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Quantum processors rely on classical electronic controllers to manipulate and read out the state of
quantum bits (qubits). As the performance of the quantum processor improves, nonidealities in the classi-
cal controller can become the performance bottleneck for the whole quantum computer. To prevent such
limitation, this paper presents a systematic study of the impact of the classical electrical signals on the
qubit fidelity. All operations, i.e., single-qubit rotations, two-qubit gates, and readout, are considered, in
the presence of errors in the control electronics, such as static, dynamic, systematic, and random errors.
Although the presented study could be extended to any qubit technology, it currently focuses on single-
electron spin qubits, because of several advantages, such as purely electrical control and long coherence
times, and for their potential for large-scale integration. As a result of this study, detailed electrical speci-
fications for the classical control electronics for a given qubit fidelity can be derived. We also discuss how
qubit fidelity is affected by the limited performance of the general-purpose room-temperature equipment
typically employed to control the few qubits available today. Ultimately, we show that tailor-made elec-
tronic controllers can achieve significantly lower power, cost, and size, as required to support the scaling
up of quantum computers.
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I. INTRODUCTION

Quantum computers have the potential to solve
problems that are intractable even for the most powerful
supercomputers [1]. These problems include the factor-
ization of prime numbers using Shor’s algorithm [2], the
efficient search in large data sets using Grover’s algorithm
[3], and the simulation of quantum systems as initially
proposed by Feynman [4]. A quantum computer oper-
ates by processing the information stored in quantum bits
(qubits), which are organized in a quantum processor.
Performing operations on the qubits requires a classical
electronic controller for manipulating the qubits and read-
ing out their quantum state [5]. In order not to degrade
qubit performance, the classical controller must provide
high-accuracy low-noise control signals and the readout

*j.p.g.vandijk@tudelft.nl

Published by the American Physical Society under the terms
of the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

must be very sensitive and quiet to detect the weak signals
from the quantum processor without altering the qubit
states.

Since state-of-the-art quantum processors comprise only
a few qubits (< 20 qubits [6–8]), the classical controller
is currently typically implemented by general-purpose
instruments operating at room temperature or tailor-made
room-temperature controllers [9,10]. For a recent review
of state-of-the-art electronic interface for quantum proces-
sors, see Ref. [11]. The use of these high-performance
instruments results in the fidelity of the quantum oper-
ations being limited by the quantum processor [12].
However, as the performance of the quantum processor
improves, the classical controller can become performance
limiting. Consequently, it is crucial to understand how the
controller impacts the performance of the whole quantum
computer in order to properly codesign the controller and
the quantum processor and to identify potential perfor-
mance bottlenecks.

Moreover, the simplest nontrivial algorithms, such as
quantum-chemistry problems, require more than 100 logi-
cal qubits [13]. This translates into the need for thousands
or millions of physical qubits, if the redundancy added by
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quantum-error correction schemes, such as surface codes
[14], is taken into account. For such large-scale quan-
tum processors, implementation of the classical controller
with general-purpose instruments would be impractical
and would offer limited scalability due to its size and
cost. A more practical and power-efficient approach would
be to use tailor-made electronics that can be optimized
for this specific application in terms of power consump-
tion, form factor, and cost [5,11,15–23]. However, defining
the specifications to design such electronics requires a
comprehensive analysis of the impact of the electronics
performance on the quantum computer.

Furthermore, solid-state qubits need to be cooled to
deep cryogenic temperatures. When operating the control
electronics at cryogenic temperatures to relax the wiring
requirements between the cryogenic quantum processor
and its controller, as proposed in Refs. [5,15–20], the
need for accurate specifications is even more severe. The
power dissipation of such a cryogenic controller is lim-
ited by the cooling power of the cryogenic refrigerator.
For existing fridges, this is only about 1 W at 4 K and
< 1 mW below 100 mK [24]. Although this could improve
in the future by, e.g., adopting custom-made refrigera-
tors [25], the power consumption of the controller is also
expected to increase to serve an increasing number of
qubits. To meet these cooling constraints, the power dis-
sipated by the electronics must be minimized by optimally
allocating the available power across the various compo-
nents of the classical controller. However, carrying out
such optimization also demands a clear understanding of
the impact of each component on the quantum-computer
performance.

Analysis of the impact of the controller on the quantum
computer’s performance has been undertaken previously,
but only for specific aspects of the control signals, i.e., the
effect of microwave phase noise [26,27], or for theoreti-
cally treating the effects of noise on qubit operations in a
filter function framework [28,29], and control sweet spots
[30–32] and noise effects in general [33–35]. The work
presented here aims to provide a comprehensive analysis
of the effect of nonideal circuit blocks in the classical con-
troller on the qubit fidelity for all possible operations, i.e.,
single-qubit gates, two-qubit gates, and readout. Initializa-
tion is assumed to be performed by relaxation or by readout
and will not be separately discussed. This includes the
effect of signal inaccuracies in the frequency, voltage, and
time domain, and covers static, dynamic, systematic, and
random errors. Only with a full set of specifications can
potential bottlenecks be identified and tailor-made elec-
tronics designed. Besides providing a general method for
deriving the electronics specifications, the specifications
resulting from a case study targeting a 99.9% average gate
fidelity are mapped onto existing room-temperature inte-
grated circuits (IC) to assess the feasibility of a practical
controller.

Although the proposed approach can be easily extended
to any quantum technology, such as NMR [36–38], ion
traps [8,39], superconducting qubits [7,40,41], or nitrogen-
vacancy (N-V) centers in diamond [42], we focus on the
specific case of single-electron spin qubits. This qubit tech-
nology offers promising prospects for large-scale quantum
computing, due to the long coherence times [12,43], the
fully electrical control [44,45], and the potential integra-
tion of the quantum processor with a classical controller
on a single chip fabricated using standard microelectronic
technologies [46]. In addition, the results obtained for the
single-qubit gates can be generalized to any qubit system
where single-qubit rotations are performed by applying a
signal with a frequency matching the energy-level spacing
between the |0〉 and |1〉 states, e.g., for NMR [36–38], ion
traps [8,39], N-V centers in diamond [42], and supercon-
ducting qubits [7,40,41]. Similarly, the results obtained for
the two-qubit gates can be generalized to any qubit system
that exploits the exchange gate.

The paper is organized as follows: Sec. II describes
the generalized spin-qubit quantum computer analyzed in
this paper; Sec. III introduces the method for deriving the
fidelity for the various operations; and in Secs. IV, V, and
VI the electrical specifications required for single-qubit
operations, two-qubit operations, and qubit readout are
derived, respectively. A discussion regarding the feasibil-
ity of these specifications follows in Sec. VII. Conclusions
are drawn in Sec. VIII.

II. A SYSTEM-LEVEL VIEW OF A QUANTUM
COMPUTER

A. The quantum processor

A single-electron spin qubit encodes the quantum state
in the spin state of a single electron. A generic model of
a quantum processor based on single-electron spin qubits
is shown in Fig. 1(a), which captures all of the properties
relevant for the interaction with the controller. Moreover,
the figure illustrates a linear array of quantum dots but this
can be extended to more complex geometries such as a 2D
grid of quantum dots, as shown in Refs. [46–48].

