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Hybrid exceptional point created from type-III Dirac point
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Degeneracy points and exceptional points embedded in the energy band are distinct because of their
topological features. We report a hybrid exceptional point formed through merging two ordinary exceptional
points with opposite chiralities that were created from the type-III Dirac points emerging from a flat band.
The hybrid exceptional point is induced by the destructive interference at the proper match between the
non-Hermiticity and the synthetic magnetic flux. The degeneracy points and different types of exceptional
points are distinguishable by their topological features of the global geometric phase accompanied by the scaling
exponent of phase rigidity. Our findings not only pave the way for creating, moving, and merging exceptional
points but also shed light on future investigations of non-Hermitian topological phases.
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I. INTRODUCTION

Exceptional points (EPs) are non-Hermitian degeneracies
[1–4], at which the system Hamiltonian is defective and
eigenstates coalesce [5]. A parity-time (PT ) symmetric phase
transition and many intriguing dynamical phenomena occur
at the EPs [6–20]. The properties of a non-Hermitian system
dramatically change in the vicinity of EPs and are valuable
for optical sensing [21–25]. Frequency sensing is enhanced
because the responses of energy levels to the detuning pertur-
bation are the square root near a two-state coalescence (EP2)
and the cubic root near a three-state coalescence (EP3) in
non-Hermitian systems, which is more efficient than the linear
response near a diabolic point (DP) in Hermitian systems
[24,25].

The EPs possess distinct topology from DPs [26]. In a two-
level non-Hermitian system, the energy levels interchange
after encircling the EP for one circle in the parameter space.
The interchanged energy levels restore their original values
after two circles of encircling and accumulate a geometric
phase ±π ; the sign of the geometric phase depends on the
circling direction, and the chirality of the EP is defined by
the accumulated geometric phase under the counterclockwise
encircling [27–36]. Dynamical encircling of EPs realizes a
state switch and nonreciprocal topological energy transfer
[37–40]; the dynamics depends on the starting and end points
[41] and the homotopy of the encircling loop [42].
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The EPs are different in their ways of coalescence as well
as their topological properties [43]. In one aspect, the EPs are
distinct in their orders: If more than two energy levels coalesce
at the EP, the EP is called a high-order EP [44,45], where
the excitation intensity presents the polynomial increase [46].
In another aspect, even the EPs with identical orders may
dramatically differ from each other in the topological aspect.
For example, when encircling a high-order EP with three-state
coalescence (EP3) in the energy band of a square-root-type
Riemann surface in the parameter space, two energy levels
flip after encircling one circle; if an EP3 is in a cubic-root-
type Riemann surface, when it is encircled, three circles are
needed to restore the energy levels to their original values. The
geometric phases associated with the two EP3s are different,
which reflects the different topological features of two such
types of EP3s [47]. An interesting question naturally arises:
Do EP2s have different topologies? If so, how does one
characterize their topological properties and distinguish them?

The manipulation of Dirac points in condensed-matter
physics is an interesting and challenging task. The merging
of Dirac points induces a topological phase transition and
generates new types of Hermitian degeneracy; for example,
two Dirac points with opposite topological charges can merge
into a semi-Dirac point with linear and quadratic dispersions
along two orthogonal directions [48–51]. In parallel, the merg-
ing of EPs leads to multifarious Hermitian and non-Hermitian
degeneracies. It has been demonstrated that the merging of
EPs may (i) lead to the DP [51], (ii) create the high-order EP
[35,36], and (iii) form the hybrid EP [52,53]. The hybrid EP
has linear and square-root dispersions along two orthogonal
directions and carries integer topological charge, in contrast
to the ordinary EP2 that carries half-integer topological charge
[54].

