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A simple and flexible optical system for generating electromagnetic or vector partially coherent sources
or beams is presented. The alternative design controls field amplitude (beam shape), coherence, and
polarization using only spatial light modulators. This improvement makes the apparatus simpler to
construct and significantly increases the flexibility of vector partially coherent source generators by
allowing many different types of sources to be produced without changing the physical setup. The system’s
layout and theoretical foundations are thoroughly discussed. The utility and flexibility of the proposed
system are demonstrated by producing a vector Schell-model and non-Schell-model source. The
experimental results are compared to theoretical predictions to validate the design. Lastly, design aspects,
which must be considered when building a vector partially coherent source generator for a specific
application, are discussed.
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I. INTRODUCTION

Motivated by Wolf’s seminal work on coherence and
polarization [1,2], research involving vector or electromag-
netic partially coherent sources has become quite popular
[3–6]. Their widespread appeal stems from the fact that, by
simply manipulating spatial coherence, the source’s result-
ing shape and polarization can be precisely controlled.
Numerous researchers have designed vector partially
coherent sources for applications such as free-space and
underwater optical communications [7–16], remote sensing
[17,18], optical scattering [19–29], and particle manipula-
tion and trapping [30–33].
As onemight expect, considering their many uses, optical

systems to generate vector partially coherent sources have
also been developed. The most straightforward and there-
fore popular design uses a Mach-Zehnder interferometer
(MZI) consisting of polarizing beam splitters (PBSs) to split
light from a common source into its vertical and horizontal
polarization components [5,6,11,34–39]. In each leg of the

MZI, the amplitude (beam shape) and coherence of each
field component are controlled using absorbing (amplitude)
filters and ground-glass diffusers [6,30–33,35,36,40,41] or
spatial light modulators (SLMs) [5,11,34,37,38,42,43],
respectively. While intuitive, the use of separate optical
components to control beam shape and coherence compli-
cates the optical setup (alignment, system footprint or size,
et cetera) and limits the types of vector partially coherent
sources that can be generated (the system’s flexibility).
Designs that rely on ground-glass diffusers to affect

coherence are generally limited to producing Schell-model
sources [2,5,44,45]. The use of SLMs can ameliorate this
limitation; however, to the authors’ knowledge, they have
never been used to produce vector non-Schell-model
sources. The most limiting aspect of existing designs is
the use of amplitude filters to control beam shape.
Amplitude filters adversely affect the flexibility of the
system, considering that every new source requires a new
set of filters.
In this paper, a simple and flexible design for generating

vector partially coherent sources is presented. Like existing
designs, the proposed system uses a MZI where, in each
interferometer leg, the beam shape and coherence of the
field’s horizontal and vertical polarization components are
controlled separately. In contrast with existing designs, the
apparatus presented here uses only SLMs to control
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coherence and beam shape. This improvement permits
many different types of sources to be generated without
physically changing the apparatus.
In Sec. II, the system is presented and described in

detail. Section III presents the theory necessary for
understanding how the apparatus creates vector partially
coherent sources. Section IV demonstrates the flexibility
of the proposed design by experimentally producing
both vector non-Schell-model and Schell-model sources.
The experimental results are compared to theoretical
predictions to validate the system. Lastly, key aspects
of the proposed approach, which must be considered
when designing a system for a specific application, are
discussed.

II. APPARATUS DESCRIPTION

A schematic of the vector partially coherent source
generator is shown in Fig. 1. Light is emitted from a

HeNe laser (632.8 nm) and then expanded. The laser light
then traverses a half-wave plate (HWP) before being
split along two paths using a PBS. The HWP is used to
rotate the angle of polarization (AOP) of the linearly
polarized laser light to 45° such that the PBS splits the
power equally between the vertical and horizontal legs—so
named because of the polarization state that is controlled on
that leg.
After passing through the PBS, the light in both legs is

incident on reflective, phase-only SLMs. The SLMs used
here are Boulder Nonlinear Systems (BNS) model P512-
0635 SLMs [46]. Since the BNS SLMs control only
vertically polarized light, a HWP is used immediately after
the PBS to rotate the vertical leg’s AOP 90°. Note that all
beam shaping, phasing, and relative amplitude control on
the vertical and horizontal legs is performed using the
SLMs. This field control is accomplished using the
modified phase-screen (MPS) technique [47], which is
briefly reviewed in the next section.
The light reflected from the SLMs is scattered into

multiple diffraction orders. Here, the desired vertical- and
horizontal-leg field instances are produced in the first
diffraction orders. Thus, spatial filters (4f system plus
an iris) are utilized on each leg to isolate the desired first
orders.
The physical layout of the system results in the vertical