Quantum dots are formed using a set of gate elec-
trodes that locally deplete a two-dimensional electron gas
(2DEG) on a semiconductor chip (e.g., a GaAs/(Al,Ga)As
heterojunction, a Si/SiGe heterojunction, or a Si–metal-
oxide semiconductor (MOS) structure [49,50]). Due to the
small size of the quantum dot, the charge states become
discrete with an energy-level spacing related to the dot
charging energy, thereby setting the required increase of
the dot potential to add an electron to the dot. The dot
potential, and thereby the number of electrons in the dot, is
controlled by the plunger gate that capacitively couples to
the quantum dot. Without loss of generality for the analy-
sis of the electrical control signals, the following analysis
assumes the availability of additional tunnel-barrier gates
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FIG. 1. (a) A generic model of a spin-qubit quantum proces-
sor comprising qubits encoded in the spin of electrons trapped
in quantum dots and a charge sensor (e.g., a quantum point con-
tact, QPC). The blue background indicates the two-dimensional
electron gas (2DEG) where quantum dots, shown in red, are
formed locally. Individual control over the dot potential and the
tunnel barriers is assumed, using plunger gates (orange) and
barrier gates (green), respectively. Furthermore, each qubit can
have a unique Larmor frequency (ω0,qi). (b) The classical control
electronics required for each line type (electron-spin-resonance
(ESR) line, plunger gate, and barrier gate) of the quantum proces-
sor. The electronic components in the figure are placeholders for
the respective functionalities and are grouped by operation, i.e.,
single-qubit operation, two-qubit operation, and readout. Thus,
they do not necessarily correspond to a physical implementa-
tion. Arbitrary-waveform generators (AWG) are shown for the
envelope and pulse generation.

that form tunnel barriers between neighboring dots by con-
trolling the width of the depletion layer, thus allowing
tunneling of electrons from and to the quantum dot in a
tunable way. Early integration schemes involved nonover-
lapping gates [as shown in Fig. 1(a)] [44,51,52], while, in
order to create better tunability and control, architectures
now often include overlapping gates [45,53–55].

An external static magnetic field B0 induces an energy
difference between electrons with spin up and spin down,
with Zeeman energy Ez. Because of the static magnetic
field, the electron rotates around the Z axis in the Bloch
sphere with Larmor frequency ω0 = γe|B0|, where γe is
the gyromagnetic ratio of the electron (γe ≈ 28 GHz/T
in silicon). As indicated in Fig. 1(a), each qubit can

have a different Larmor frequency, which can be useful
for two-qubit operations or for multiplexing single-qubit
operations [45,55–57].

Single-qubit operations (Sec. IV) require the applica-
tion of a varying magnetic field perpendicular to B0 and
oscillating at the Larmor frequency. In the case of elec-
tron spin resonance (ESR), such a field is generated by a
varying current in a nearby ESR line [45,55,58]. Alterna-
tively, the same effect can be obtained, e.g., by applying
a varying electric field to the electron in a spatial mag-
netic field gradient, as is the case for electric-dipole spin
resonance (EDSR) [44,52,59,60]. In that case, the electric
field variations are generated by a voltage on a nearby gate,
e.g., through the plunger gate, without requiring an ESR
line. Although Fig. 1(a) shows an ESR line, the results of
the analysis below are applicable to both ESR- or EDSR-
based operations, as explained in the following section.
Two-qubit operations (Sec. V) and qubit readout (Sec. VI)
can be performed by pulsing the barrier and plunger gates.

The effect of cross talk between different gates or the
ESR line is considered negligible or compensated for in
the classical controller and is not further discussed here,
since it can be treated as a purely classical electrical effect.

Qubit readout relies on a spin-to-charge conversion, fol-
lowed by the detection of the eventual electron movement
[49], using either a gate-dispersive readout [61] or an addi-
tional charge sensor. The latter is assumed in this paper,
as gate-based readout is still under development [62]. For
such a charge sensor, different sensing techniques can be
used, e.g., a QPC [63–65] or a single-electron transistor
(SET) [66]. As an example, Fig. 1(a) shows a QPC in close
proximity to the quantum dots.

B. The classical electronic controller

The classical controller is responsible for generating the
required electrical signals to bias and control each gate
and, in case, the ESR line, and for reading the state of the
charge sensor. The required electronics are schematically
summarized in Fig. 1(b).

When no operation is performed, each quantum dot must
contain a single electron at the same dot potential and
the tunnel barriers must be tuned to ensure a negligible
coupling between neighboring dots (Sec. V B). Such con-
ditions are ensured by the use of bias-voltage generators,
as shown in Fig. 1(b).

The oscillating magnetic field B(t) required for single-
qubit operations can be generated by an oscillating current
I(t), following the relation B(t) = αI I(t) (in the case of
ESR), or by an oscillating voltage V(t), resulting in B(t) =
αVV(t) (in the case of EDSR). The conversion factors
αI and αV depend on many factors, such as the exact
geometry of the structures, and can be determined exper-
imentally. Due to this abstraction, the results shown in
Sec. IV are valid both in the case of ESR and EDSR.
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The required microwave current or voltage is generated by
modulating a carrier from a local oscillator (LO) with an
envelope produced by an AWG. Although different hard-
ware implementations are possible, this allows us, without
loss of generality, to split the carrier specifications, i.e.,
the local oscillator specifications, from the envelope spec-
ifications, i.e., the AWG specifications. In the case in
which each qubit has a unique Larmor frequency, a single
control line can be used to control multiple qubits indepen-
dently via frequency-division multiple access (FDMA),
i.e., frequency multiplexing, thus simplifying the wiring
(Sec. IV B).

The voltage pulses required for the two-qubit gates
and readout are generated by AWGs. Distinct AWGs are
assumed for two-qubit gates and readout since the specifi-
cations for such operations can be different.

Besides the presented control electronics, additional
hardware is required to process the signal from the charge
sensor. The required hardware depends on the readout
method employed, e.g., a direct measurement [64] or radio-
frequency (rf) reflectometry [61,63]. As an example, a
direct readout, requiring a readout amplifier, is shown in
Fig. 1(b).

III. METHODS

The evolution of the qubit state is evaluated by com-
puting the system Hamiltonian (H ), which is a function of
the electrical signals applied by the classical controller. For
static control signals, the Hamiltonian is time independent
and the unitary operation describing the evolution after a
time T is trivially U = e−iHT (� = 1).

For dynamic signals, such as for complex signal
envelopes, the operation described by the time-varying
Hamiltonian H(t) is approximated by the product of time-
independent components, leading to

U ≈
0∏

n=N

e−iH(n�t)�t, (1)

where �t is the time step, which must be chosen to be small
enough for the required accuracy of the approximation.

As a benchmark to evaluate how close U is to the oper-
ation from an ideal controller Uideal, the process fidelity is
computed as follows [67,68]:

F = 1
n2

∣∣Tr
[
U†

idealU
]∣∣2, (2)

for the n-dimensional complex Hilbert space (n = 2 for the
single-qubit gate and n = 4 for the two-qubit gate).