The hybrid EP can be formed by merging either two
ordinary EP2s with identical chirality (Fig. 1, plots I and II)
or two ordinary EP2s with opposite chiralities (Fig. 1, plots III
and IV). In this paper, we propose and investigate the latter
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FIG. 1. Schematic of four types of EP2 merging, indicated by
the blue arrows. The blue dots indicate the left- and right-chiral EP2s
embedded in the branched energy bands; the blue lines indicate the
Fermi arcs. The chirality refers to the geometric phase associated
with the EP2 when it is encircled in the parameter space. The vertical
axis indicates the real part of the energy levels, and the horizontal
axis indicates a system parameter.

unexplored case by exploiting a non-Hermitian three-band
lattice. The hybrid EP is created from type-III Dirac points
emerging from a flat band of a three-band system enclosed in
synthetic magnetic flux under the appropriate gain and loss.
The EPs can merge into different types of EPs for different
system parameters. Topological characterization employing
the Berry phase and the non-Hermitian charge and vortex
associated with the complex Riemann surface band structure
of non-Hermitian systems [52,54] cannot fully distinguish
all types of EPs; we employ the Berry phase and the phase
rigidity scaling exponent to overcome this difficulty. Our
findings are elaborated in a three-band system. The creating,
moving, and merging of band touching points are investigated.
The DPs and various types of EPs possess distinct topological
properties; they are well distinguished from each other under
the developed topological characterization (see Table I) and
indicate different topological phases of the system. The topo-
logical features of EP mergers are unveiled.

II. THE BAND STRUCTURE AND PHASE DIAGRAM OF
THE THREE-BAND SYSTEM

We consider a non-Hermitian three-band system with var-
ious configurations of EPs in the gapless phase [51]. The
Hamiltonian reads

H =

⎛
⎜⎝

hz + iγ hx Jei�

hx 0 hy

Je−i� hy −hz − iγ

⎞
⎟⎠. (1)

The investigation of H in the parameter space (hx, hy, hz )
helps us grasp its topological properties. Since the couplings
hx and hy play the same role, we take hx = hy without loss of
generality. To be concrete, Fig. 2(a) schematically illustrates
a three-band lattice. Applying the Fourier transformation, the
Bloch Hamiltonian of the three-band lattice shown in Fig. 2(a)
is obtained in the form of H with hx = hy = v + R cos k, hz =
R sin k, where k is the momentum (see Appendix A for more
details). The trajectory of (hx, hz ) forms a closed circle in the

TABLE I. Topological characterization of the DP and EPs (see
Appendixes B and C for more details).

DP EP2(T) EP2(I) EP2 EP3

±w 0 0 0 1/2 1
ν 2 1 1/2 1/2 1

/J
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Three EP2s
Two EP3s
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sinJ Two DPs
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FIG. 2. (a) Horizontally PT -symmetric quasi-one-dimensional
triangular lattice. v, R, J are the coupling strengths among sublat-
tices a, b, and c. � is the Peierls phase in the nonreciprocal coupling
Je±i� between sublattices a and c; the arrows indicate the phase
direction of the couplings. The green (red) site indicates the gain
(loss). (b) Phase diagram of H in Eq. (1). The EP merging of Fig. 1,
plot III, occurs when the system parameters are chosen at the red
lines, and the merging of Fig. 1, plot IV, occurs when the system
parameters are chosen at the blue lines.

hx-hz parameter space; the topological features of the Bloch
bands directly relate to the topological properties of the band
touching points enclosed in the trajectory of (hx, hz ) [34].
Thus, the topological properties of the three-band lattice can
be obtained by studying the band structure and topology of H
in Eq. (1).

In Fig. 2(a), the sublattices a and c are indirectly coupled
through sublattice b and are directly coupled through a nonre-
ciprocal coupling Jei� [36,55]. The Peierls phase factor e±i�

can be realized in various manners [56–64], which induces
effective magnetic fluxes in the triangles but not the square
plaquettes of the lattice. The synthetic magnetic fields have
been experimentally realized in coupled optical resonators
[65,66]. Sublattice a (c) has gain (loss), and sublattice b is pas-
sive. PT -symmetric systems can be investigated by employ-
ing passive system with different losses; sticking absorption
material or cutting waveguide induces additional loss [67–69].
The flat band in a non-Hermitian lattice without synthetic
magnetic flux was previously proposed through engineering
the gain and loss [70]; in addition, it was demonstrated that
proposing a spectrum entirely constituted by flat bands is
possible with non-Hermitian couplings [71]. Alternatively,
the flat band in the Hermitian systems remains in the non-
Hermitian situation with the proper match of synthetic mag-
netic flux and non-Hermiticity [72]. The synthetic magnetic
flux provides a useful resource to generate different types of
EPs and motivates us to study the problem of creating, mov-
ing, and merging EPs, in particular, the topological properties
of different types of EPs.