leg being 100 mm longer than the horizontal leg when
measured from the SLMs (the same difference is approx-
imately 45 mmwhen measured from the laser). To place the
output planes of both spatial filters at L3, the horizontal and
vertical leg lenses (L1 and L2, respectively) have focal
lengths of 350 and 375 mm, respectively.
Note that the coherence length of the source must be

considered when designing the system. If the optical path
difference (OPD) between the horizontal and vertical legs is
greater than the coherence length of the source, only
partially coherent beams with diagonal cross-spectral
density (CSD) matrices can be generated. The coherence
length of the HeNe laser used here is approximately
300 mm; therefore, the 45-mm difference between the legs
of the MZI is not a problem.
After passing through the spatial filters, the light in the

vertical and horizontal legs is recombined using a PBS.
Note that the light in the horizontal leg first transits a HWP
to rotate its polarization state from vertical (the SLM
control state) to horizontal. The recombined light is then
incident on L3—a 1500-mm lens located at the effective
source plane of the apparatus. The lens produces the far-
zone irradiance pattern of the field, which is subsequently
recorded by a Lumenera Lw135RM camera [48] placed at
the focus of L3.

III. METHODOLOGY

A vector partially coherent source is completely
described by the elements of its CSD matrix:
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FIG. 1. Schematic of the proposed vector partially coherent
source generator. The acronyms used in the figure are 350-mm
lens (L1), 375-mm lens (L2), 1500-mm lens (L3), mirror (M),
half-wave plate (HWP), beam expander (BE), polarizing beam
splitter (PBS), iris (I), and spatial light modulator (SLM). The
polarization state of the light passing through the apparatus is
denoted by two-sided arrows (horizontal polarization) and dotted
circles (vertical polarization). When both symbols are present, the
light is in a general polarization state, i.e., polarized, partially
polarized, or unpolarized.
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Wðρ1;ρ2;ωÞ

¼
�
Wxxðρ1;ρ2;ωÞ Wxyðρ1;ρ2;ωÞ
Wyxðρ1;ρ2;ωÞ Wyyðρ1;ρ2;ωÞ

�

¼
�hExðρ1;ωÞE�

xðρ2;ωÞi hExðρ1;ωÞE�
yðρ2;ωÞi

hEyðρ1;ωÞE�
xðρ2;ωÞi hEyðρ1;ωÞE�

yðρ2;ωÞi
�
; ð1Þ

where Ei is the ith component of the electric field, Wij is
the CSD function of the ith and jth field components,
ρ ¼ x̂xþ ŷy, and ω is the radian frequency [2,5]. Note that,
in expressingW as a function of a single frequency ω, it has
been assumed that the random optical field is wide-sense
stationary. Hereafter, the dependence of the CSD matrix,
the CSD functions, and the optical fields on ω is
suppressed.
In this work, Wij’s of the form

Wijðρ1; ρ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Siðρ1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sjðρ2Þ

q
μijðρ1; ρ2Þ ð2Þ

are germane. In Eq. (2), Si is the spectral density of the ith
field component and μij is the cross-correlation function of
the ith and jth components. It is required that μij ¼ μ�ji
[2,5]. If μij can be expressed solely as a function of ρ1 − ρ2,
thenWij in Eq. (2) takes the Schell-model form [2,5,44,45].
To demonstrate the flexibility of the apparatus in Fig. 1,
both a non-Schell-model and a Schell-model source are
generated (the results are shown in Sec. IV). For now, the
analysis continues with the general CSD function given
in Eq. (2).

A. Modified phase-screen technique

An instance of a MPS field takes the form [47]

EMPSðρÞ ¼ x̂
ffiffiffiffiffiffiffiffiffiffiffi
SxðρÞ

p
exp (jfarg½TxðρÞ� þ αxg)

þ ŷ
ffiffiffiffiffiffiffiffiffiffiffi
SyðρÞ

q
exp (jfarg½TyðρÞ� þ αyg); ð3Þ

where j ¼ ffiffiffiffiffiffi
−1

p
, αi is the phase of the ith field component,

and Ti is the complex transmittance screen for the ith
component [49–51]. Taking the vector autocorrelation of
Eq. (3) yields

WMPS
ij ðρ1;ρ2Þ ¼ hEMPS

i ðρ1ÞEMPS�
j ðρ2Þi

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Siðρ1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sjðρ2Þ

q
exp½jðαi − αjÞ�

× hexpfj arg½Tiðρ1Þ�gexpf−j arg½Tjðρ2Þ�gi
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Siðρ1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sjðρ2Þ

q
χijðρ1;ρ2Þ: ð4Þ

Comparing Eq. (4) to Eq. (2) reveals the following desired
condition:

χijðρ1; ρ2Þ ¼ μijðρ1; ρ2Þ; ð5Þ

which, in general, is never satisfied. However, it can be
shown, by numerically computing χij using the joint
probability density function of speckle phases [52], that
χij ≈ μij, such that the MPS partially coherent source is
practically indistinguishable from the true source. This
analysis is presented in Ref. [53] and not reproduced here
for the sake of brevity. Methods to synthesize Tx and Ty to
produce the desired μxx, μyy, and μxy’s are presented next.