In case of random dynamic errors, the ensemble aver-
age over all realizations is evaluated, following Refs. [28]
and [29]. When treating random noise, the noise spectrum
is relevant, as the operation can be affected differently by

noise at different frequencies. The method presented in
Refs. [28] and [29] is used to evaluate the expected pro-
cess fidelity and is outlined in the Supplemental Material
[69].

Detailed derivations of the analytical results presented in
this paper are collected in the Supplemental Material [69].
The analytical results presented in the main text are often
the result of a series expansion of the fidelity truncated
at the second order, as clearly stated in the Supplemen-
tal Material [69]. Since this study is focused on high qubit
fidelity (> 90%), higher-order processes can be neglected.
All presented results are verified by numerical simulations
of the Hamiltonian.

IV. SIGNAL SPECIFICATIONS FOR
SINGLE-QUBIT OPERATIONS

A. Fidelity of a single-qubit operation

As explained in Sec. II, the qubit rotates around the
Z axis due to the applied external magnetic field. Using
an LO tuned to a frequency equal to the qubit’s Larmor
frequency, the qubit phase can be tracked and the qubit
appears to be stationary in the reference frame of the LO.
In this rotating frame, Z rotations by an angle θZ can easily
be obtained by instantaneously updating the LO’s phase
in software by an angle θZ [37,38]. For such a software-
defined Z rotation, only the accuracy of the phase update
of the LO matters, which is limited by the finite resolution
in the phase setting. A phase error �φ = �θZ reduces the
fidelity of the Z rotation as follows:

FZφ
= 1 − 1

4
�φ2. (3)

In the remainder of this section, we will focus on rotations
around the X or Y axis that are obtained by applying a mag-
netic field B(t) oscillating at the qubit Larmor frequency
ω0 and with a specific phase, which is generated by apply-
ing either a microwave current or a microwave voltage,
as explained in Sec. II. The Hamiltonian describing a sin-
gle electron under microwave excitation in the laboratory
frame is given by the following (� = 1):

Hlab = −ω0
σz

2
+ γeB(t)

σx

2
, (4)

where, here and in the following, σx, σy , and σz are
the Pauli matrices. The microwave magnetic field can be
described as B(t) = 2/γeωR(t) cos(ωmwt + φ). A constant
amplitude [ωR(t) = ωR], i.e., a rectangular envelope, is
considered, unless stated otherwise. In the case of a rectan-
gular envelope, ωR is the Rabi frequency, i.e., the rotation
speed for the single-qubit gate. Note that for more com-
plex envelopes, the resulting specifications for the control
electronics can differ, as the sensitivity to certain con-
trol parameters can be reduced when employing quantum
optimum control, such as GRAPE [70].
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For single-qubit rotations, the rotation axis is affected
by the matching of the microwave frequency (ωmw) to the
Larmor frequency (ω0) and by the phase of the microwave
signal (φ), i.e., the carrier signal. The rotation angle (θ =
ωRT), on the other hand, is determined by the amplitude of
the signal (ωR) and the duration for which the microwave
signal is applied (T), i.e., the signal envelope.

Table I summarizes the effect of noise and inaccuracy
on the fidelity of single-qubit operations. Inaccuracies in
the control signal are generally caused by instrument finite
resolution and drift [71]. In the case of envelope inaccura-
cies, the microwave amplitude (∝ ωR) and duration (T) of
the signal together determine the rotation angle (θ = ωRT).
Hence, any error in either one leads to an under or over
rotation, thereby reducing the fidelity. In the case of fre-
quency inaccuracies, a better fidelity is achieved for larger
Rabi frequencies, i.e., a larger microwave amplitude and a
shorter pulse duration. However, a larger Rabi frequency
ultimately requires a sufficiently larger Larmor frequency
[72] and it is harder to reach the same phase accuracy �φ

at higher LO frequencies.
Next, dynamic changes in the control signal can further

limit the fidelity. In the event that such a change occurs on
a time scale larger than the operation time, it can be con-
sidered a random static error. For a static but random error
� for which F = 1 − c�2, the expected fidelity simply
follows as F = 1 − cσ 2, if � follows a Gaussian distri-
bution with standard deviation σ and zero mean (see the
Supplemental Material [69]). Hence the equations for the
inaccuracy as given in Table I apply.

In order to treat random noise with spectral content at
frequencies higher than the operation rate, the method pre-
sented in Refs. [28] and [29] is adopted to compute the
expected operation fidelity as a function of the noise spec-
trum. The results for dephasing noise are reproduced from
Refs. [26,28,29] and are repeated here for completeness,
with additional analysis for different rotation angles. The
fidelity due to the various noise sources is summarized in
Table I, where generally |H(ω)|2 is the intrinsic qubit-filter
function, implying that the qubit has a different sensitivity
to noise at different frequencies. The amplitude response of
the intrinsic qubit-filtering functions for frequency noise
and amplitude noise are shown in Fig. 2, with analyti-
cal formulas provided in the Supplemental Material [69].
These responses have a low-pass filter (LPF) characteris-
tic and their properties, the dc gain and the effective noise
bandwidth (ENBW), are summarized in Table I and high-
lighted in the plots as the brick-wall approximation of the
filter [73].

Note that for frequency noise, the ENBW is proportional
to the Rabi frequency, indicating that for faster opera-
tions, noise in a wider band affects the qubit. However,
the lower limit of integration (ωmin) is inversely propor-
tional to the execution time of the quantum algorithm [74]
and is therefore also related to the operation time. In the TA
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FIG. 2. The amplitude response of the intrinsic qubit filter for (a) frequency noise, (b) wide-band additive noise, and (c) amplitude
noise, for various rotation angles θ . The brick-wall approximations are shown with dashed lines.

case of white noise, a good approximation is obtained with
ωmin = 0. Due to the factor 1/ω2

R, it is advantageous to
use the highest possible Rabi frequency. In the presence of
flicker noise, the same conclusion holds, as then a higher
ωmin is desirable. Finally, the same discussion holds in
the case of amplitude noise. However, a higher tolerance
for amplitude noise at larger Rabi frequencies, i.e., larger
amplitudes, simply means that the required signal-to-noise
ratio (ω2

R/σ 2
ωR

) in the qubit’s band of sensitivity is fixed.
The microwave-frequency noise [Sω(�ω)], as discussed

before, is set by the phase noise [Sφ(�ω)] of the LO gen-
erator and they can be related by Sω(�ω) = �ω2Sφ(�ω)

at a frequency �ω from the carrier ωmw [26]. While the
effect of phase noise has already been extensively stud-
ied in Ref. [26], a more realistic oscillator noise model,
including both phase noise and wide-band additive noise,
is adopted in this work. Derivation of the intrinsic qubit-
filtering function for each noise contribution leads to an
improved estimation of the fidelity that deviates from Ref.
[26], as elaborated in the following.

