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Phonons are a promising simulation platform for single particles trapped in quantum wells, interatomic
molecular dynamics, and, in general, potentials. Earlier implementations to simulate coherent wave propagation
in one-dimensional potentials using acoustic phonons with gigahertz-terahertz frequencies were based on
coupled nanoacoustic resonators. Here we generalize the concept of adiabatic tuning of periodic superlattices
for the implementation of effective one-dimensional potentials giving access to cases that cannot be realized by
previously reported phonon engineering approaches, in particular the acoustic simulation of electrons and holes
in a quantum well or a double-well potential. In addition, the resulting structures are much more compact and
hence experimentally feasible. We demonstrate that potential landscapes can be tailored with great versatility
in these multilayered devices, apply this general method to the cases of parabolic, Morse, and double-well
potentials, and study the resulting stationary phonon modes. The phonon cavities and potentials presented in
this work could be probed by all-optical techniques like pump-probe coherent phonon generation and Brillouin
scattering.
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I. INTRODUCTION

Nanophononics addresses the control of acoustic phonons
in solid state structures with engineered acoustic impedance
modulations [1–5]. Commonly studied nanoacoustic devices
include phonon mirrors, filters, and resonant cavities to shape
the interaction of phonons at the GHz–THz frequency scale
with both light and electronic states [4,6,7]. Applications
include fast modulators in semiconductor lasers [8], novel
approaches for the generation of THz radiation [9], and the
nanomechanical characterization of biological tissue [10–12].
Optical tools such as ultrafast pump-probe spectroscopy
and inelastic Brillouin scattering have enabled the study of
phononic spectra, temporal dynamics, and coherence proper-
ties on the nanoscale [13–20]. This paved the way to establish
nanoacoustics also as a platform for the simulation of wave
dynamics in electronic systems [21–23]. In contrast to optical
platforms, nanophononics features the particular advantage of
a slow speed of propagation compared to light and a long
coherence length in the range of hundreds of micrometers [20]
at wavelengths in the 10 nm range. Therefore, coherent prop-
agation of phonons can be studied in quasi-infinite systems in
which wave dynamics can be optically probed on timescales
well below the mechanical oscillation period.

The effect of an electric potential on a charged particle is to
accelerate it. In this work we mimic this effect in a phononic
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system by locally changing the group velocity of longitudi-
nal acoustic phonons in semiconductor multilayers. A well-
established building block in the engineering of acoustic
phonons is the nanoresonator based on the acoustic counter-
part of an optical Fabry-Perot cavity [6,20]. Most of the earlier
approaches to implement effective potentials with phonons are
based on engineering band structures arising from coupled
nanoacoustic cavities [22], i.e., the phononic equivalent of
the coupled resonator optical waveguides (CROWs) [24].
Such devices have been used to, e.g., mimic wave dynamics
in Wannier-Stark ladders showing Bloch oscillations [25]
or topological effects in polyacetylene [26]. In contrast to
coupled cavities, another approach to study wave dynamics
in effective acoustic potentials is to introduce a progressive
change in the parameters of the cells along a periodic multi-
layer structure. Very recently, an acoustic cavity was reported
based on the adiabatic periodicity breaking of a superlattice
[5], in analogy to a potential well. Exploiting the symme-
try properties in periodic superlattices, topological interface
modes have also been recently reported [27–29].

Here we generalize the adiabatic tuning of the period thick-
ness in a superlattice for the implementation of effective one-
dimensional potentials. Up to now, the realization of effective
phononic potentials was predominantly based on coupled res-
onant cavities exploring the tight-binding physics of phonons
tunneling between sites on a lattice [22,24–26]. In contrast,
here we explore the physics of nearly free electron models
based on a single superlattice. We demonstrate that potential
landscapes can be tailored with great versatility using signif-
icantly thinner structures than previously reported, rendering
even the implementation of complicated effective potentials
experimentally feasible. We apply this general method to the
cases of parabolic, Morse, and double-well potentials and
study the resulting stationary phonon modes.
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The paper is organized as follows: Section II presents a
general theoretical framework to engineer acoustic cavities
based on adiabatic changes in the local acoustic band struc-
tures. We present a first case mimicking the confinement of
an electron and a hole in a quantum well. In Sec. III the use
of these tools is extended for the implementation of effective
parabolic, double-well, and Morse potentials and their sta-
tionary acoustic modes are calculated. Section IV addresses
the role of acoustic absorption losses in these resonators.
Conclusions and perspectives of this work are presented in
Sec. V.