B. Screen synthesis

1. Non-Schell-model source

It is now convenient to assume forms for Si and μij. An
example of a vector non-Schell-model source, which to the
authors’ knowledge has never been physically generated
before, is an electromagnetic nonuniformly correlated
(ENUC) beam [5,54]. Its CSD matrix elements take the
form

Wijðρ1; ρ2Þ ¼ Ai exp

�
−

ρ21
4σ2i

�
Aj exp

�
−

ρ22
4σ2j

�

× Bij exp

�
−
ðjρ1 − γij2 − jρ2 − γjj2Þ2

δ4ij

�
;

ð6Þ
where Ai and σi are the amplitude and the rms width of the
ith field component, respectively. Also, in Eq. (6), δij is the
cross-correlation width,Bij is the complex cross-correlation
coefficient, and γi is a real, two-dimensional vector that
shifts the maximum of the correlation function away from
the origin. Note that δij¼ δji, Bij¼B�

ji, Bii ¼Bjj ¼ 1, and
jBijj ≤ 1. In addition to these requirements, the ENUC
source must also satisfy the realizability conditions given in
Refs. [5,54].
Synthesizing screens that will produce a desired

ENUC source can be accomplished using the Cholesky-
factorization approach [55,56]. Assuming an Ny × Nx
computational grid, an instance of Ti is created by

Ti ¼ Ri
riffiffiffi
2

p ; ð7Þ

where ri is an ðNyNxÞ × 1 vector of zero-mean, unit-
variance, circular complex Gaussian random numbers
and Ti is the ðNyNxÞ × 1 complex screen. Lastly, Ri is
an ðNyNxÞ × ðNyNxÞ lower triangular matrix formed from
the Cholesky decomposition of μii, namely,

μii ¼ RT
i Ri; ð8Þ

where μii is the ðNyNxÞ × ðNyNxÞ matrix created by
evaluating μii [the exponential on the second line of
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Eq. (6)] at all combinations of points ðx1; y1Þ and ðx2; y2Þ
making up the discrete grid.
Generating Tx and Ty using Eq. (7) will produce an

ENUC source with the desired μxx and μyy. The statistical
relationship between Tx and Ty, particularly the cross-
correlation of Tx and Ty, determines μxy:

hTxT
†
yi ¼

	
Rx

rxffiffiffi
2

p
�
Ry

ryffiffiffi
2

p
�†


¼ 1

2
RxRT

y hrxr†yi; ð9Þ

where † is the Hermitian transpose. The moment
hrxr†yi ¼ 2jBxyj, simplifying Eq. (9) to

hTxT
†
yi ¼ jBxyjRxRT

y : ð10Þ

The right-hand side of Eq. (10) should equal the Cholesky
factorization of jμxyj. In general, it does not; however, there
are two cases where it does:
(1) If Bxy ¼ 0, δxy is irrelevant, Tx and Ty are sta-

tistically independent, and one is free to choose δxx
and δyy.

(2) If Bxy ≠ 0, then δxx ¼ δyy ¼ δxy and γx ¼ γy.
Using the Cholesky-factorization approach outlined

above, any vector partially coherent source can be pro-
duced. Unfortunately, this flexibility comes at a great cost.
Computing Cholesky factors is very computationally
intensive—the number of operations is Oðn3Þ [56]. In
addition, the matrix μii is typically very large, requiring a
great deal of computer memory to store. For example,
synthesizing a screen for a 512 × 512 SLM (the same size
as the BNS SLMs used here) requires a staggering 262,
144 × 262, 144 μii. To produce Tx and Ty for the ENUC
experiments (the results are presented below), μxx and μyy
are calculated on 128 × 128 down-sampled versions of
the horizontal- and vertical-leg SLMs. From these down-
sampled μxx and μyy,Rx andRy are computed. The screens
are then synthesized using Eq. (7), reshaped, and interpo-
lated to 512 × 512.

2. Schell-model source

The Cholesky-factorization approach discussed in the
previous section can be used to synthesize screens to
produce any type of partially coherent source; however,
the approach is very computationally intensive. If the
partially coherent beam is a Schell-model source, then a
simpler and more computationally efficient technique can
be used to synthesize Tx and Ty.
An example of a vector Schell-model source is an

electromagnetic multi-Gaussian Schell-model (EMGSM)
beam [5,57]. To the authors’ knowledge, a general
EMGSM beam has never been physically produced before.