Consider, as an example, the typically reported plot
for the phase noise of a phase-locked-loop- (PLL) based
frequency generator, as shown in Fig. 3 (cf. Ref. [75]).
Appended to this figure is a plot of the resulting frequency-
noise PSD. At low frequencies, the phase noise is typically
limited by the flicker noise of the reference clock (which is
proportional to the f −3 part). In the plot of the frequency-
noise PSD, this has a f −1 roll-off, making it important to
maximize ωmin, which could be resolved by using dynam-
ical decoupling schemes, as they introduce an additional
high-pass filtering [28,29,76,77]. The part of the phase-
noise plot highlighted in red may be a source of concern
[26], as it results in a frequency noise increasing as f 2

that exactly cancels the roll-off of the intrinsic qubit fil-
ter [Fig. 2(a)], thus resulting in a diverging integral for the
fidelity (Table I) in the case in which no additional band-
pass filtering is applied. However, the noise highlighted in
red, visible in the phase-noise plot, originates from thermal
noise added to the microwave signal by, e.g., the out-
put driver of the microwave signal generator [75,78]. The
additive noise, with generally a wide bandwidth, is more
accurately modeled in the applied microwave magnetic

field as follows:

B(t) = 2ωR

γe
cos[ωmwt + φ + φn(t)] + Badd(t), (5)

where Badd(t) represents the additive noise with PSD
Sadd(ω). The actual phase noise φn(t), indicated by the blue
line in Fig. 3, is clearly band limited by the qubit-filter
function due to the absence of the f 2 factor. The PSD of
this additive noise has the same frequency dependence as
the PSD of the phase noise [79]. The fidelity of the qubit
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FIG. 3. A typical plot of (a) the phase noise and (b) the result-
ing frequency-noise PSD of a PLL-based frequency generator.
The red line indicates the noise as measured by a phase-noise
analyzer, whereas the blue line indicates the part of the noise
that is actually phase noise. At high offset frequencies, where the
lines diverge, wide-band additive noise shows up in the phase-
noise plot, giving rise to a noise floor of around −150 dBc/Hz in
this example.
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operation in the presence of this type of noise is given in
Table I.

Finally, the signal duration T is also subject to random
variations, i.e., jitter. However, since the period cannot
vary during the operation, the noise in the timing can be
simply treated considering the period jitter as a quasistatic
error. This period jitter is determined by the single-side-
band phase noise Sφ(ω) of the reference clock (period Tclk)
used to set the duration [75,80] (Table I), following a high-
pass filter (HPF) characteristic with the corner frequency
set by the duration T.

B. Specifications for the idle operation and
qubit-frequency multiplexing

In a typical quantum algorithm, a qubit can be idle for
a while, waiting for the operations on other qubits to fin-
ish, before being operated on, e.g., due to limitations in the
hardware or data dependencies. This section discusses pro-
cesses that cause the state of the qubit to degrade during
an idle period lasting Tnop. The loss of the quantum state
due to interactions with other qubits will be discussed in
Sec. V B.

A qubit will perform an undesired Z rotation (related to
T ∗

2 ) in the rotating frame if the microwave frequency is
not matched to the qubit’s Larmor frequency, even when
the driving tone is not applied to the qubit. Evaluating the
fidelity of an identity operation in the case of a frequency
inaccuracy �ωmw,0 leads to FInop,mw = 1 − 1

4�ω2
mw,0T2

nop,
which can easily be more stringent than the requirement
due to a rotation (Table I).

Besides Z rotations, unintended X and Y rotations of the
qubit (related to T1) are possible in the case in which power
is present at the qubit’s Larmor frequency. In general, a
tone could be present at the qubit frequency, e.g., due to
signal leakage from the microwave source or nonlineari-
ties in the system leading to harmonic or intermodulation
tones. The presence of a spurious tone that would give a
Rabi frequency of ωspur will reduce the fidelity as follows:
FInop,spur = 1 − 1

4ω2
spurT

2
nop.

Besides a tone, residual thermal noise could be present
on the drive line. Considering a noise signal with
spectral density SRn(ω), the fidelity is FInop,noise = 1 −
(1/π)

∫∞
0 SRn(ω)|Hn(ω)|2dω, where

|Hn(ω)|2 = 2
sin2

[
Tnop

2
(ω − ω0)

]

(ω − ω0)2 , (6)

which indicates that the noise spectrum is filtered by a
sinc-shaped band-pass filter centered around ω0, with the
following brick-wall approximation:

|Hn(ω)|2 ≈
{

T2
nop/2, |ω − ω0| ≤ π/Tnop,

0, elsewhere.
(7)

Lastly, multiple qubits sharing the same control line, i.e., a
single ESR line or control gates shorted together, can
be controlled independently in the case in which each
qubit has a unique Larmor frequency, as mentioned in
Sec. II. This technique constitutes FDMA. However, when
rotating a qubit with Larmor frequency ω0 by applying
a microwave signal at frequency ωmw = ω0, any unad-
dressed qubit on the same line with Larmor frequency
ω0,other = ω0 + ω0,space will be affected. Similarly, even if
not on the same drive line, another qubit could be uninten-
tionally driven due to parasitic coupling such as capacitive
or magnetic cross talk.

An expression for the fidelity of the unaddressed qubit
with respect to the ideal identity operation is reported in
the Supplemental Material [69] for a microwave pulse
with a rectangular envelope [Fig. 4(a)] and it is plotted
in Fig. 4(c), where we assume the same Rabi frequency
ωR for both qubits. As expected, driving the qubit with a
larger amplitude (i.e., larger ωR) results in a shorter pulse
for a given rotation angle, thus leading to a wider pulse
bandwidth and, consequently, to a cross talk extending to
qubits that are further away in frequency.

Although the expectation may arise that reducing the
pulse bandwidth by proper engineering of the pulse enve-
lope can lead to lower cross talk, Fig. 4(d) shows that
also a Gaussian envelope [Fig. 4(b)] does not result in a
much faster roll-off. As the figure shows, the fidelity can
be limited by unintended Z rotations of the unaddressed
qubit. However, by applying a simple correction for the
Z rotation, the fidelity of the identity operation on the
unaddressed qubit improves to the following:

FIFDMA ≈ 1 − β2

α2 sin2
(

θ

2
α

)
≥ 1 − β2

α2 , (8)

where α = ω0,space/ωR and β = ωR,unaddressed/ωR and
where, in general, the unaddressed qubit can have a differ-
ent Rabi frequency (ωR,unaddressed) at the same microwave
amplitude, e.g., due to a lower coupling to the drive signal.
As expected, the fidelity given by Eq. (8) is approximately
proportional to the spectrum of the envelope of the applied
pulse [Fig. 4(c)]. Consequently, reduction of the pulse
bandwidth by proper engineering of the pulse envelope
is an effective solution if the unintended Z rotations are
corrected, as shown in, e.g., Figs. 4(b) and 4(d), where a
Gaussian envelope is employed.