We first consider γ = 0; the lower band gap closes, and
the lower two bands touch at a pair of DPs for � = 0, π [73]
and hz = 0. The DPs are two Dirac points at the peaks of
two type-III Dirac cones, which are the critically titled type-I
Dirac cones with a flat-band line Fermi surface. The type-III
Dirac cone associated with a line Fermi surface differs from
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FIG. 3. Energy bands and EP distribution in the parameter space for the seven typical gapless phases in the phase diagram in Fig. 2(b).
In the top panel, two axes in the horizontal plane represent hx and hz, while the vertical axis represents the real part of the eigenvalues; the
color indicates the imaginary part of the eigenvalues. (a) � = 0, γ = 0 [black circle in Fig. 2(b)], (b) � = 0, γ = √

2/2 [orange region in
Fig. 2(b)], (c) � = 0, γ = 1 [red line in Fig. 2(b)], (d) � = π/3, γ = √

2 [cyan region in Fig. 2(b)], (e) � = π/3, γ = √
3/2 [blue line in

Fig. 2(b)], (f) � = π/2, γ = 1 [green circle in Fig. 2(b)], and (g) � = π/2, γ = √
2 [purple line in Fig. 2(b)]. The coupling J = 1 in all

plots. Types of EPs (blue dots) are illustrated in the middle panel. The EPs at (hx, hz ) are marked. The +1 (−1) chirality of EPs is indicated
by the counterclockwise (clockwise) arrow; the solid blue lines are Fermi arcs connected to the EPs. The real spectra along both the hx and hz

directions for the corresponding EPs are depicted in the bottom panels.

the type-I Dirac cone associated with a point Fermi surface
as well as the type-II Dirac cone associated with a Fermi
surface with two crossed lines [74–76]. The band touching
creates a flat band −ei�J due to the destructive interference
at sublattice b. The two lower bands have isotropic linear
dispersion near the Dirac points, as shown in the bottom panel
of Fig. 3(a).

The DPs disappear when gain and loss are introduced
(γ �= 0), and the band touching points become EPs. H can
exhibit rich band structures featured by different types of EPs.
Figure 2(b) depicts the phase diagram; it shows the number
of DPs (EPs) in the parameter plane hx-hz at certain fixed
� and γ /J . The types of EPs vary in different regions of
γ -�. The change in types of EPs indicates the topological
phase transition, and the different configurations of multiple
EPs represent different topological phases of H [51]. Typical
energy bands in the hx-hz plane are exemplified in Fig. 3.

By introducing gain and loss (γ �= 0), the two Dirac points
[Fig. 3(a)] can split into two pairs of ordinary EP2s with
opposite chiralities [Fig. 3(b)]. Hybrid EP2 is formed by
merging a pair of ordinary EP2s with opposite chiralities at
an appropriate match between non-Hermiticity and synthetic
magnetic flux [Figs. 3(e) and 3(f)]. The distribution of differ-
ent types of EPs is indicated in the middle panel. At the band
touching points, the system parameters satisfy

[3p2 − (2γ hz )2]γ hz = 0, (2)

4p3 − 27q2 − 12p(2γ hz )2 = 0, (3)

where p = 2h2
x + J2 − γ 2 + h2

z and q = 2h2
xJ cos �. For hx �=

hy, h2
x is replaced by hxhy in p, q.

Three types of EP2s exist in the three-band system: (i)
One is the ordinary EP2, which is the singularity point in the
Riemann surface of the square-root type and has chirality. (ii)
The second is EP2(T), which is a merger of two ordinary EP2s
with opposite chiralities. Two relevant bands touch at EP2(T),
and their real parts are gapped in the vicinity of EP2(T); the
merging schematic is indicated in Fig. 1, plot IV. (iii) The last
is EP2(I), which is also constituted by merging two ordinary
EP2s with opposite chiralities. Two relevant bands intersect;
the merging schematic is indicated in Fig. 1, plot III. EP2(T)
has anisotropic dispersions, being linear (square root) along hx

(hz), while EP2(I) has isotropic square-root dispersions along
both hx and hz. If H has chiral symmetry, the EPs of H become
EP3s. Figure 3 depicts the energy bands and schematically
illustrates all seven typical EP configurations in the gapless
phase. The central two ordinary EP2s in Fig. 3(b) merging into
one EP2(I) in Fig. 3(c) is merging of the type in Fig. 1, plot
III, and the four ordinary EP2s in Fig. 3(b) merging into two
hybrid EP2(T)s in Fig. 3(e) is merging of the type in Fig. 1,
plot IV.