The CSD matrix elements of an EMGSM source take the
form [5,57]

Wijðρ1; ρ2Þ ¼ Ai exp

�
−

ρ21
4σ2i

�
Aj exp

�
−

ρ22
4σ2j

�

×
Bij

C0

XM
m¼1

�
M

m

� ð−1Þm−1

m
exp

�
−
jρ1 − ρ2j2
2mδ2ij

�
;

ð11Þ

where the normalization constant C0 is

C0 ¼
XM
m¼1

�
M

m

� ð−1Þm−1

m
: ð12Þ

The other symbols were defined previously. The same
requirements on δij and Bij stipulated above apply to
EMGSM sources as well. In addition, EMGSM sources
must also satisfy the realizability conditions given in
Refs. [5,57].
Since an EMGSM beam is a Schell-model source, Tx

and Ty can be generated using the Monte Carlo spectral
method. This technique has been described in the literature
many times [5,49–51,58,59]; therefore, only the key
relations are included here. An instance of Ti can be
synthesized by

Ti½k; l� ¼
X
p;q

ri½p; q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φii½p; q�
2LxLy

s

× exp

�
j
2π

Nx
pk

�
exp

�
j
2π

Ny
ql

�
; ð13Þ

where k, l are the discrete spatial indices of the screen,
p, q are the discrete spatial frequency indices, Lx and Ly are
the width and height of the grid in meters, and ri is an
Ny × Nx matrix of zero-mean, unit-variance, circular com-
plex Gaussian random numbers. Lastly, Φii is the spatial
power spectrum of Ti (the Fourier transform of μii),
namely,

Φiiðf Þ¼
2πδ2ii
C0

XM
m¼1

�
M

m

�
ð−1Þm−1 expð−2mπ2δ2iif

2Þ; ð14Þ

where f ¼ x̂fx þ ŷfy is the spatial-frequency vector.
Equation (13) is in the form of a discrete inverse Fourier
transform; thus, Ti can be synthesized using the fast-
Fourier-transform (FFT) algorithm.
Synthesizing Tx and Ty using Eq. (13) will produce an

EMGSM source with the desired μxx and μyy. To determine
the form of μxy, one must take the cross-correlation of
Eq. (13), viz.,
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hTx½k1; l1�T�
y½k2; l2�i ¼

X
p1;q1

X
p2;q2

hrx½p1; q1�r�y½p2; q2�i
2LxLy

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φxx½p1; q1�Φyy½p2; q2�

q
× exp

�
j
2π

Nx
ðp1k1 − p2k2Þ

�

× exp

�
j
2π

Ny
ðq1l1 − q2l2Þ

�
: ð15Þ

The moment in Eq. (15) evaluates to 2jBxyjδ½p1 − p2�×
δ½q1 − q2�, where δ is the discrete Dirac delta function.
Simplifying Eq. (15) further yields

hTx½k1; l1�T�
y½k2; l2�i ¼

X
p;q

jBxyj
LxLy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φxx½p; q�Φyy½p; q�

q

× exp

�
j
2π

Nx
ðk1 − k2Þp

�

× exp

�
j
2π

Ny
ðl1 − l2Þq

�
: ð16Þ

The expression jBxyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦxxΦyy

p
should equal the cross-

power spectrum, namely,

Φxyðf Þ ¼ jBxyj
2πδ2xy
C0

XM
m¼1

�
M

m

�
ð−1Þm−1

× expð−2mπ2δ2xyf2Þ: ð17Þ

Like the ENUC source discussed above, jBxyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦxxΦyy

p ¼
Φxy if (1) Bxy ¼ 0 or (2) Bxy ≠ 0, then δxx ¼ δyy ¼ δxy.
Following the above analysis, any vector Schell-model

source can be produced. Depending on the forms of
μxx, μyy, and μxy, one may have more freedom in choosing
Bxy, δxx, δyy, and δxy than in the EMGSM case above. Two
such sources are the electromagnetic Gaussian Schell-
model (EGSM) [50] and EGSM vortex beams [32].