A certain minimum frequency separation is necessary to
achieve a target fidelity, as shown in Fig. 4(e) for the rect-
angular envelope. The lower bound on the fidelity as given
in Eq. (8) is plotted as well, as the notches in the graph
move depending on θ . Similarly, if the coupling of the
microwave drive is due to parasitic effects and is unwanted,
a target fidelity for unaddressed qubits translates into a
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FIG. 4. Qubit-frequency multiplexing: the envelopes, achievable fidelity, and requirements in the case of a rectangular envelope.
(a) The rectangular envelope under consideration. (b) The Gaussian envelope under consideration. (c) The infidelity of an identity
operation (and the amount of X or Y rotation and Z rotation) on a qubit spaced at ω0,space from the carrier for a rectangular envelope,
along with the Fourier transform of the rectangular envelope. (d) The infidelity of an identity operation (and the amount of X or Y
rotation and Z rotation) on a qubit spaced at ω0,space from the carrier for a Gaussian envelope, obtained by numerical simulation, along
with the Fourier transform of the Gaussian envelope. (e) The frequency spacing required to achieve a certain fidelity at given relative
signal strength β, for a rectangular envelope. The upper bound (dashed lines) is given in Eq. (8). (f) The driving tone attenuation β

required at a certain frequency spacing to achieve a given fidelity, for a rectangular envelope. The lower bound (dashed lines) is given
in Eq. (9).

requirement in the driving tone attenuation [Fig. 4(f)]:

β =
√

1 − Fcorr
α∣∣∣∣sin
(

θ

2
α

)∣∣∣∣
≥
√

1 − Fcorr
ω0,space

ωR
. (9)

Finally, FDMA has the potential to perform single-qubit
gates on several qubits at the same time, using a sin-
gle drive line. In that case, it is not sufficient to apply
a compensating Z rotation afterward, on another qubit,
if that qubit is also performing an operation. As the Z
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rotation is obtained gradually when an off-resonance tone
is applied, the driving tone applied to perform the oper-
ation should be altered to compensate for this Z rotation
during the operation. This requires proper engineering of
all the microwave pulses that are applied simultaneously
[37,81–84].

C. Case study of the specifications for a
single-qubit operation

With the information provided in Sec. IV, clear specifi-
cations for the control electronics can be derived. Table II
shows as an example of how the total error budget can
be allocated over the electronics specification to achieve
a 99.9% fidelity for a π rotation at a Rabi frequency of
1 MHz. The same fidelity is targeted for preserving the
state of the qubit when not operating on it for a time equal
to the operation time (Tnop = T). The example considers
the use of simple rectangular pulses, without any echo
technique.

A Larmor frequency larger than 80 MHz would be
sufficient not to get impaired by fast-oscillating terms
neglected by the rotating-wave approximation (RWA, see
the Supplemental Material [69]). However, choosing ω0 =
10 GHz is more in line with values used in practice and
allows for a large qubit-frequency spacing. A frequency
spacing of 1 GHz is selected, the same as considered in
the case study of two-qubit operations (Sec. V C). Such
spacing is, however, approximately 10 times larger than
required for minimizing the cross talk due to FMDA

(Sec. IV B). The example also shows the effect of the fre-
quency noise as expected from isotopically purified Si-28
(800 ppm 29Si), highlighting that its contribution to the
infidelity is negligible in this example.

The values provided for the microwave amplitude
assume a qubit plane based on EDSR, where an ampli-
tude of 2 mV at the gate is required for a Rabi frequency
of 1 MHz (close to the value reported in Ref. [44]). All
specifications are valid at the gate, so that wiring attenua-
tion and filtering might need to be factored in to refer the
specifications back to the electronics.

Following these specifications, the microwave envelope
(amplitude and duration) can be generated by, e.g., an
AWG with a sample rate of at least 150 megasamples/s
(MS/s), such that the sample time is less than 6.7 ns, result-
ing in a maximum inaccuracy of 3.3 ns. Furthermore, the
AWG should have a resolution of 8 bits, such that at a full-
scale swing of 4 mV, the quantization step is sufficiently
low. To meet the noise requirement and the specifications
on the residual driving when not operating the qubit (“Off
spur” in Table II), an effective number of bits (ENOB) of
only 6.5 bits is required.

The LO used for the up-conversion requires a fre-
quency resolution of approximately 20 kHz (for the inac-
curacy). Assuming a −20 dB/dec slope of the phase
noise, the single-side-band phase noise at 1 MHz from
the carrier, L(1 MHz), needs to be below −106 dBc/Hz.
Furthermore, the LO’s phase inaccuracy needs to be below
0.64◦.

TABLE II. Example specifications for the control electronics for single-qubit operations. The PSD values provided as a comment
assume a white spectrum for the amplitude and frequency noise (i.e., −20 dB/dec for the phase noise).

Infidelity contribution

Value To an operation To idling Comment

Frequency
Nominal 10 GHz 0.64 × 10−9 RWA when driving a qubit
Spacing 1 GHz 1 × 10−6 FDMA leakage with rectangular envelopes
Inaccuracy 11 kHz 125 × 10−6 308 × 10−6

Oscillator noise 11 kHzrms 125 × 10−6 308 × 10−6 ENBW = 2.5 MHz, L(1 MHz) = −106 dBc/Hz
Nuclear spin noise 1.9 kHzrms 3.6 × 10−6 8.9 × 10−6 From Ref. [45], T∗

2 = 120 μs
Wide-band noise 12 μVrms 125 × 10−6 ENBW = 2.9 MHz, Sadd = 7.1 nV/

√
Hz

Phase
Inaccuracy 0.64◦ 125 × 10−6 31 × 10−6 FDMA Z corrections limit the no operation

Amplitude
Nominal 2 mV Full scale: 4 mV, rms: 1.4 mVrms
Inaccuracy 14 μV 125 × 10−6

Noise 14 μVrms 125 × 10−6 ENBW = 1.0 MHz, PSD = 14 nV/
√

Hz, SNR = −40 dB
Off spur 19 μV 217 × 10−6 −41 dBc
Off noise 10 μVrms 125 × 10−6 ENBW = 2.0 MHz, PSD = 7.1 nV/

√
Hz

Duration
Nominal 500 ns
Inaccuracy 3.6 ns 125 × 10−6

Noise 3.6 nsrms 125 × 10−6

FX ,Y = 99.9% FI = 99.9%
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tunnel coupling between the dots. (b) The two-qubit operation speed ωop [Eq. (11)] versus the interdot tunnel coupling and detuning.
A nominal tunnel coupling t0n of 1 GHz is used.

V. SIGNAL SPECIFICATIONS FOR TWO-QUBIT
OPERATIONS

A. Fidelity of a two-qubit operation

As stated in Sec. II, by default the tunnel coupling
between the qubits is negligible and the qubits have the
same potential, i.e., they are not detuned. By increasing
the tunnel coupling and/or by detuning the qubits, the qubit
interaction increases and a two-qubit gate can be obtained.
In this system, by leveraging this exchange interaction,
a two-qubit exchange gate and a C phase gate can be
implemented. With either of these gates and single-qubit
operations, a universal set is obtained.