II. ACOUSTIC POTENTIAL WELLS

The theoretical framework to engineer these effective po-
tentials is based on the dispersion relation of phonons in a
periodic superlattice [30] with each unit cell composed of two
layers. Considering AlAs and GaAs as the materials for these
layers, we parametrize this dispersion relation as

cos(qd ) = cos

(
ωD

fd

)

− ε2

2
sin

(
ωrD

fd

)
sin

(
ω(1 − r)D

fd

)
, (1)

with

ε = ZGaAs − ZAlAs

(ZGaAsZAlAs)1/2
. (2)

Here q is the phonon quasimomentum, d = dAlAs + dGaAs

is the geometric unit cell thickness (i.e., structure period)
composed of two layers, and ω is the angular frequency.
ZGaAs = ρGaAsvGaAs and ZAlAs = ρAlAsvAlAs are the acous-
tic impedances of the two materials where ρAlAs and vAlAs

(ρGaAs and vGaAs) are the mass density and the speed of
sound, respectively. We denote the acoustic path length of a
unit cell D = DAlAs + DGaAs with the contributions DAlAs =
dAlAs fd/vAlAs and DGaAs = dGaAs fd/vGaAs from the two lay-
ers, which are measured in units of wavelength at a design
frequency fd . We furthermore introduced the parameter

r = DAlAs

D
, (3)

which describes the relative contribution of the AlAs layer to
the overall acoustic path length of the unit cell. The dispersion
relation described in Eq. (1) is plotted in the leftmost panel of
Fig. 1(a) for a GaAs/AlAs superlattice with fd = 300 GHz,
D = 1, and r = 0.25, i.e., a phonon at the design frequency
fd acquires a propagation phase of 2π upon traversing one
unit cell and a phase of π/2 upon traversing one AlAs layer.
We observe three acoustic bands separated by two acoustic
minigaps around 150 and 300 GHz in which only evanescent
phonons are solutions to the wave equation. Since D is chosen
as an integer multiple of 1/2, fd lies at the center of a minigap,
in this case the second one [30]. The dashed red rectangle in
the second minigap marks the region of the band structure for
which zoom-ins are presented in the right part of Fig. 1(a) for
different values of the parameter r. Importantly, we observe
that the spectral width of the minigap directly depends on
the value of r, i.e., on the relative acoustic thickness of the
two layers constituting the unit cell [27,30]. Starting from

FIG. 1. (a) Left: Acoustic band diagram of a superlattice with its
second minigap maximally opened. The first two acoustic minigaps
at 150 and 300 GHz are highlighted in light blue. They correspond to
the first minigaps at the Brillouin zone edge and center, respectively.
fb and ft mark the bottom and top edge of the second minigap. Right:
Zoom-in of the acoustic band structure around the second acoustic
minigap (dashed red rectangle) associated with the unperturbed cells,
cells 14 and 30, 19 and 25, and 22, respectively. r, the relative
acoustic path length of AlAs in the unit cell, is depicted on top of
each panel. (b) Top: Schematic of an adiabatic perturbation induced
in a periodic structure of 43 unit cells. The grayscale indicates
the value of r for each cell. Its modulation follows a cos2 shape
between cells 6 and 38 with an amplitude of 0.25 while remaining
constant at 0.25 in the rest of the structure. Layer thicknesses for
cells with r = 0.25 are 4.72 nm and 11.95 nm for AlAs and GaAs
layers, respectively. Along the modulated region the thicknesses
remain close to those values. Bottom: Local acoustic band structure
representing the minigap edges for each cell as a function of position.
Each vertically aligned pair of dots corresponds to the minigap edges
associated with each cell and plotted at each cell center. The curves
mark the continuous trajectory targeted for each edge.

a maximally opened minigap at r = 0.25 (first panel), the
gap completely vanishes for a value of r = 0.5, i.e., when
the two material layers have equal acoustic thickness. This
holds for the second minigap. In general, for the nth gap, the
gap is closed for n + 1 values of r. We use this dependence
to construct a first example of an effective phonon poten-
tial by adiabatically varying the parameter r in a multilayer
structure. Starting from a structure composed of 43 unit cells
with fd = 300 GHz, D = 1, and r = 0.25, the potential is
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FIG. 2. (a) Right: Acoustic reflectivity of an adiabatic resonator
created by introducing a modulation in the ratio of AlAs per unit
cell in a periodic structure. fb and ft mark the maximally opened
stopband limits while fsd and fsu are the frequencies of the confined
modes. Left: Displacement distribution as a function of position
and frequency for phonons propagating from left to right. (b) Left:
Normalized displacement profile of the confined modes. Right: For
each mode, a zoom-in of the profile at the central cell is shown.