C. Phase-only MPS field

Recall that in the apparatus in Fig. 1, all phasing and
amplitude control is accomplished using phase-only SLMs.
In the preceding sections, two methods for synthesizing Tx
and Ty to produce partially coherent sources with the
desired μxx, μyy, and μxy are discussed. This analysis
handles the MPS field component phases that are ulti-
mately commanded to the horizontal- and vertical-leg
SLMs. What remains is a discussion of how the MPS
field component amplitudes, namely,

ffiffiffiffiffi
Sx

p
and

ffiffiffiffiffi
Sy

p
, are

handled.
Amplitude can be controlled using a phase-only SLM by

creating a sawtooth phase grating which produces the

desired field in the first diffraction order. By manipulating
the height of the grating, the field’s amplitude can be
precisely controlled. The expression relating sawtooth
height to the field in the first diffraction order was derived
previously [51,60,61]:

UðρÞ ≈ sincfπ½1 − hðρÞ�g expf−jπ½1 − hðρÞ�g
¼ HðhÞ exp ½−jPðhÞ�; ð18Þ

where h is the height of sawtooth in waves and
sincðxÞ ¼ sinðxÞ=x. Assumed in this relation is that more
than four SLM pixels compose each sawtooth.
The vertical- and horizontal-leg phases commanded to

the SLMs are

θV ½k; l� ¼ argðexpfj½GðhyÞ þ argðTyÞþFðhyÞ þ αy�g)
θH½k; l� ¼ arg ðexp fj½GðhxÞ þ argðTxÞ þ FðhxÞ þ αx�g);

ð19Þ

where hx and hy are found by solving

hi ¼ H−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si

max fSi; Sjg

s !
; ð20Þ

G is the function that forms the two-dimensional sawtooth
phase grating, and F is the function that creates a two-
dimensional P. The purpose of F is to remove the “phase
aberration” caused by G. Note that exp ½jðαx − αyÞ� ¼
exp ½j argðBxyÞ�. The desired x and y components of the
MPS field are produced in the horizontal and vertical legs’
first diffraction orders, respectively.
It should be noted that, in general, the heights of the

sawteeth making up the SLM gratings vary spatially;
however, all of the sawteeth contain the same number of
SLM pixels. The SLM gratings can be formed in any
direction—horizontally, vertically, or diagonally.
Figure 2 shows the screen synthesis process. Here, a

screen which produces a single instance of Ey of an
EMGSM source is synthesized. Step 1 shows the spectral
density Sy and correlation function μyy of the source. The
sawtooth grating is determined by the spectral density;
thus, steps 2, finding the grating heights hy [Eq. (20)], and
3, the functions G and F, are grouped under Sy. The phase
of the screen is formed from the correlation function—in
this case, via the power spectrum. Hence, steps 4, the
spatial power spectrum Φyy [Eq. (14)], and 5, creating an
instance of Ty [Eq. (13)], are grouped below μyy. Lastly, the
screen θV is produced in step 6 by using Eq. (19). The same
process is used to produce an instance of Ex, i.e., to
synthesize the horizontal-leg screen θH.
Note that if jBxyj ≠ 0, then Tx and Ty must be synthesized

from correlated rx and ry [see Eq. (13)]. Since rx and ry are
Gaussian, this task is a relatively easy one. Most of the
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popular mathematical software packages have correlated
Gaussian random-number generators. Correlated Gaussian
random numbers can also be produced by linearly trans-
forming independent sequences of Gaussian random
numbers [62].

IV. VALIDATION

A. Experimental procedure and data processing

ENUC and EMGSM sources are produced using the
apparatus in Fig. 1 to demonstrate the flexibility and utility
of the setup. The measured irradiances, Ix and Iy, from
5000 ENUC and EMGSM fields are used to compute the
normalized spectral densities,

~SiðρÞ ¼
SiðρÞ

maxfSxðρÞ þ SyðρÞg
; ð21Þ

and correlations of irradiance,

~Γiiðρ1; 0Þ ¼
Γiiðρ1; 0Þ

maxfΓiiðρ1; 0Þg
~Γijðρ1; 0Þ ¼

Γijðρ1; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfΓxxðρ1; 0ÞΓyyðρ1; 0Þg

p ; ð22Þ

where Γijðρ1; ρ2Þ ¼ hIiðρ1ÞIjðρ2Þi. Each of the 5000 Ix’s
and Iy’s are flat fielded and registered before computing the

above moments. The experimental ~Si and ~Γij are then
compared to the corresponding theoretical expressions
(discussed below) to validate the proposed approach. It
should be noted that Ix and Iy are physically separated at
the camera or detector (not overlapped as shown in Fig. 1).
The intention of this separation is to make calculating the
spectral densities and correlations of irradiance more
convenient. The experimental ENUC and EMGSM source
parameters are reported in Table I. Figure 3 shows sample
Ix’s and Iy’s for the ENUC [Figs. 3(a) and 3(b)] and
EMGSM [Figs. 3(c) and 3(d)] sources.
ENUC sources exhibit self-focusing in the near field.