The EPs may disappear when the bands are gapped for
� �= 0,±π . This happens at weak non-Hermiticity |γ /J| <

|sin �| [yellow region in Fig. 2(b)], where three bands are
gapped. The gain and loss compress the band gaps; the lower
two bands touch at the EPs when |γ /J| = |sin �|, and the
appropriate non-Hermiticity awakens the destructive interfer-
ence and reproduces the flat band. The flat-band energy is
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altered to −J cos � [72], and the band touching points become
two EP2(T)s rather than two DPs. As the gain and loss rates
γ increase, the band gaps vanish, and all three bands intersect
when |γ /J| � 1.

III. TOPOLOGICAL CHARACTERIZATION OF BAND
TOUCHING POINTS

The geometric (Berry) phase of the energy band is relevant
to the topological features of DPs and EPs. The generalized
geometric phase for the non-Hermitian systems is defined as
[77,78]

�n = i
∮

C
〈φn(k)|∇k|ψn(k)〉dk, (4)

where n is the band index. |ψn(k)〉 and |φn(k)〉 are the eigen-
states of Hamiltonians H and H† and form a biorthonormal
basis 〈φn(k)|ψn′ (k)〉 = δnn′ . The integration is performed over
a loop C in the parameter space. For DPs and EP2s, which are
relevant for only two bands, the irrelevant third band regains
its original eigenvalue when the loop C of system parameters
encircles a band touching DP or EP for one circle; the cor-
responding eigenstate accumulates a zero geometric phase.
When the bands are tangled in the presence of Hermitian or
non-Hermitian band degeneracies [79,80], the non-Abelian
Berry connections Amn = 〈φm(k)|∇k|ψn(k)〉 characterize the
topological properties of the energy bands [80–82]. The global
geometric phase 
 = ∑3

n=1 �n is a topological invariant
[80,83,84]. The winding number w = 
/(mπ ) characterizes
the topology of band touching points, where m is the number
of relevant bands.

Moreover, the global geometric phase is unable to distin-
guish the topology of all different EPs and needs the assistance
of phase rigidity,

r = |〈ψ∗
n |ψn〉/〈ψn|ψn〉|. (5)

The phase rigidity r describes the mixing of different states
[85]. In a Hermitian system with a real matrix, the phase
rigidity is 1. When extended to the non-Hermitian system, the
defective eigenstate is self-orthogonal, and the phase rigidity
at the EPs reduces to zero [86]. The phase rigidity has a
scaling law in the vicinity of EPs, |rEP − r| ∝ (γEP − γ )ν . The
phase rigidity scaling exponent ν characterizes the response
manner of energy bands when approaching the EPs along the
parameter γ , while the geometric phase we discuss character-
izes the topological features of energy bands around EPs in
the parameter space at fixed γ .

Table I summarizes the winding number and the phase
rigidity scaling exponent along γ for the DP and all of the
types of EPs. We turn to discussing the details of the topo-
logical properties of the band touching points. The following
discussions are organized in order of gain and loss increase.
The creating, splitting, moving, and merging of band touching
points and their topological features are presented. We focus
on the topological features of two types of unexplored two-
state coalescence: EP2(T) and EP2(I); the details of the topo-
logical features of other band touching points are provided in
the Appendixes B and C.

Two DPs appear at (hx, hz ) = (±1, 0) for � = 0 at γ =
0; as depicted in Fig. 3(a), they are type-III Dirac points
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FIG. 4. (a)–(c) Encircling an EP2(I) at J = 1, � = 0,

γ = 1, v = 0, R = 1/2 [Fig. 3(c)]. (d)–(f) Encircling an EP2(T)
at J = 1, � = π/3, γ = √

3/2, v = √
2/4, R = 1/4 [Fig. 3(e)].