designed by modulating r following a cos2 pattern [5] along
the 33 central unit cells [see top part of Fig. 1(b)]. There,
r first increases up to r = 0.5 at the central cell and then
changes back to the initial value of r = 0.25. By doing so,
the width of the second minigap undergoes a closing and
reopening along the structure. The term adiabatic refers to the
condition that the considered minigap shows a large overlap
between consecutive unit cells. In this work, our structures
have typical overlaps beyond 93%. The corresponding evo-
lution of the upper and lower band edges is shown in the
bottom of Fig. 1(b). Here we have adopted the notion of
a “local band structure” [5,22,31–33], i.e., each unit cell of
the structure is assigned the bands of an infinite superlattice
having the same structural parameters. The concept of a local
band structure for acoustic phonons in superlattices is simi-
lar to the emergence of conduction minibands for electrons
in short period superlattices [34]. By engineering the local
band structure we control the group velocity of the acoustic
phonons.

To illustrate how a multilayered structure acts as an effec-
tive phononic potential, we embed it in a GaAs continuum
and calculate its acoustic reflectivity spectrum shown in the

right panel of Fig. 2(a) using a transfer matrix formalism.
The displayed spectrum presents a central high reflectivity
band containing two sharp reflectivity dips marked fsd and
fsu. Outside this region the reflectivity shows Bragg oscil-
lations, a common feature in superlattices [6,35]. The high
reflectivity region corresponds to the frequency range of the
maximally open minigap fb < f < ft , where the structure
acts as a distributed Bragg reflector (DBR). The two dips
correspond to two resonances of the structure. Their me-
chanical displacement profiles u(z) along the superlattice are
plotted in Fig. 2(b). Both states are confined to the modulated
minigap region with exponentially decaying tails inside the
unmodulated outer parts of the structure. In an earlier report,
an adiabatic nanoacoustic cavity was presented [5] in which
the width of a band gap was kept constant and an effective
potential well was obtained by progressively shifting the gap
towards lower frequencies along the structure. In contrast
to this case, we here kept the central frequency of the gap
constant and changed its width along the structure. We fur-
thermore compute the mechanical displacement within the
structure upon an incident plane wave of unit amplitude as a
function of frequency and position. The plot is superimposed
with the cos2 evolution of the local band edges (blue and
orange lines) in Fig. 2(a) (left panel). The modulation of rAlAs

in the central region closes and reopens the local minigap.
This produces a wasp-waist shaped local band structure. The
two confined modes at fsd and fsu are evidenced by a strongly
enhanced mechanical response in the modulated central part
of the superlattice. The superlattice resembles the behavior of
a quantum-mechanical potential well with bound, localized
solutions at energies below the band edge and a continuum
of propagating solutions for energies outside the maximally
open band gap. In analogy to a quantum mechanical potential
well, the number of bound states increases if the well is
widened or deepened. Interestingly, the potential well studied
here supports two confined states, one in its upper convex
dip at frequency fsu, the other in the lower concave part at
a frequency fsd . While both states present similar envelopes,
their overall spatial symmetry of the carrier is opposite [see
the zoom-in of |u| along the central cell at the right of
each panel in Fig. 2(b)]. This is a direct consequence of the
different spatial symmetries of the Bloch modes at the upper
and lower band edge [27,36,37] [marked yellow and blue in
Fig. 2(a), respectively]. These states are the equivalent of a
bound electronic state and a bound hole. This observation
represents a new aspect of adiabatic cavities compared to
earlier works where only single-sided potential wells were
considered [5,31]. In the rest of the paper we will extend the
concept of phononic band engineering to generalized acoustic
potentials.

III. EFFECTIVE POTENTIALS

We have shown how to achieve a double-sided acoustic
potential well by closing and reopening a minigap. Extending
this approach for general potentials requires us to modulate
both the spectral width of a phononic minigap and its central
frequency. The latter is achieved by scaling the overall thick-
ness of the unit cell. To this end, we rewrite the dispersion
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relation of a bilayer superlattice as
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2
sin

(
2π fbr

fd

)
sin

(
2π fb(1 − r)

fd

)
. (4)

Here we have set q = 0 since we target the second minigap at
the center of the Brillouin zone. We have furthermore set f =
fb and D = 1. This allows us to shape the local band structure
by placing its bottom edge at a fixed value fb while controlling
the top edge at will through varying fd and solving Eq. (4)
for r. Next, we will illustrate this approach by designing three
structures mimicking a parabolic, a Morse, and a double-well
potential. These potentials constitute three textbook examples
with well known solutions which allow us to make a detailed
comparison between the electronic and phononic behaviors.