The locations of the ~Si maxima are determined by γi [5,54].
Here, the ~Sx and ~Sy maxima occur off axis, shifted in the x
and y directions, respectively (see Table I). EMGSM
sources produce far-zone ~Si’s with flat-topped profiles.
The parameter M determines the flatness of ~Si [5,57].
In the experiments, the horizontal- and vertical-leg SLM

gratings have a period of eight SLM pixels per sawtooth
and are applied in both the x and y directions (i.e.,
diagonally). The BNS SLMs used in the experiments have
a fill factor of 83.4% [46]. The dead space between the
SLM pixels produces bright, sinclike, far-zone patterns
coinciding with the zeroth diffraction orders in the hori-
zontal and vertical legs of the apparatus. Using diagonal
gratings moved the desired first orders away from the
zeroth orders’ bright sidelobes, thereby minimizing cor-
ruption of the resulting fields.
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TABLE I. Vector partially coherent source parameters.

ENUC EMGSM

Ax 1 1.5
Ay 1 1
Bxy 0 0.5
σx (mm) 1 0.4
σy (mm) 1 0.8
δxx (mm) 0.7 0.6
δyy (mm) 0.6 0.6
δxy (mm) 0.6
γx (mm) x̂0.6
γy (mm) ŷ0.7
M 10
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B. ENUC and EMGSM theoretical CSD matrices

The analytical expressions for the CSD matrix elements
of an ENUC source corresponding to the experimental
setup are

Wijðρ1;ρ2; z¼ fÞ ¼
exp½jk

2f ðρ21 −ρ22Þ�
λ2f2

×⨌
∞

−∞
Wijðρ01;ρ02Þexp

�
−jk
2R

ðρ021− ρ022Þ
�

×exp

�
−jk
f

ðρ1 · ρ01− ρ2 · ρ02Þ
�
d2ρ01d

2ρ02;

ð23Þ

where f ¼ 1.5 m, λ ¼ 632.8 nm, and Wij in the integrand
is the ENUC CSD function given in Eq. (6). The above
integrals cannot be evaluated in closed form; however, they
can be computed using the FFT algorithm.
As stated above, an interesting characteristic of ENUC

sources is that they exhibit self-focusing in the near field
[5,54]. To demonstrate this effect in the experiments,
a R ¼ −3 m phase curvature is applied to the horizontal-
and vertical-leg SLMs, in addition to the ENUC phases
given in Eq. (19).
Unlike ENUC sources, the theoretical EMGSM CSD

matrix elements observed at the focus of a lens are easily
derived in closed form:

Wijðρ1; ρ2; z ¼ fÞ

¼
exp½jk

2f ðρ21 − ρ22Þ�
λ2f2

AiAjBij

C0

×
XM
m¼1

ð−1Þm−1

m

�
M

n

�
π2

ai;ijaj;ij − b2ij

× exp

�
−

k
4f2

aj;ijx21 − 2bijx1x2 þ ai;ijx22
ai;ijaj;ij − b2ij

�

× exp

�
−

k
4f2

aj;ijy21 − 2bijy1y2 þ ai;ijy22
ai;ijaj;ij − b2ij

�
; ð24Þ

where ai;ij ¼ 1=ð4σ2i Þ þ bij, aj;ij ¼ 1=ð4σ2jÞ þ bij, and
bij ¼ 1=ð2mδ2ijÞ.
The spectral densities are easy to compute using

Eqs. (23) and (24), i.e., SiðρÞ ¼ Wiiðρ; ρÞ. Since the fields
are Gaussian distributed, the theoretical correlations of
irradiance can be expressed in terms of Eqs. (23) and (24)
by using the Gaussian-moment theorem [6,30,41,52]:

hIiðρ1ÞIjðρ2Þi ¼ hEiðρ1ÞE�
i ðρ1ÞEjðρ2ÞE�

jðρ2Þi
¼ hEiðρ1ÞE�

jðρ2ÞihE�
i ðρ1ÞEjðρ2Þi

þ hEiðρ1ÞE�
i ðρ1ÞihEjðρ2ÞE�

jðρ2Þi
¼ jWijðρ1; ρ2Þj2 þ Siðρ1ÞSjðρ2Þ: ð25Þ

C. Results

Figures 4 and 5 show the near-field normalized spectral
density and correlation of irradiance results for the ENUC
source, respectively. Figures 6 and 7 show the correspond-
ing far-field results for the EMGSM source. The first row in
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the spectral-density figures (Figs. 4 and 6) shows (a) the
theoretical ~Sthyx , (b) the experimental ~Sexpx , and (c) the y ¼ 0

slice of ~Sx theory (the solid blue trace) versus experiment
(the red circles), respectively. The second row [(d), (e), and
(f)] shows the same results for ~Sy, except for (f), which
reports the x ¼ 0 slice.
The correlation of irradiance figures (Figs. 5 and 7) are

oriented in a similar manner to the spectral-density results.
The first and second rows show the theoretical [(a) and (d)],
experimental [(b) and (e)], and y ¼ 0 slice of theory (the
solid blue trace) versus experiment (the red circles) [(c) and
(f)] results for ~Γxx and ~Γxy, respectively. The third and
fourth rows show the same results for ~Γyx and ~Γyy, except
for (i) and (l), which report the x ¼ 0 slices.
Except for a few minor discrepancies, e.g., Figs. 5(f),