The EPs are marked by the red crosses, and the trajectory of the
encircling in the parameter space is represented by the blue circle
(insets); the loop radius is R, centered at (v, 0).

embedded in the flat band and appear in the region marked
by the black circles in the phase diagram in Fig. 2(b). The
geometric phase for each of the two degenerate bands is zero
when encircling either DP for one circle; the geometric phase
for the irrelevant upper band is also zero. The phase rigidity
scaling exponent is ν = 2 (see Fig. 8 in Appendix C).

The band gap between the lower two bands is closed in
the presence of the flat band in Fig. 3(a). When the gain and
loss are introduced (γ �= 0), the energy bands become even
closer, and each DP splits into two ordinary EP2s with op-
posite chiralities at the weak non-Hermiticity |γ /J| < 1. This
describes the orange region in the phase diagram in Fig. 2(b).
Figure 3(b) depicts the band spectrum in the situation γ /J =√

2/2 < 1. The four ordinary EP2s are on the hz = 0 axis,
and their chiralities are opposite with respect to hx = 0, as il-
lustrated in the middle panel. The eigenvalues of two relevant
coalescence states are 4π periodic in k when encircling the
ordinary EP2s, but the period of the third state is 2π . After one
circle of encircling, two relevant coalescence states exchange,
and the third state regains its original eigenvalue; the global
geometric phases 
 accumulated by the three bands equal +π

(−π ) for the ordinary EP2 of +1 (−1) chirality (see Fig. 6 in
Appendix B), and two circles of encircling yield a +π (−π )
geometric phase for either relevant band. The phase rigidity
scaling exponent associated with the ordinary EP2s is equal
to ν = 1/2 (see Fig. 9 in Appendix C).

As the gain and loss rates γ increase, the two central
ordinary EP2s become closer, but the outer two ordinary EP2s
become far away. At |γ /J| = 1, the two central ordinary EP2s
with opposite chiralities meet and merge into an EP2(I) at
(hx, hz ) = (0, 0) [52], and the system enters the region marked
by the red lines in the phase diagram in Fig. 2(b) and has three
EP2s [Fig. 3(c)] with an identical scaling exponent ν = 1/2,
although they possess distinct topology [Figs. 5(a)–5(c)]. At
the EP2(I), although three levels have identical zero energy,
only two levels coalesce, and they degenerate with the third
level; the system is defective, with one eigenstate missing.
The energy levels regain their original values after encircling
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FIG. 5. Energy, phase rigidity, and scaling exponent (a)–(c) in
the vicinity of an EP2(I) in Fig. 3(c) at hx = 0, hz = 0, J = 1, � =
0 and (d)–(f) in the vicinity of an EP2(T) in Fig. 3(e) at hx =
1/2, hz = 0, J = 1, � = π/3. The real (imaginary) part is indi-
cated by the symbols (lines). The scaling exponent is ν = 0.5 for
an EP2(I) and is ν = 1.0 for an EP2(T).

the EP2(I) for one circle; states switch twice for the two
lower levels; the geometric phases for the two lower levels are
still opposite, being π and −π , respectively, and the winding
number for the global geometric phase is zero. The global
geometric phase for encircling the EP2(I) at (hx, hz ) = (0, 0)
is depicted in Fig. 4(a). The real and imaginary parts of
eigenenergies of Hk for the encircling process are depicted
in Figs. 4(b) and 4(c). The other two EP2s (±3

√
6/4, 0) are

ordinary EP2s. The EP2(I) in the center is connected to the
other two ordinary EP2s by two Fermi arcs [87].

In the region |sin �| < |γ /J| < 1, four ordinary EPs with
two opposite chiralities in pairs locate on the two sides of
hz = 0 [Fig. 3(b)]. By changing �, each pair of EPs can
merge into an EP2(T) when |γ /J| = |sin �| for 0 < |�| <