To describe the physical interactions required for the
two-qubit gate, higher energy levels need to be mod-
eled in the Hamiltonian. The analysis presented here
is limited to the interaction between two neighboring
qubits, A and B, and to the single-dot singlet states
(|0, 2〉 represents the singlet state in the right dot and
|2, 0〉 the singlet state in the left). In the basis � =
[|↑, ↑〉 , |↑, ↓〉 , |↓, ↑〉 , |↓, ↓〉 , |0, 2〉 , |2, 0〉], the Hamilto-
nian of a double quantum dot is given by the following
(� = 1) [55,85,86]:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ω0 0 0 0 0 0

0
δω0

2
0 0 t0 t0

0 0 −δω0

2
0 −t0 −t0

0 0 0 ω0 0 0
0 t0 −t0 0 U − ε 0
0 t0 −t0 0 0 U + ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)

where ω0 = (ω0,A + ω0,B)/2, δω0 = ω0,B − ω0,A, and ω0,A
and ω0,B are the Larmor frequencies of the two qubits. The
charging energy (U) is assumed to be the same for both
dots. The tunnel coupling between the quantum dots (t0)
has an exponential relation to the voltage on the barrier
gate and the detuning energy (ε) is controlled by the volt-
age difference on the plunger gates of the dots (Vd) via the
lever arm α = �ε/�Vd.

An avoided crossing is observed in the energy-level
diagram for |ε| = U and t0 > 0 [Fig. 5(a)], which gives
rise to eigenenergies that are different from the case of
two isolated dots (t0 ∼ 0) for any detuning. This change
of eigenenergy and the corresponding eigenstate form the
basis of the two-qubit operations. An investigation of
the eigenenergies of the Hamiltonian in Eq. (10) reveals
that the total change in eigenenergy equals the following
(� = 1):

ωop = 4t20
U

U2 − ε2 . (11)

Note that the expression used in this paper for ωop derives
directly from the Hamiltonian of Eq. (10). However, exper-
iments have reported ωop as an exponential function of
detuning [87].

As ωop describes the amount of exchange interaction, it
directly sets the speed of the two-qubit operation. A plot
of ωop versus the tunnel coupling and detuning is shown
in Fig. 5(b). To perform the two-qubit operation, a control
pulse must be applied, to move the system away from the
default point (negligible tunnel coupling and zero detun-
ing) to the desired operating point, where there is sufficient
exchange interaction such that a two-qubit operation is per-
formed. From Fig. 5(b), it is clear that a fast gate can be

044054-10



IMPACT OF CLASSICAL CONTROL ELECTRONICS. . . PHYS. REV. APPLIED 12, 044054 (2019)

obtained at finite detuning, becoming faster closer to the
avoided crossing, controlled by the detuning and/or the
tunnel coupling. Alteratively, operation at zero detuning
(the charge-symmetry point [30]) is possible, controlled
by the tunnel coupling alone. Depending on whether the
control parameter, the detuning, and/or the tunnel cou-
pling is changed adiabatically or diabatically, a C phase
or exchange gate, or a mixture of the two, is obtained.

In the case in which the control parameter changes
slowly, i.e., adiabatically, the resulting operation, in the
rotating frame, can be described by the following diagonal
matrix:

UCZ(t) = diag
(
1, e−iφZ,A , e−iφZ,B , 1

)
, (12)

where φZ,A and φZ,B are the acquired phases in the rotat-
ing frame. Two additional Z rotations with angles φZ,A
and φZ,B can be applied to the right and left qubit, respec-
tively, to obtain the C phase gate with θCZ = −(φZ,A +
φZ,B) = ωopt. These Z rotations can easily be obtained by
updating the software reference frame [37,38]. In the case
in which θCZ = π , a controlled-Z operation is obtained.
Interestingly, the total acquired phase (φZ,A + φZ,B) is inde-
pendent of δω0. However, when δω0 = √

2t0, φZ,A = φZ,B
[55,85,86], whereas for δω0 = 0, φZ,A = 0.

If, instead, the control parameter is changed rapidly, i.e.,
diabatically, and the Larmor-frequency difference is negli-
gible (δω0 � ωop), the resulting operation, in the rotating
frame, is as follows:

UJ (t) ≈

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0
1 + eiθJ

2
1 − eiθJ

2
0

0
1 − eiθJ

2
1 + eiθJ

2
0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, (13)

where θJ = ωopt. In the case in which θJ = π , a SWAP
operation is obtained. Note that since for an accu-
rate exchange operation the Larmor-frequency difference
should be sufficiently small, the possibility of using FDMA
for single-qubit operations (Sec. IV B) is limited.

From Eq. (10) it follows that the two-qubit operations
are affected by the Larmor frequencies (ω0,A, ω0,B), the tun-
nel coupling (t0), the charging energy (U), and the detuning
(ε). Furthermore, the operation depends on the total dura-
tion (T) for which the two-qubit gate is active. The effect
of errors, both static and dynamic, on the fully electrically
controlled parameters (t0, ε, and T) is analyzed in the sub-
sequent section. Detailed derivations of the formulas can
be found in the Supplemental Material [69].

The resulting fidelity in the case of control signal inaccu-
racies is summarized in Table III for the exchange gate and
the C phase gate, both at zero detuning and finite detun-
ing. For the exchange gate, we assume that no Larmor-
frequency difference between the qubits exists, since for
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such a gate δω0 � ωop is required, while for the C phase
gate, various scenarios are analyzed (δω0 = 0, δω0 = ωop,
and δω0 = √

2t0). In the table, T denotes the qubit gate
operation time and inaccuracies are shown with the prefix
�. The table provides values for different rotation angles
(θCZ , θJ ). In the case of the C phase gate, additional Z
rotations might be required, which only have a very small
effect on the fidelity [Eq. (3)].

The error contributions have a quadratic relation with
the infidelity except for detuning errors for ε = 0, where
a fourth-order dependence is found. This implies an
improved robustness to detuning errors when operating at
the charge-symmetry point (ε = 0) [30,31].

For low-frequency variations, i.e., those changing over
a time scale longer than the operation time, the same
approach as for single-qubit operations holds and the
expected fidelity follows the same equations as given in
Table III when replacing the inaccuracy, such as �ε, with
the standard deviation of the variation (assuming a Gaus-
sian distribution). An exception is for detuning errors when
operating at the charge-symmetry point [30,31], because
of the fourth-order dependence. For a static but random
error � for which F = 1 − c�4, the expected fidelity is
F = 1 − 3cσ 4, if � follows a Gaussian distribution with
standard deviation σ and zero mean. Consequently, there
is a slightly higher sensitivity to noise than to static errors
for the detuning.

For timing variations, only the total duration matters and
high-frequency noise is filtered as described in Table I.
Moreover, similar to the single-qubit gate, numerical sim-
ulations of the Hamiltonian have shown sensitivity to
high-frequency noise (> ωop) only in a pass band with
a bandwidth that is inversely proportional to the opera-
tion duration, for both the electrically controlled detuning
energy and tunnel coupling in the case of the two-qubit
gate (see the Supplemental Material [69]). The quantum
state is, however, also affected by noise around the fre-
quencies corresponding to the allowed energy transitions,
in a pass band with a similar bandwidth. Consequently,
it is important that the high-frequency noise components
in the signals applied to the barrier gates and plunger
gates are properly filtered. However, since the exchange
gate requires a diabatic change in the control parame-
ter, only limited filtering can be applied. Closed-form
analytical expressions for these effects have not been
studied.