A. Parabolic potential

As a first case we study a parabolic potential. This potential
is usually associated with a harmonic oscillator with equidis-
tant energy levels. While the quadratic dispersion relation
of electrons indeed results in eigenvalues following a linear
dependence with respect to the mode number n, the linear dis-
persion relation of phonons in contrast results in a dependence
proportional to n2/3 [22] mimicking the case of relativistic
electrons or light. In the optical domain, similar effective
potentials have been demonstrated using two-dimensional
photonic crystal structures [38,39]. In nanoacoustics a similar
potential has been proposed using coupled acoustic nanocavi-
ties [21,22].

Using Eq. (4), we design an acoustic structure mimicking
a parabolic potential of the form

V (x) = V0 x2. (5)

The variable x is a unitless, normalized position varying from
−1 to 1 from the leftmost to the rightmost unit cell of the
structure. The amplitude of the potential is chosen as V0 =
ft − fb such that its value ranges from a maximally opened
minigap at the first and last unit cell to a closed gap at the
center. Note that both V (x) and x vary in discrete steps from
cell to cell along the structure. To obtain an effectively smooth
potential, we choose a structure composed of N = 101 cells
and numerically solve the N equations to obtain the parameter
r defining the local band structure for each cell.

Figure 3(a) (right panel) presents the acoustic reflectivity
for this structure, where we observe a series of dips associated
with the confined modes in the acoustic potential. The modes
labeled fb and ft indicate the superlattice stopband edges
for the maximally opened minigap. The modes labeled f1 to
f4 correspond to the first four bound states. The left panel
in Fig. 3(a) shows the local band structure on top of the
displacement distribution color map calculated in the same
manner as in Fig. 2(a). Modes f1 to f4 are localized inside the
parabola similarly to what was observed in the previously dis-
cussed potential well. The observed unequal spacing between
modes follows the expected n2/3 dependence. Figure 3(b)
shows the displacement profile corresponding to an incident
plane wave of unit strength for each of the first four modes.

FIG. 3. (a) Right: Acoustic reflectivity for the parabolic potential
structure. fb and ft mark the DBR stopband limits while f1 to f4 mark
the first four confined modes. Left: Displacement distribution as a
function of position and frequency for phonons propagating from
left to right. On top the local band structure is plotted. (b) Left:
Normalized displacement profile of the first four confined modes.
Right: For each mode, a zoom-in of the profile at the central cell is
shown.

They are mainly localized in the center of the structure with
two evanescently decaying tails on the sides. Their envelopes
exhibit n maxima for the nth confined mode. For the first four
modes, notice that the length of the evanescent tails decreases
with increasing order. This can be explained by considering
that the penetration depth for phonons at frequencies within
a DBR stopband not only depends on the minigap bandwidth
but also on the spectral position within the gap. For a given
width of the gap, the evanescent decay length of a mode
is the shortest if it lies at the band gap center and diverges
when approaching the gap edges. Therefore, the decay length
of the modes in the parabolic potential decreases with as-
cending order since the modes appear closer to the band gap
center. For further analysis, each confined mode profile in
Fig. 3(b) includes a zoom-in of its central cell depicted at
the right of each panel. The central cell position and size
are also represented as insets. As for the acoustic potential
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well presented in the previous section, the fundamental mode
confined at f1 exhibits the same overall spatial symmetry as
the Bloch mode at the upper band edge. For the higher order
modes we, however, observe alternating symmetry properties
in agreement with the well-known eigenstates of the quantum-
mechanical harmonic oscillator [34].

B. Morse potential

The proposed method enables us to implement potentials
that are asymmetric in space such as the Morse potential. This
potential is used to model interatomic interactions in diatomic
molecules. It presents a well shape but it distinguishes itself
from the quantum harmonic oscillator by an asymptotic limit
in the potential energy on one side. By doing so, it includes the
effect of chemical bond breaking that the quantum harmonic
oscillator does not consider. The resulting modes of such a
potential are either bound below the asymptotic energy limit
or unbound above it.

