2700 K. The
self-consistent procedure described above was used for each
point on this grid. By interpolating the force constants on the
volume-temperature grid, calculating Helmholtz free energy
using TDEP and minimizing it for temperature, and including
the extrapolation to 0 K, we obtained the volume as a function
of temperature for zero pressure, which we will call the zero-
pressure volume-temperature curve.

The calculations performed on the volume-temperature
grid are not on the obtained volume-temperature curve. To ob-
tain accurate phonon calculations on the volume-temperature
curve, we additionally carried out the self-consistent phonon
procedure on it. The lattice parameters for the volume-
temperature curve were 3.323, 3.332, 3.357, 3.384, and
3.419 Å for the temperatures 0, 300, 1200, 2000, and 2700 K.
As an initial seed, we used the phonons from the interpo-
lated force constants. We only needed to perform one self-
consistent phonon cycle with the same number of configura-
tions previously used to obtain converged results. From the
converged phonon calculations, the phase space was once
again sampled. For each point on the curve, 10 new con-
figurations were made for the phonon and electron spectral
functions.

All the DFT simulations have been carried out with the pro-
jector augmented wave (PAW) method [29,30] implemented
in the Vienna Ab initio Simulation Package (VASP) [31–34].
For the exchange-correlation energy functional, we applied
the generalized gradient approximation (GGA) in the form
suggested by Perdew, Burke, and Ernzerhof (PBE) [35]. The
reciprocal space was probed according to a (3 × 3 × 3) �-
centered Monkhorst-Pack mesh [36]. We used a maximum
energy of 600 eV for the plane-wave basis set. The electronic
temperature was set to ∼1160 K if the temperature of the
calculation did not exceed this value.

To unfold the electronic structure to what we will call
electronic spectral functions, sometimes referred to as Bloch
spectral functions, we took the thermal average of the 10
configurations on the volume-temperature curve. These were
(6 × 6 × 6) supercells with the reciprocal space sampled with
a (3 × 3 × 3) �-centered mesh, which means that we could
unfold them to a unit cell with a (18 × 18 × 18) k-point
mesh. The unfolding has been performed using the BANDUP

code [25,26]. For the actual plot, we interpolated the spectral
function, band for band, on a finer mesh with 2400 points on
the energy axis and 200 points between each high-symmetry
point; the mesh was therefore of the size (2400 × 1000).

For the same 10 configurations, we calculated the phonon
spectral function, perhaps better know as line shapes, S(q, E ),
or ideal inelastic neutron scattering. We used TDEP and
a third-order Hamiltonian, obtaining the second- and third-
order force constants, which we used to calculate the imagi-
nary part of the self-energy [27]. The plot itself was calculated
with a (30 × 30 × 30) q-point mesh.
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FIG. 1. Phonon-dispersion relations for bcc Nb at 300 and
1030 K. Solid lines show the results obtained using the second-
order TDEP Hamiltonian. Dashed lines show the phonon frequencies
derived by the quasiharmonic approximation (QHA). In the latter
case, the temperature dependence of the phonon-dispersion relations
is due to the temperature variation of the lattice parameter shown in
Fig. 2. In the TDEP calculation, the force constants are temperature
dependent, in addition to the lattice parameter. The dots show the
experimental results from Refs. [9,15]. The vertical dashed lines
shows the nesting vectors q̄a and q̄b.

IV. RESULTS

Figure 1 shows the calculated phonon-dispersion relations
at 300 and 1030 K in comparison with neutron-scattering
experiments from Refs. [9,15]. The experimental results are
shown with dots, while the dashed and solid lines display the
result obtained by the quasiharmonic approximation (QHA)
and with the second-order TDEP Hamiltonian, respectively.
At room temperature (300 K), both theoretical approaches are
in agreement with experiments. The phonon softening close
to the � point is captured in our calculations. Not only the
q vector, but also the size (�ω/ω) of the Kohn anomaly is
reproduced well by both theories. As has been pointed out by
Taylor [37], the size of the Kohn anomaly depends (i) on the
strength of electron-phonon interaction and (ii) on the discon-
tinuities occurring in the matrix elements of the interactions.
Using an isotropic metal approximation, Taylor predicted the
disappearance of the softening with increasing temperature
[37]. The second-order TDEP results obtained at 1030 K and
shown in Fig. 1 confirm this prediction, in agreement with ex-
periment. On the contrary, the phonon softening within QHA
is present even at a high temperature of 1030 K. An additional
verification of our calculations can be seen in the calculated
temperature dependence of the lattice parameter, which is
presented in Fig. 2 and in good agreement with experiment,
whereas the QHA underestimates the thermal expansion.