B. Specifications for the idle operation

Since, in practice, the tunnel coupling cannot be fully
removed, the two-qubit operation is never completely
turned off. The interaction strength can, however, be
slowed down significantly, thus leading to a fidelity with
respect to the ideal identity operation for the exchange and

C phase gates as follows:

FInop,J =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − 3
16

ω2
op,offT2

nop, δω0 = 0,

1 − 7 − 4
√

2
16

ω2
op,offT2

nop, δω0 = ωop,

1 − 1
16

ω2
op,offT2

nop, δω0 = √
2t0,

(14)

where ωop,off is the reduced interaction strength during the
time Tnop when no operation is applied.

Following Eq. (11), the interaction strength can be
reduced by lowering the tunnel coupling while not chang-
ing the detuning. A two-qubit operation performed at finite
detuning could also be controlled using only the detun-
ing. However, assuming that the interaction is considered
to be off at zero detuning, the operation might need to be
performed at far detuning. As mentioned before, operat-
ing closer to the avoided crossing reduces the tolerance to
inaccuracies and noise in the detuning (Table III).

C. Case study of the specifications for a two-qubit
operation

Specifications for the control electronics responsible for
the two-qubit operation can be derived using the results
presented in Sec. V. This example develops on the exam-
ple given in Sec. IV C and, for instance, assumes that the
same oscillator is used to keep the coherence with the
qubits. Two examples will be given here, one at zero detun-
ing and one at finite detuning. Both focus on the C phase
gate, operating at δω0 = √

2t0. This choice for the Larmor-
frequency difference gives the most relaxed specifications
for the control electronics, while at smaller δω0, the spec-
ifications can be up to

√
3 times more demanding (see

Table III).
The Larmor-frequency difference is chosen as 1 GHz,

to achieve a two-qubit operation speed of ωop = 2 MHz at
zero detuning, while maintaining δω0 = √

2t0 [Eq. (11)].
Example specifications for this operation are given in
Table IV. To further increase the operating speed, an
even higher qubit-frequency spacing would be required
or δω0 <

√
2t0. Alternatively, the operating speed can be

enhanced to, e.g., 20 MHz, by operating the C phase gate
at finite detuning [Eq. (11)], as shown in another example
(Table IV).

Both examples target a fidelity of 99.9% for a C phase
gate with θCZ = π . The examples also indicate the spec-
ifications required for idling two qubits at 99.9% fidelity
for a duration of 500 ns, the same as for the example in
Sec. IV C.

For the charging energy and tunnel coupling, typical val-
ues are chosen. As the relation to the gate voltage is device
dependent, no values for the required electrical specifica-
tions are given. Note that in either example, the tunnel
coupling only has to change by a factor of approximately
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TABLE IV. Example specifications for the control electronics when operating a C phase gate at zero detuning and at finite detuning.
The PSD values provided assume a white spectrum with an ENBW of approximately 10 MHz (ωop = 2 MHz) when operating at zero
detuning and an ENBW of approximately 100 MHz (ωop = 20 MHz) at finite detuning. A nominal charging energy of 83 mV (4.1
meV, 1.0 THz) is assumed.

Value Infidelity contribution to

An operation An operation Idling
ε = 0 ε > 0 ε = 0 ε > 0

Frequency
Spacing 1 GHz 1 GHz
Inaccuracy 11 kHz 11 kHz 77 × 10−6 0.8 × 10−6 308 × 10−6

Oscillator noise 11 kHzrms 11 kHzrms 77 × 10−6 0.8 × 10−6 308 × 10−6

Nuclear-spin noise 1.9 kHzrms 1.9 kHzrms 2.2 × 10−6 0.02 × 10−6 8.9 × 10−6

Duration
Nominal 250 ns 25 ns
Error 5.3 ns 0.58 ns 281 × 10−6 333 × 10−6

Detuning energy
Nominal 0 mV (0 μeV, 0 GHz) 78 mV (3.9 meV, 0.95 THz)
Error 12 mV (0.60 meV, 0.15 THz) 0.10 mV (5.1 μeV, 1.2 GHz) 281 × 10−6 333 × 10−6

σ = 9.2 mVrms σ = 0.10 mVrms

PSD = 2.9 μV/
√

Hz PSD = 10 nV/
√

Hz
Tunnel coupling

Nominal 0.71 GHz (2.9 μeV) 0.71 GHz (2.9 μeV)
Error 7.5 MHz (31 neV) 8.2 MHz (34 neV) 281 × 10−6 333 × 10−6

Off value 78 MHz (0.32 μeV) 78 MHz (0.32 μeV) 374 × 10−6

FCZ = 99.9% FCZ = 99.9% FI = 99.9%

9 to turn the operation on or off. In the case of operation at
finite detuning, this assumes that zero detuning is applied
when the operation is turned off.

The detuning energy is directly related to the voltage on
the plunger gate via the lever arm, for which a typical value
of α = 0.05 eV/V is assumed [44]. When operating at
finite detuning, the detuning energy is chosen at 95% of the
charging energy. Even though higher operating speeds can
be obtained by moving even closer to the avoided crossing,
the electrical specifications become increasingly challeng-
ing. When operating at the charge-symmetry point, very
large detuning errors can be tolerated (at which point the
approximations used to derive the expressions in Table III
do not hold any more). When operating at moderate detun-
ing, the error specification for the detuning is more than
100 times stricter. Moreover, as the operation at finite
detuning is faster with the same tunnel coupling, the signal
bandwidth must be larger, with a larger noise bandwidth.
As a rough estimate, the ENBW has been chosen as 5 times
the operating speed in both examples, which seems plau-
sible as an adiabatic change is required (for the exchange
gate, the situation might be worse). As a result, the maxi-
mum allowed noise spectral density, assuming white noise,
is much lower. For the given example, this results in a
difference of almost 5 orders of magnitude in the noise
PSD.

In the example operation at finite detuning, the detun-
ing control can be achieved by an AWG running at a
sample rate of 1 gigasamples/s (GS/s) for a maximum

timing inaccuracy of 0.5 ns. Assuming that the AWG has to
cover a voltage range of −U · · · U (where U is the charg-
ing energy), it must have a 10-bit resolution to meet the
accuracy specification of the detuning energy.

VI. SIGNAL SPECIFICATIONS FOR
QUBIT READOUT

A. Fidelity for qubit readout

For the readout of the quantum state, the Pauli spin-
blockade readout [88] is analyzed, since it offers several
advantages with respect to the other possible alternative,
i.e., the Elzerman readout [65]: no electron reservoir is
required next to the quantum dot; and the Zeeman energy
splitting does not have to be much higher than the ther-
mal energy, thus enabling operation at higher temperatures
and/or lower Larmor frequencies. As a drawback, the
Pauli spin-blockade readout involves two quantum dots,
where the measurement involves discrimination between
the singlet and triplet states.

Even though relaxation, which is quantified by the relax-
ation time T1, is an important limiting factor in qubit read-
out, its effect is not considered in the following analysis,
as all gates are assumed to be performed in a time signif-
icantly smaller than T1. Furthermore, in our analysis, we
assume that the spin-dependent charge state resulting from
a Pauli spin-blockade readout is measured using a charge
sensor. As a result, the readout fidelity is determined by
various factors:
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(a) Pcharge: the probability that the spin state is correctly
projected to the charge state.

(b) Psense: the probability that the charge sensor cor-
rectly detects the charge state.

(c) Pdetect: the probability that the readout circuit cor-
rectly discriminates the signal of the charge sensor.