5(l), and 6(c), the agreement between the experimental and

theoretical results is excellent. These results validate the
proposed approach. It should be noted that EGSM vortex
[32] and electromagnetic Bessel-Gaussian Schell-model
beams [11] are also produced as part of this study. The
results are similar to those for ENUC and EMGSM sources;
they are omitted here for the sake of brevity.

D. argðBxyÞ
One parameter that has been difficult to control is

argðBxyÞ, which is required if one desires to generate
elliptically polarized sources. Precise control of this term
requires that the OPD between the horizontal and vertical
legs of the apparatus be known and, most importantly,
stable. The OPD between the legs can vary significantly
due to slight variations in temperature or small vibrations.
Unfortunately, we are not able to stabilize the OPD of

our system. In our most recent attempt, we try to actively
correct the system OPD using a three-bin phase-shifting
interferometer and a variable retarder operating in a closed
loop. The OPD drift is too fast to correct. Subsequent
measurement of our system OPD finds that it varies
randomly over 0.5 waves (roughly 300 nm) and faster
than 120 Hz. Our inability to control argðBxyÞ is a limitation
of our equipment, not the proposed approach. The control
of argðBxyÞ is left to future work.

V. DESIGN CONSIDERATIONS

Before concluding, it is worth discussing some key
aspects of the proposed approach which must be considered
when designing or building a system like that in Fig. 1 for a
specific application. Two of these aspects have already been
discussed—controlling the OPD between the horizontal and

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−1 0 1
0

0.2

0.4

0.6

0.8

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2

−1 0 1
0

0.5

1

1.5

2

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 5. ENUC source near-field normalized correlations of
irradiance ~Γxx, ~Γxy, ~Γyx, and ~Γyy. (a) ~Γthy

xx . (b) ~Γexp
xx . (c) ~Γxx y ¼ 0

slice, theory versus experiment. (d) ~Γthy
xy . (e) ~Γexp

xy . (f) ~Γxy y ¼ 0 slice,

theory versus experiment. (g) ~Γthy
yx . (h) ~Γexp

yx . (i) ~Γyx x ¼ 0

slice, theory versus experiment. (j) ~Γthy
yy . (k) ~Γexp

yy . (l) ~Γyy x ¼ 0

slice, theory versus experiment.

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

−1 0 1
0

0.1

0.2

0.3

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

(a) (b) (c)

(d) (e) (f)

FIG. 6. EMGSM source far-zone normalized spectral densities
~Sx and ~Sy. (a) ~Sthyx . (b) ~Sexpx . (c) ~Sx y ¼ 0 slice, theory versus

experiment. (d) ~Sthyy . (e) ~Sexpy . (f) ~Sy x ¼ 0 slice, theory versus
experiment.

HYDE, BOSE-PILLAI, VOELZ, and XIAO PHYS. REV. APPLIED 6, 064030 (2016)

064030-8



vertical legs of theMZI and the coherence length of the light
source. In addition to these factors, the sizeD, pixel pitchΔ,
and type of SLM also play an important role in the types of
sources that can be generated.

A. SLM size D

Clearly, sources with correlation or beam widths (δ and
σ, respectively) greater than D cannot be accurately
generated. Even sources with δ, σ ≈D will have correlation
functions μ or spectral densities S that are driven by the
shape of the SLM’s active area. Therefore, D sets the
effective “coherent” and “maximum” source sizes. In
practice, both S and μ should “fit” comfortably on the
SLM face. An empirically derived criterion which ensures
this fit is that both μ and

ffiffiffi
S

p
should be no greater than 1%

of their maximum values at the edges of the SLM.

B. SLM pitch Δ
To adequately sample or represent μ requires Δ < δ=5,

where δ, in this context, is the 1=e point or first zero
crossing of μ (whichever is appropriate). Sources with
correlation radii δ < 5Δ are not accurately produced,
making 5Δ the effective “incoherent” limit of the SLM.
Similarly, adequate sampling of S generally requires that
Δ < σ=ð5LÞ, where σ is the 1=e point or first zero location
of

ffiffiffi
S

p
(whichever is appropriate) and L is the sawtooth-

grating period. This requirement is more stringent than the
correlation condition because SLM pixels are binned to
form the sawtooth grating (eight pixels are used in this
work). Thus, the amplitude of the desired source is
generally harder to produce than is the phase [47,51].
The requirement that σ > 5LΔ sets the effective
“minimum” source size of the SLM.
The grating period L affects system performance in two