π/2 [Fig. 3(e)]; this is indicated by the blue lines in the phase
diagram in Fig. 2(b). Two valleys (peaks) appear in the middle
(lower) band; the apexes of the valleys and peaks touch, two
EP2(T)s are formed at the appropriate match between the
effective magnetic flux � and non-Hermiticity γ , and the
flat band reappears. In contrast to two DPs, the isolated band
touching points are EP2(T)s located at h2

x = J2 cos2 �. In the
parameter space, the global geometric phase for encircling the
EP2(T) (hx, hz ) = (1/2, 0) in the counterclockwise direction
is depicted in Fig. 4(d). Figures 4(e) and 4(f) are the real and
imaginary parts of eigenenergies of Hk . No state switch occurs
when encircling the EP2(T) in the parameter space for one
cycle, and the global geometric phase is zero; the EP2(T) has
a winding number of zero without chirality, and the scaling
exponent of the phase rigidity is ν = 1 [Figs. 5(d)–5(f)]. In
the region of weak non-Hermiticity |γ /J| < |sin �|, the three
bands are gapped without band touching.

For |γ /J| > 1, the central EP2(I) vanishes and splits into
four ordinary EP2s with two +1 and two −1 chiralities in the
hz �= 0 region, and six ordinary EP2s exist, provided that H is
not chiral symmetric [Fig. 3(d)]; the phase is the cyan region
in the phase diagram in Fig. 2(b). Among the six ordinary
EP2s, three of them in the region hx > 0 (hx < 0) have +1
(−1) chirality. The upper two bands coalesce at four ordinary

(b)

(c) (d)

(a)

FIG. 6. Encircling an ordinary EP2 in Fig. 3(b) with a chirality
of +1. (a) The trajectory of the encircling in the parameter space is
indicated by the blue circle; the EPs are marked by the red crosses.
(b) and (c) The real and imaginary parts of energy and (d) the global
geometric phase. The system parameters are J = 1, � = 0, γ =√

2/2, v = 3/2, R = 1/4.

EP2s (hz �= 0), and the lower two bands coalesce at the other
pair of ordinary EP2s on the hz = 0 axis. The energy bands
with six ordinary EP2s are shown in Fig. 3(d); � = π/3 is
chosen in order to observe all the EP2s within the region
[−2, 2] in the parameter space.

The three-band Hamiltonian H is chiral symmetric
when J = 0 or � = ±π/2, CHC−1 = −H , where 〈m|C|n〉 =
(−1)m+1δm,4−n. A zero-mode flat band is formed under the
chiral symmetry. The upper and lower bands in Fig. 3(f)
constitute a hybrid conical surface, the projection of which
on the E -hx (E -hz) plane is a cone of square-root repulsion
that differs from a Dirac cone or a semi-Dirac cone [88–90].
At |γ /J| < 1, the spectrum is gapped, and EP vanishes. At
|γ /J| = 1, two EP2(T)s merge to a single EP2(T) at (0, 0); the
phase is represented by the green circles in the phase diagram
in Fig. 2(b). At |γ /J| > 1, the system has one pair of EP3s
with opposite chiralities at (hx, hz ) = ( ±

√
(γ 2 − J2)/2, 0)

[Fig. 3(g)]; the phase is indicated by the purple lines in the
phase diagram in Fig. 2(b). After encircling an EP3 for one
circle, the upper and lower bands switch, and two circles
are needed to restore the original eigenvalues. The global
geometric phase accumulated is +3π (−3π ) after encircling
an EP3 of chirality +1 (−1) for one circle (see Fig. 7 in
Appendix B). The scaling exponent of the phase rigidity close
to the EP3 is ν = 1 (see Fig. 10 in Appendix C).

IV. DISCUSSION AND CONCLUSION

The topological characterization of band touching points
applies for all types of EPs and is not limited to the DP,
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(a) (b)

)d()c(

FIG. 7. Encircling an EP3 in Fig. 3(g) with a chirality of −1.
(a) The trajectory of the encircling in the parameter space is indicated
by the blue circle; the EPs are marked by the red crosses. (b) and
(c) The real and imaginary parts of energy and (d) the global
geometric phase. The system parameters are J = 1, � = π/2, γ =√

2, v = −1, R = 1/2.

the ordinary EP2/EP3, and the hybrid EP2s presented in the
lattice model of Fig. 2(a), as listed in Table I. For EP2 merging
of the types in plots I and II in Fig. 1, the geometric phase
is π , and the winding number is |w| = 1. Different types of
EPs are distinguishable by their topological features.