The Morse potential as a function of a radial coordinate r
can be expressed as

V (r) = V0

{
1 − exp[a (re − r)]

1 − exp[a re]

}2

, (6)

with the parameters V0, a, and re determining the depth, width,
and equilibrium position of the potential, respectively. The
variable r is a unitless, normalized position along the structure
varying from 0 to 1 from the leftmost to the rightmost unit cell.
We set a ≈ 3.95 and re ≈ 0.26 while choosing V0 = ft − fb,
i.e., the potential spans the full range from a completely closed
to a fully opened acoustic minigap.

Figure 4(a) (right panel) presents the acoustic reflectivity of
such a structure composed of 201 unit cells. As before, fb and
ft correspond to the edges of the maximally opened minigap.
Two main bands can be distinguished; a high reflectivity
band where three modes appear (labeled fm1, fm2, and fm3)
and a higher energy band with reflectivity oscillations. In
contrast to the parabolic potential, which showed marked
reflectivity dips, the modes of the Morse potential are asso-
ciated with shallow reflectivity dips. This can be explained
by considering that the structure is asymmetric, similar to
an unbalanced Fabry-Perot resonator [40], i.e., a structure
effectively composed of two mirrors with unequal reflectivity.
The imbalance causes predominant decay of the confined
modes to one side and hence limits the achievable minimum
reflectivity upon interference of multiple internal reflections.
The left panel in Fig. 4(a) shows the local band structure on
top of the displacement color map in response to a plane wave
of unit strength incident from the left. We see the confined
modes corresponding to the bound states within the dip of
the Morse potential for frequencies below fesc. Above this
frequency, a series of unbound modes appears corresponding
to the oscillations in the reflectivity plotted in Fig. 4(a) (right
panel). Finally, Fig. 4(b) shows the displacement profile of
the first three confined modes. Comparing these with those of
Fig. 3(b), we see that the number of maxima in the envelope
corresponds to the order of the mode. In the case shown here,
the left and right evanescent tails are different. Once again,
we show the symmetric/antisymmetric alternation between
consecutive confined modes as depicted in the central cells at

FIG. 4. (a) Right: Acoustic reflectivity for the Morse potential
structure. fb and ft mark the DBR stopband limits while fm1, fm2, and
fm3 the first three confined modes. Left: Displacement distribution as
a function of position and frequency for phonons propagating from
left to right. Local band structure plotted on top. (b) Left: Normalized
displacement profile of the first three confined modes. Right: For
each mode, a zoom-in the profile at the central cell of the mode is
shown.

the right of each panel in Fig. 4(b). Since the structure is not
symmetric, we define the central cell for each confined mode
as the cell with the central maximum or minimum of the mode
envelope.

C. Double-well potential

Based on the same design principles, we engineer the
phononic equivalent of a hydrogen molecule. In the context
of quantum mechanics, it is the result of the hybridization
of degenerate eigenstates of two individual quantum wells,
similar to the one presented in Sec. III A. This double-well po-
tential thus has eigenstates that extend over two well-defined
regions of space separated by a tunneling barrier. By modify-
ing the barrier, it is possible to control the coupling strength
and hence the energy splitting of the hybridized modes.
Note that this type of potential can also be reasoned with a
tight-binding approach, i.e., each of the two atoms is repre-
sented by an individual parabolic potential, and the hopping
term by an effective transmission through the barrier [22].
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Previous realizations of acoustic molecules have been based
on coupling two cavities [21,22]. By customizing the shape
of the double well in the way presented here, we gained
additional control on the envelope of the confined modes.
Furthermore, each isolated phononic atom supports multiple
modes besides the fundamental one. In this way, the energy
and the splitting of the hybridized modes can be engineered.
The optical counterpart of this systems, known as photonic
molecules [41], appears as a promising platform for the de-
velopment of quantum technologies and could inspire future
phononic technologies [42,43].

The potential energy as a function of the parameter z for a
double-well potential can be expressed as

V (z) = V0[(λ z4 − k z2) + k2/4λ], (7)

where λ and k are both positive parameters determining the
position and depth of both wells. The variable z is the unitless,
normalized position along the structure varying from −1 to 1
from the leftmost to the rightmost unit cell. We choose λ ≈
2.39 and k ≈ 1.69 such that it spans values from 0 to V0 =
ft − fb.