competing ways. A large L better approximates a continu-
ous sawtooth and results in more precise amplitude control.
Recall that the expression relating sawtooth-grating height
to the field in the first diffraction order [Eq. (18)] requires
that L > 4. L also affects the angular separation of the
diffraction orders:

sin θm ¼ mλ

LΔ
; ð26Þ

where m is the order number [63]. Clearly, L and θm are
inversely related. L must therefore be chosen so that the
field’s amplitude can be accurately produced, while also
providing a large enough angular separation of the orders
such that the desired first order can be passed by a spatial
filter with little corruption from the m ≠ 1 orders.

C. SLM type

Many different types of SLMs exist [63]. The two most
popular are liquid-crystal (LC) SLMs (the type used here)
and MEMS SLMs (also known as segmented deformable
mirrors). Both have pros and cons which are briefly
discussed here. LC SLMs generally possess a large number
of small pixels—the current state of the art is a 10
megapixel (4094 × 2464) SLM with a 3.74-μm pitch
[64]. The sheer number and size of the pixels in modern
LC SLMs permits practically any partially coherent source
to be generated. The major drawback of LC SLMs is speed,
with the fastest operating at about 1 kHz. Note that most LC
SLMs operate well below 1 kHz; the 10-megapixel SLM
mentioned previously operates at 24 Hz [64].
MEMS SLMs, on the other hand, generally possess a

much smaller number of much larger pixels (or actuators).
The current state of the art in MEMS SLMs is a 4092-
actuator (64 × 64) device with a 400-μm pitch [65]. When
one considers the importance of SLM size and pitch in
producing partially coherent sources, it is clear that MEMS
SLMs cannot match the range of LC SLMs. MEMS SLMs,
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however, are orders of magnitude faster than their LC
counterparts, e.g., the 4092-actuator MEMS device men-
tioned previously operates at 10 kHz [65].
Choosing which type of SLM to employ in the apparatus

in Fig. 1 comes down to the importance of speed. If speed is
of lesser importance than flexibility in the application, LC
SLMs are the best choice. If, on the other hand, speed is
paramount, MEMS SLMs are the better option.

D. Design optimization

What makes the apparatus in Fig. 1 very powerful is the
ability to generate many different types of vector partially
coherent sources using phase-only SLMs and a simple
optical setup. The range of sources that can be produced is
much greater than existing systems which use separate
optical components to manipulate beam shape and coher-
ence. The most significant drawback of the proposed
approach over existing partially coherent source generators,
particularly those which use rotating ground-glass diffusers
and amplitude filters, is speed. As stated above, if speed is
paramount, MEMS SLMs can be used instead of LC SLMs
at the expense of flexibility.
It should be noted that the apparatus in Fig. 1 is built

for proof-of-concept purposes only, with no particular
application in mind. Thus, the total size of the system
(its footprint) has not been optimized. The largest compo-
nents (in terms of physical size) in Fig. 1 are the spatial
filters. Long-focal-length plano-convex lenses are used
here solely for ease of setup, alignment (i.e., to minimize
aberrations), and cost. By changing the layout of the system
and employing standard optical design techniques [66,67],
the entire apparatus could be made to fit within a 1-m2

area.

VI. CONCLUSION

An alternative design for generating vector partially
coherent sources is presented. In contrast to existing
designs which use separate optical components to manipu-
late beam shape and spatial coherence (commonly, ampli-
tude filters and ground-glass diffusers or SLMs), the system
described here uses only SLMs to control these aspects of
the field. In addition to having a simpler optical setup, this
improvement significantly increases the flexibility of vector
partially coherent source generators by permitting many
different types of sources to be produced without physically
changing the apparatus.
System design is thoroughly discussed in Sec. II.

Section III presents the theory underpinning the design,
namely, the MPS technique, screen synthesis for both
Schell-model and non-Schell-model sources, and phase-
only field control. Section IV demonstrates the effective-
ness and flexibility of the proposed system by producing
ENUC and EMGSM sources, neither of which, to the
authors’ knowledge, have been physically generated

before. The apparatus is validated by comparing exper-
imental ENUC and EMGSM results to theoretical predic-
tions. The agreement between theory and experiment is
excellent. Lastly, key aspects of system design—the effects
of SLM size, pixel pitch, and SLM type on partially
coherent source generation—are discussed.
The system design and subsequent approach for gen-

erating vector partially coherent sources presented in this
paper will be useful in any application where control over
beam shape, spatial coherence, and polarization is required.
These applications include—but are not limited to—
free-space optical communications, directed energy, remote
sensing, manufacturing, and medicine.
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