A hybrid EP generally presents in the non-Hermitian sys-
tems that possess a flat band with EPs embedded. The EP
embedded in a flat band is a hybrid EP if two-dimensional
parameter space is considered [71]. Notably, H can de-
scribe the non-Hermitian Lieb lattice with additional gain
and loss γ . The synthetic magnetic flux Jei� can be induced
by the spin-orbital coupling [64]. The Bloch Hamiltonian
of the non-Hermitian Lieb lattice has the form of hx =
2Jx cos (kx/2), hy = 2Jy cos (ky/2), hz = 0 [91]. In addition,
a hybrid EP can appear in the absence of a flat band, and it
is possible to create a hybrid EP of arbitrarily high order with
asymmetric couplings [53,92]. The asymmetric coupling has
a connection to the gain and loss in non-Hermitian systems.
In practice, the gain and loss associated with the effective
magnetic flux equivalently induce asymmetric coupling and
nonreciprocity in the non-Hermitian systems [55,93,94].

In conclusion, we proposed the hybrid EP2 by merging
two ordinary EP2s with opposite chiralities, which are created
from the type-III Dirac points emerging from a flat band
through introducing proper gain and loss. The topology of the
degenerate (exceptional) point is characterized by the winding
number w associated with the global geometric phase and
phase rigidity scaling exponent ν. The topological properties
of different EP2 mergers were unveiled; the change in topo-
logical features associated with the merging of EPs indicates

the topological phase transition. Our findings pave the way for
creating, moving, and merging EPs and are valuable for future
studies on the non-Hermitian topological phase of matter. In
the future, further investigations on the dynamical encircling
of hybrid EPs [53], the creating, moving, and merging of
high-order EPs [36,51], and the topological edge states [95]
would be of great interest.
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APPENDIX A: TRIANGULAR LATTICE

In this Appendix, we show the real-space lattice Hamil-
tonian for the three-band Bloch Hamiltonian H in Eq. (1).
The three-band tight-binding lattice consists of three sub-
lattices; sublattice a (c) has gain (loss), and sublattice b
is passive. Sublattices a and c have nonreciprocal nearest-
neighbor couplings. The phase factors in the couplings are
opposite, indicated by the arrows. Sublattices a and c are
coupled indirectly through sublattice b and directly through
a nonreciprocal coupling Jei�, which can be realized in cold
atomic gases by inducing the spin-orbital interaction and can
be realized by optical path imbalance, dynamic modulation,
and photon-phonon interaction in optics. The triangular lattice
Hamiltonian HT L in the real space is given by

HT L =
N∑

j=1

(
− iR

2
a†

j a j+1 + iR

2
c†

j c j+1 + H.c.

)

+
(

R

2
a†

j b j−1 + R

2
a†

j b j+1 + H.c.

)

+
(

R

2
c†

j b j−1 + R

2
c†

j b j+1 + H.c.

)

+ (Jei�a†
j c j + va†

j b j + va†
j c j + H.c.)

+ iγ a†
j a j − iγ c†

j c j . (A1)

The couplings strengths are v, R/2, and J . The nonreciprocal
couplings ±iR/2 lead to an effective magnetic flux π enclosed
in each square plaquette. The gain and loss rates are γ . In
experimental studies, it is not necessary to induce the gain to
balance the loss in the investigations of PT -symmetric lat-
tices; using the loss-only passive systems brings convenience
[67–69]. For example, we can introduce {0,−iγ ,−2iγ } in-
stead of {iγ , 0,−iγ } in sublattices a, b, and c. By offsetting
an imaginary energy +iγ to the on-site terms {0,−iγ ,−2iγ },
we obtain the PT -symmetric Hamiltonian.

Applying the Fourier transformation,

ak =
N∑

j=1

eik ja j, bk =
N∑

j=1

eik jb j, ck =
N∑

j=1

eik jc j, (A2)

where the discrete momentum is k = 2πn/N (integer n ∈
[1, N]); a j, b j , and c j are the annihilation operators that
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)b()a(

(c) (d)

FIG. 8. (a) and (b) Spectrum, (c) phase rigidity, and (d) scaling
law at a DP in Fig. 3(a). The system parameters are hx = 1, hz =
0, J = 1, � = 0. The phase rigidity scaling exponents for all the
states are ν = 2.0.