Figure 5(a) (right panel) shows the acoustic reflectivity of
a double-well structure built of 201 unit cells. The top edge
frequency at the central hump is labeled fbar, while fb and ft

correspond to the edges of the maximally opened minigap.
The oscillations above fbar correspond to modes localized in
the full structure. Below fbar a high reflectivity region with
four dips appears. These are grouped in pairs and labeled f1s,
f1a, f2s, and f2a. Figure 5(a) (left panel) shows the local band
structure on top of the displacement color map. We can see
how bound modes below fbar are simultaneously localized
in both potential wells. The central hump separating these
two wells acts as a potential barrier between them. Tunneling
through it, acoustic phonons propagate from one well to the
other. Consequently, increasing or reducing the barrier will
increase or reduce the coupling between the wells. Figure 5(b)
shows the displacement profiles of the first four resonant
modes. We can see how the confined modes span along all
the structure with a small amplitude in the central hump, in
particular, for the first pair resonances at f1s and f1a. For
resonances at f2s and f2a the closeness to the top of the barrier
raises the amplitude in the center as confinement transits from
localization in the two wells towards localization in all the
structure. Each pair shares a similar shape of the envelope.
A more detailed analysis however evidences the hybridization
into symmetric and antisymmetric solutions. At the right side
of each panel a zoom-in of the displacement profile at the
central cell is presented. As before, we can see how the first
mode shares the symmetry of its enclosing band edges, while
the second mode has the opposite total symmetry. As in the
other potentials, the number of maxima in the mode envelopes
scales with the order of the mode pair. In resemblance with
the Morse case, we can see the envelope not being symmetric
with respect to each well but increasing towards the center of
the structure. This results from each confinement region (well)
being surrounded by unbalanced reflective regions as in the
Morse potential case.

FIG. 5. (a) Right: Acoustic reflectivity for the double-well poten-
tial structure. fb and ft mark the DBR stopband limits while f1s, f1a,
f2s, and f2a mark the first four confined modes. Left: Displacement
distribution as a function of position and frequency for phonons
propagating from left to right. Local band structure plotted on top.
(b) Left: Normalized displacement profile of the first four confined
modes. Right: For each mode, a zoom-in of the displacement profile
at the central cell is shown.

IV. PHONON POTENTIALS INCLUDING LOSS

In the frequency range of hundreds of GHz, acoustic
phonons are subject to loss mechanisms [20,44–46] that might
influence the performance and experimental feasibility of the
phonon engineering concepts outlined above. Here we extend
our analysis by including the effect of phonon attenuation in
our transfer matrix simulations and study the ensuing impact
on spatial confinement, quality factors, and reflectivity spectra
for the studied nanomechanical structures. For realistic losses
we find that the effective picture of phonon potentials pre-
sented in our paper holds.

In order to preserve the sharp acoustic resonances found
in our simulations, e.g., for the harmonic oscillator poten-
tial (cf. Fig. 3), phonons need to propagate back and forth
along the structure hundreds of times. That this condition
is indeed satisfied under realistic conditions is substantiated
by propagation lengths for longitudinal acoustic phonons
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in GaAs reported in previous works [20,47]. Propagation
lengths up to millimeters were found at low temperatures
for longitudinal acoustic phonons in the hundreds of GHz
range. The structures considered here are around two orders of
magnitude smaller (biggest structure is ∼3.5 μm thick), hence
allowing confined modes to build up under realistic losses. To
substantiate this claim, we have extended our transfer matrix
simulations and carefully revisit in particular the cases of
the harmonic oscillator and the double-well potential since
they present high quality factors and small mode spacing,
respectively. These structures are hence expected to be most
susceptible to the consequences of even small amounts of
phonon losses.

Acoustic phonon losses can be introduced as an acoustic
extinction coefficient κac in an analogous way to the optical
extinction coefficient κ (i.e., the imaginary part of the index
of refraction) appearing in the optical wave vector

kop = 2π
n + i κ

λop
. (8)

Here n = n + i κ is the complex index of refraction and λop

is the optical wavelength in vacuum. The acoustic wave vector
is defined as

kac = 2π
1 + i κac

λac
, (9)

where λac is the acoustic wavelength in the medium. This
approach has been used, e.g., in [46,48,49] and it has been
shown that phonon extinction coefficients can be derived
from the corresponding phonon viscosity tensor [50]. While
κac by itself is sufficiently general to quantify the losses
experienced by phonons propagating in a medium, it is useful
to establish the relationship between the acoustic extinction
coefficient and more comprehensive quantities such as the
acoustic penetration depth δac. For phonons in a given material
at a frequency f it is given by

δac = λac

4πκac
. (10)

This definition implies that for a penetration depth of δac,
the intensity of a propagating phonon (i.e., square of the
displacement amplitude |u|2) is reduced by a factor of 1/e
after traveling a distance δac. For GaAs it has been found
that longitudinal acoustic phonons in the frequency range of
300 GHz (as considered in our simulations) propagate over
distances as large as δac ∼ 1 mm at cryogenic temperatures
[20,47].