Phonon-phonon anharmonicity competes with electron-
phonon coupling as the main mechanism for softening of
phonons at finite temperature. To investigate the effects of
pure anharmonicity, we calculated the phonon spectral func-
tion broadened from three-phonon processes, as presented in
Figs. 3(a)–3(d). The central peaks of the spectral function

FIG. 2. Temperature dependence of lattice parameter a(T ) for
bcc Nb between 1500 and 2700 K. It is expressed as a ratio (a −
a0 )/a0, where a0 is the lattice parameter at 300 K. The experimental
results are from Ref. [41], with the reference value of a0 taken
at T = 293 K. The calculated lattice parameter at T = 0 K was
3.32 Å. For both our TDEP and QHA calculations at T = 300 K,
the reference value was 3.33 Å.

closely track the second-order TDEP frequencies, while the
phonon linewidths increase with temperature. Even close to
the melting temperature at 2700 K, the spectral function is
remarkably well defined, with clear quasiparticle peaks and
no significant anharmonic shifts to speak of. This leads us to

FIG. 3. (a)–(d) Phonon-dispersion relations calculated with the
third-order TDEP Hamiltonian, including the finite linewidth, for bcc
Nb in the temperature range 0 to 2700 K. (e)–(h) Electronic band
structure of bcc Nb in the same temperature range.
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FIG. 4. Fermi surface of bcc Nb calculated at T = 0 K and the
(100) plane cross sections. The nesting vectors q̄a and q̄b are marked
out together with the parallel segments labeled 1, 2, and 3 on both
the Fermi surface and the electron bands. We also see how the nesting
vectors from the electronic structures correspond to the regional local
softening in the 0 K phonon dispersions.

a conclusion that the main contributions to the temperature
dependence of the phonons in Nb are electronic in origin.

The obtained electronic structure is shown in Figs. 3(e)–
3(h). The amplified electron-phonon scattering with temper-
ature leads to a decreased lifetime of the electrons, seen as
the increasing linewidth of the bands in Figs. 3(e)–3(h). The
line broadening, however, appears to be the dominant effect of
the increasing temperature on the electronic structure, as the
shape of the electronic bands appears to be unaffected.

It is well known that the Kohn anomaly in Nb is associ-
ated with certain geometrical features of its Fermi surface.
Figure 4 shows the Fermi surface at T = 0 K and their (100)
plane cross sections. The basic shape was calculated with
the FERMISURFER software [38] and is in good agreement
with previously published results [7,39]. The Fermi surface
consists of three parts: two closed hole surfaces around
the � and N points and a jungle gym tube. In Fig. 4, we have
identified two nesting phonon wave vectors, q̄a and q̄b. These
vectors are also illustrated in Fig. 1, where one sees that it is
at these points that the discrepancies between the QHA and
fully temperature-dependent results are the largest.

This leads us to an interesting observation: the presence of
parallel sheets in the Fermi surface should nominally lead to
a divergence in the electron-phonon scattering at the specified
q vectors, but no such divergence is observed in experiment
or our calculations. We argue that the divergence is self-
destroying in a sense: Fermi-surface nesting leads to large
electron-phonon coupling. This broadens the electronic states,
which in turn means that the Fermi surface becomes diffuse
and not a sharp surface. With a diffuse Fermi surface, there
will be no discrete nesting q vector, but a smooth distribution
without any singular behavior. This idea is supported by
our calculations of the finite-temperature electronic structure:
even at 0 K, there is significant broadening of the bands in the
vicinity of the Fermi energy, EF , due to zero-point motion, for
example, between � − N . The increased broadening of elec-
tronic bands with increasing temperature is closely tracked
by the disappearance of the Kohn anomaly between � − H ,
and the temperature dependence of the phonon frequencies
between � − N , as seen in Fig. 1.