satisfy the periodical boundary condition aN+1 = a1, bN+1 =
b1, and cN+1 = c1. In the momentum space, the lattice
Hamiltonian is expressed as HT L = ∑

k Hk , with hx = v +
R cos k and hz = R sin k. The Bloch Hamiltonian Hk in the

(a) (b)

(c) (d)

-4 -3 -2
log

10
(

EP
- )

-5

-4

-3

-2

-1

0

lo
g 10

(|
r E

P
-r

|)

FIG. 9. (a) and (b) Spectrum, (c) phase rigidity, and (d) scaling
law at an ordinary EP2 in Fig. 3(b). The system parameters are
hx = √

2/4, hz = 0, J = 1, � = 0. The scaling exponents for the
coalesced states (green squares and blue crosses) are ν = 0.5; the
scaling exponent for the third state (red circles) is ν = 1.0.
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FIG. 10. (a) and (b) Spectrum, (c) phase rigidity, and (d) scal-
ing law at an EP3 in Fig. 3(g). The system parameters are
hx = √

2/2, hz = 0, J = 1, � = π/2. The scaling exponents for all
states are ν = 1.0.

momentum space is a 3 × 3 non-Hermitian Hamiltonian in the
form of Eq. (1) in the main text for hx = hy.

APPENDIX B: GEOMETRIC PHASE

In this Appendix, we show the geometric phase associated
with the band touching points, including the ordinary EP2 and
EP3.

The global geometric phase for a non-Hermitian system
is Q = i

∑3
n=1

∮
C〈φn(k)|dψn(k)〉 [83,84]. The integration is

performed over a loop C in the parameter space. The trajectory
of (hx, hz) forms a closed circle C in the parameter space of
the hx-hz plane.

The geometric phases for the trajectory of (hx, hz) en-
circling an ordinary EP2 with right chirality and encircling
an EP3 with left chirality are depicted in Figs. 6 and 7,
respectively. In both cases, the coalescence-associated energy
levels switch after encircling the EP once and are restored
to their original values after encircling the EP twice. The
accumulated global geometric phase is π for one circle of
encircling the right chiral EP2, and the accumulated global
geometric phase is −3π for encircling the left chiral EP3.
The winding number is w = 
/(mπ ), where m is the number
of coalesced levels. Therefore, the winding number for the
ordinary EP2s (EP3s) is w = ±1/2 (w = ±1). The + (−)
sign is for the right (left) chirality.

APPENDIX C: PHASE RIGIDITY

In this Appendix, we show the band spectrum, the phase
rigidity, and the scaling exponent as the gain and loss ap-
proaching the DP, the ordinary EP2, and the EP3, respectively.
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The phase rigidity [85,86] of an energy level r =
|〈ψ∗

n |ψn〉/〈ψn|ψn〉| has a scaling law in the vicinity of EPs in
the form of |rEP − r| ∝ (γEP − γ )ν . At � = 0, the degenera-
cies are a two-level diabolic point at (±1, 0) in the Hermitian
lattice of γ = 0. In Fig. 8, the DPs appear when γDP = 0;
two energy levels become a complex conjugation pair, the
imaginary part of which changes linearly in the vicinity of
DPs. The phase rigidities for all three levels are rDP = 1.0,
and the scaling exponents are all identical, ν = 2.0.

In Fig. 9, the energy level, phase rigidity, and scaling
law are depicted for the ordinary EP2 of � = 0, J = 1 at
(hx, hz ) = (

√
2/4, 0). The system has one real energy, and

two energy levels coalesce at the EP2. The phase rigidities of
the coalesced levels are rEP = 0 at the EP2 γEP = √

2/2, and
the corresponding scaling exponent is ν = 0.5; the third level,
which did not participate in the coalescence, has a scaling
exponent ν = 1.0.

In Fig. 10, the energy level, the phase rigidity, and the
scaling law are depicted for the EP3 of J = 1, � = π/2 at
(hx, hz ) = (

√
2/2, 0). The system has chiral symmetry; the

energy levels are symmetric about zero and exhibit a square-
root dependence on the non-Hermiticity as ±

√
2 − γ 2. The

phase rigidities of three eigenstates equal rEP = √
2/2 at the

EP3 γEP = √
2. The scaling exponents are ν = 1.
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