With the implementation of losses in our transfer matrix
formalism at hand, we revisit the parabolic potential resonator.
This symmetric structure has 201 unit cells and presents par-
ticularly high quality factors (max. Q ∼ 30 000 in the lossless
case). Therefore, the effect of losses should be most noticeable
for this potential. We proceed to analyze the effect of losses
by computing quality factors as a function of the acoustic
penetration depth δac for the first four bound acoustic modes
at frequencies f1, f2, f3, and f4. The results are shown in
Fig. 6(a). In the underlying calculation we have assumed equal
acoustic extinction coefficients for all layers of the structure.
We find that for penetration depths below 200 μm the Q
factors rapidly decrease. Nevertheless, even for the sharpest

FIG. 6. (a) Q factors of the four lowest confined modes of the
parabolic nanophononic potential (see Fig. 3) if losses are included
via a finite phonon penetration depth δac. For experimentally realistic
penetration depths δac ≈ 300 μm the Q factors change by less than
8%. The quality factors in the lossless case are indicated with labels
Q1–4 on the right axis. (b) Acoustic amplitude reflectivity spectra in
the close vicinity of the confined mode with frequency f1. With loss
increasing from zero (δac = ∞), the contrast of the reflectivity dip
diminishes. However, only for extremely high losses around δac =
1 μm the resonance is completely washed out.

resonance at f2, the Q factor still remains beyond 20 000 for a
penetration depth of 200 μm.

We have also calculated corresponding reflectivity spectra
for the resonance at f2 when varying the acoustic penetration
depth over several orders of magnitude from 1 μm to 100 μm.
The results are shown in Fig. 6(b) together with the lossless
case for reference (δac = ∞). We find that due to the losses
the sharp reflectivity dips get wider and no longer drop to zero
but a finite reflectivity persists. For experimentally realistic
losses in the range of δac = 300 μm in GaAlAs for phonons
at frequencies around 300 GHz even the sharpest mode at f2

thus stays clearly visible. Only for extremely strong losses in
the the range of δac = 1 μm the resonance gets completely
washed out. This persistence of the modes is a direct conse-
quence of the small structure thickness achieved by phonon
engineering with individual superlattices. Alternative imple-
mentations of these kinds of potentials, e.g., with coupled
acoustic resonators [25], would be much more susceptible to
losses since the required structure thicknesses are orders of
magnitude larger.

For comparison, we also study the effects of losses in
the double-well potential resonator. Because this resonator
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FIG. 7. (a) Reflectivity dips associated with resonances of the
phononic double-well potential at f1s and f1a for different penetration
depths. (b) Same as in (a) for resonances at f2s and f2a.

presents hybridized confined modes, resonant frequencies
localized in the two wells (i.e., below fbar) appear in pairs
with small frequency spacing (e.g., f1a − f1s ≈ 43 MHz).
While for the parabolic potential resonator modes remain
discernible for penetration depths down to δac = 10 μm, the
small frequency separation in the double-well case affects the
possibility to distinguish between nearby modes. Zoom-ins
to the reflectivity spectra for various penetration depths are
displayed in Fig. 7. Displayed are the frequency intervals
around the resonances at frequencies f1s and f1a [Fig. 7(a)]
and at frequencies f2s and f2a [Fig. 7(b)]. For the second
pair of hybridized modes each resonance remains clearly
distinguishable even for short decay lengths around δac =
10 μm. Only for extremely large phonon losses correspond-
ing to δac = 1 μm, the resonances are completely washed
out. For the first pair of hybridized modes, the initial mode
splitting is smaller leading to a partial overlap between the
reflectivity dips even in the lossless case. Nevertheless, the
two separate reflectivity minima remain discernible down
to penetration depths of 100 μm, that is, well below the
experimentally realistic case. It is worth noting that in all
the cases considered in this discussion we neglected losses
due to the roughness at the interfaces between layers of
different materials. These additional losses scale with the
number of layers [17] in contrast to propagation losses, which
are governed by the total thickness of the structure under
consideration.