To quantify this, we plot the electron spectral function
integrated over a small energy range around EF (±1.7 meV)
in Fig. 5. We are interested in the areas labeled 1 and 2 in

FIG. 5. Electron (or Bloch) spectral functions A(k, E ) at differ-
ent temperatures in the [EF − δ, EF + δ] energy window around the
Fermi energy (EF) of Nb with δ = 1.7 meV. The inset has an opposite
order for temperature to expose the smearing of the peaks.

Fig. 4; these areas are in the vicinity of the parallel segments
of the Fermi surface for which the nesting vectors q̄a and q̄b,
marked out in Figs. 1 and 4, connect. If we look at Fig. 4,
we see that the first peak in Fig. 5 when we go from � to
N is related to the nesting vector q̄a, and the second peak
in Fig. 5 between � and N is related to q̄b. With increasing
temperatures, we observe in Fig. 5 that the two peaks related
to the nesting vectors q̄a and q̄b are getting more smeared,
and at 1200 K, they have became one diffuse blob with the
neighboring peaks. Around this temperature, we observe in
Figs. 1 and 3 that the “kink” between � − H has disappeared
and we observe a significant difference between the TDEP
and the quasiharmonic phonon frequencies between � − N in
Fig. 1. This makes us argue that with increasing temperature,
the electronic landscape is undergoing a transition of the
topology of the Fermi surface, which should not be confused
with Lifshitz electronic topological transition [40]. In our
case, with increased temperature, we do not have a discrete
sharp Fermi surface, but we have a diffused smeared one.
However, if we would consider an effective Fermi surface, an
isosurface fitted to the spectral function at the Fermi energy,
its topology would, with increasing temperature, undergo a
transition.

V. CONCLUSIONS

By using TDEP and fully including the anharmonic effects
of lattice vibrations, we have studied temperature-dependent
Kohn anomalies between � − H and � − N for the phonon
frequencies in bcc Nb. The disappearance of these anomalies
with increasing temperature becomes distinctly noticeable
when compared with the quasiharmonic results at finite tem-
peratures. From the low smearing and shift of the phonon
spectral functions, we conclude that the phonon-phonon in-
teractions are nearly negligible. What we, therefore, argue
to majorly affect the phonons with increased temperature
between � − H and � − N is the change in the electronic
structure. We conclude that the electronic structure is changed
by the smearing of the electronic states. This smearing affects
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FIG. 6. Convergence of phonon-dispersion relations. From a pool of ∼1000, 50 calculations were performed with varying numbers of
configurations. These numbers were 1, 2, 4, 8, 16, 32, 64, and 128. The broadening in this figure is a measure of the statistical error and should
not be confused with the broadening, inverse phonon lifetime in Fig. 3.

the effective Fermi surface. We also observe that divergence
in electron-phonon scattering is self-destroying, meaning that
no sharp “kinks” will be observed in the phonon-dispersion
relations for the nesting vectors. This is because the Fermi-
surface nesting will make the Fermi surface diffuse and the
nesting vector will no longer nest two parallel sharp segments,
and therefore only smooth kinks will be observed.
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APPENDIX: CONVERGENCE TEST

To test the convergence of the phonon dispersions with
respect to the number of configurations used to extract the

force constants, we used the following procedure: we gener-
ated a pool of ∼1000 configurations. From this pool, we select
one configuration, and determine the force constants and the
dispersion relations. Then we pick one new configuration and
repeat the procedure about 50 times, which gives us a set of
50 phonon-dispersion relations. They are superimposed in the

F 
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FIG. 7. Convergence of phonon free energies. The difference
between the mean value and the mean value when 128 configurations
were used is plotted. The error bars represent a confidence interval
of 98%. From a pool of ∼1000, 50 calculations were performed with
varying numbers of configurations. These numbers were 1, 2, 4, 8,
16, 32, 64, and 128.
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first panel of the upper row in Fig. 6. The procedure is then
repeated choosing 2, 4, 8, 16, 32, 64, and 128 configurations.
At 16 random configurations, the statistical error is already of
the order of the line thickness.

The specific dataset we used was generated at a lattice
parameter of 3.335 Å and a temperature of 300 K, with the

other calculational details equivalent to those in the main
manuscript.

We can in a similar way determine the statistical error in
the free energy, displayed in Fig. 7. Here we see that the
98% confidence interval is within 0.5 meV/atom at around
16 configurations.
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