V. DISCUSSION AND CONCLUSIONS

We have demonstrated how a local engineering of the
group velocity in nanoacoustic superlattices can be used for

the implementation of arbitrary effective potential landscapes
for longitudinal acoustic phonons. First, by introducing the
concept of a local band structure, we have designed an adi-
abatic potential well resonator, and shown how it confines
acoustic modes mimicking electron and hole states. Sec-
ond, we have parametrized the dispersion relation of bilayer
superlattices isolating parameters determining the minigap
bandwidths and positions. Using this parametrization, three
potentials have been studied: a parabolic, a Morse, and a
double-well potential. While the main features of the elec-
tronic counterparts are reproduced, effective phonon poten-
tials present significant novel aspects to remark. The spatial
profile of the confined modes (in particular its decay length
towards the exterior) depends on the position and frequency
dependent penetration depth as well as the boundary con-
ditions. For the Morse potential the dips in the reflectivity
curve corresponding to the confined modes are shallow as
a consequence of confinement between unbalanced effective
phonon mirrors. Finally, the double-well potential highlights
the role of the symmetries of the spatial mode profiles in
hybridized mode solutions. In all three cases, the spectrum of
confined modes is fundamentally different from the standard
electronic counterpart, since the phonon dispersion relation in
a bulk material is linear rather than parabolic. The systems
described here correspond to the dynamics of quasirelativistic
particles in potential wells which have a linear dispersion
[22,51].

The potentials are implemented by smoothly changing
the thicknesses of the layers forming each unit cell in a
superlattice. The full structure is typically formed by approx-
imately 200 unit cells. Layer thicknesses vary between 4.72
and 11.95 nm for all the presented structures, corresponding
to resonance frequencies around 300 GHz. From a practical
point of view, such lattices can be experimentally realized in
molecular beam epitaxy (MBE) growth [52]. In comparison,
relying on coupled cavities to study phonon dynamics rather
than single superlattices, an equivalent implementation of the
potentials presented in this work would require materials with
higher impedance contrast or very thick samples, which are
much more demanding to grow [21]. A detailed analysis of
the effect of losses in the structures has shown that under
realistic conditions the proposed potential resonators would
still exhibit the same main features presented for the lossless
case. This ability to preserve rich phonon dynamics in intri-
cate potential landscapes even under the influence of losses is
in particular due to the small overall thickness of the struc-
tures compared to implementations of phonon potentials with
coupled acoustic cavities. However, the role of roughness in
the interfaces might play a role in the experimental feasibility
of these structures.

The selection of the first zone-center minigap is essential
for our implementation of effective phononic potentials, since
it can be completely closed in a nontrivial way by changing
the internal unit cell structure [27]. Compared to higher order
minigaps, which also allow a complete nontrivial closure,
the second minigap width is least susceptible to fabrication
errors since its variation with the ratio of relative acoustic
path length in the lattice unit cell r is slower. This makes the
implementation of the proposed structures more realistic from
an experimental point of view. Both zone center and zone
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edge modes are in principle accessible in coherent phonon
generation and detection experiments or Brillouin scattering
[27,29,53].

A necessary condition in both approaches is that the system
allows a description in terms of local band structures. Here
we ensured this by keeping the overlap between the second
minigap of consecutive unit cells sufficiently large. As a con-
sequence, the shape of the potential landscape to be mimicked
will impose a minimum number of layers needed depending
on its maximum gradient. By implementing potentials with a
single superlattice it is thus possible to experimentally real-
ize potentials that are unrealistic with coupled nanocavities.
Moreover, key results that were already achieved based on
the tight-binding approach with coupled cavities [22], such
as phonon molecules and Bloch oscillations in Wannier-Stark
ladders, could be also implemented through the nearly free
electron approach employed here [21]. Similarly, the material
composition [28] of each layer or alternating crystal phases
[54] could be used as a parameter to engineer the local phonon
group velocity.

The materials GaAs and AlAs used in our simulations
present the unique feature that their acoustic impedance con-
trast and index of refraction contrast are nearly the same.
As a result, cavities simultaneously confining both sound
and light have been achieved [53,55–58]. Exploiting this
feature, the design procedure for general potential landscapes
introduced here could be extended to control simultaneously

the propagation of phonons and photons in optomechanical
systems.

Another fundamental property of acoustic superlattices
that has not been exploited here are the Bloch mode sym-
metries at the minigap edges. It has been shown [59] that an
inversion of these symmetries can be achieved by closing and
reopening a minigap, inducing a topological phase transition
and hence allowing the construction of topological interface
states [26–29]. This approach could for example be combined
with the adiabatic resonator presented in Fig. 2, resulting in an
additional confined state between the two modes of the well,
i.e., mimicking a zero-energy state between electron and hole.
Overall, we presented a series of acoustic devices allowing the
control of the propagation of longitudinal acoustic phonons
that are achievable through standard MBE growth and can
be tested using optical pump-probe and Brillouin scattering
schemes [18,60].
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