The overall readout fidelity is then as follows:

Fread ≈ Pcharge × Psense × Pdetect. (15)

The probability Psense is limited by, e.g., interference on
one of the charge-sensor bias gates and charge noise in
the substrate. As this depends highly on the type of sensor
employed and the sensor integration, this error contribu-
tion will not be discussed further.

The quantum-dot control electronics limit Pcharge, as dis-
cussed in Sec. VI B, while the readout electronics limit
Pdetect, as discussed in Sec. VI C.

B. Specifications for the electronics controlling the
spin to charge conversion

For the analysis of the charge transfer in the Pauli spin-
blockade readout, the Hamiltonian of Eq. (10) is extended
with the lowest-energy triplet states (either due to the val-
ley splitting or the orbital energy splitting). Those states
are spaced by a singlet-triplet energy splitting EST from the
singlet energy level (for the Hamiltonian, see the Supple-
mental Material [69]). A plot of the energy of the stationary
states versus the detuning near the avoided crossing is
shown in Fig. 6(a). For the following discussion, only the
|↓, ↓〉 and |↓, ↑〉 states, highlighted in Fig. 6(a), need to be
considered.

The Pauli spin-blockade readout relies on EST for the
discrimination of the single-dot singlet configuration from
three possible single-dot triplet configurations. Consider-
ing a pair of neighboring qubits, the state of the right qubit
can be measured as follows. The left qubit is initialized in
the |↓〉 state. By detuning adiabatically to a point between
the singlet avoided crossing and the triplet avoided cross-
ing (with t0 > 0), only the |↓, ↑〉 state (at ε = 0) becomes
a singlet and both electrons will move into the same dot.
This charge movement can be measured using a charge
sensor. Based on the measurement result, it is then clear
whether the qubits are in a singlet or one of the three triplet
configurations. This scenario is analyzed here.

Starting from the |↓, ↓〉 state, there is a small probabil-
ity P(transfer| |↓, ↓〉) that both electrons will end up in the
same dot. Similarly, starting from the |↓, ↑〉 state, there
is a small probability P(no transfer| |↓, ↑〉) that no charge
will transfer. The probability of a correct spin to charge
conversion can be defined as follows:

Pcharge = 1 − P(transfer| |↓, ↓〉) − P(no transfer| |↓, ↑〉).
(16)

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

↓ , ↓

↑ , ↓
↓ , ↑

↑ , ↑

(ε − U)

E
/
h

(G
H

z)

Eigenenergies versus Detuning

0 0.2 0.4 0.6 0.8

ST

ST

detect

de
te

ct

1
0.1×

1×
10×

100×

(ε − U)/E

ST/E

P
ro

ba
bi

lit
y

re
la

ti
ve

to

op
ti

m
um

1
−

P

1− P
Degradation versus Detuning

1 − P

Contribution P (no transfer| |↓, ↑〉)
Contribution P (transfer| |↓, ↓〉)

10−3 10−110−6

10−3

100

t0/E

1
−

P

Charge Transfer Probability

t0: 100 kHz to 1 GHz (EST = 1 GHz)
EST : 1 GHz to 10 THz (t0 = 1 GHz)

16 t0
E

)2 0 20 40 60 80 10010−8

10−4

100

SNR

1
−

P

P versus SNR

∫

Charge sensor Readout circuit Signal processing

0 or IS
in,s in,c Tread ½ IS

(a) (b)

(c) (d)

(e)

charge

ch
ar

ge

ch
ar

ge

Pcharge

ST

FIG. 6. (a) The energy of the stationary states versus the detun-
ing near the avoided crossing. The black dashed lines indicate
the states where the left qubit was originally in the |↓〉 state.
(b) The error probability 1 − Pcharge, along with the individual
error contributors, at various points of detuning as simulated for
various tunnel rates, Larmor frequencies, charging energies, and
singlet-triplet energy splittings (each varied over a decade; the
resulting plots are overlapping). The obtained probabilities are
plotted relative to the optimum, i.e., the lowest error probabil-
ity at ε = U + EST/2, thereby showing the degradation when
moving away from the optimum detuning. (c) The simulated
probability 1 − Pcharge versus the singlet-triplet splitting, normal-
ized to the tunnel coupling at ε = U + EST/2, while sweeping
either the tunnel coupling or the singlet-triplet energy splitting.
(d) A plot of 1 − Pdetect versus SNR in the case of Gaussian-
distributed noise. (e) A model of a typical readout chain, showing
the sensor, the readout electronics, and the required signal pro-
cessing for the measurement discrimination. Additional sources
modeling the noise are shown in gray.

The analysis is again simplified by assuming an ideal adia-
batic change in the detuning energy. The results presented
in this section are obtained from numerical simulations of
the Hamiltonian.

Simulations show that the highest Pcharge is obtained by
detuning to ε = U + EST/2, i.e., equidistant between the
singlet and triplet avoided crossings, as shown in Fig. 6(b).
The shape of the probability versus (ε − U)/EST plot is
independent of the Larmor frequency, assuming that ω0 �
EST. Although the shape remains the same, the obtainable
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TABLE V. Example specifications for the control electronics. The PSD values provided assume a white spectrum with an ENBW of
approximately 1 MHz for the detuning control and a measurement time of Tread = 0.6 μs. A nominal charging energy of 82.7 mV (4.1
meV, 1.0 THz) is assumed and a singlet-triplet energy splitting of 1.0 mV (50 μeV, 12 GHz).

Value Infidelity contribution to the readout

Detuning energy
Nominal 83.2 mV (4.2 meV, 1.0 THz)
Error 0.24 mV (12 μeV, 2.8 GHz) 167 × 10−6

σ = 0.24 mVrms, PSD = 0.24 μV/
√

Hz
Tunnel coupling

Nominal 39 MHz (0.16 μeV) 167 × 10−6 Pcharge = 99.967%
Charge sensor 333 × 10−6 Psense = 99.967%
QPC

Signal 400 pA
Noise 53 pArms, PSD = 57 fA/

√
Hz 222 × 10−6

Readout circuit
Input-referred noise 26 pArms, PSD = 28 fA/

√
Hz 111 × 10−6 Pdetect = 99.967%

F = 99.9%

maximum Pcharge scales with the tunnel coupling and the
singlet-triplet energy splitting, as can be seen in Fig. 6(c).
From this figure, an upper bound for the tunnel coupling
can be found, which must be maintained even with errors
caused by limitations in the control electronics.

Even though Pcharge is highly influenced by the achiev-
able tunnel couplings and singlet-triplet energy splittings
in the system [Fig. 6(c)], the detuning value has a minor
influence (provided that there is a sufficient singlet-triplet
energy splitting), since 1 − Pcharge is relatively flat around
its minimum, as shown in Fig. 6(b). For instance, for a
twofold increase in 1 − Pcharge, the detuning must stay in
the range (ε − U)/EST ≈ 0.5 ± 0.235. We can then con-
clude that a large singlet-triplet splitting is desired to limit
the influence of the control electronics on the readout.

C. Specifications for the electronics processing the
readout signal

In this section, we will consider a direct readout. A
model of a typical readout chain is shown in Fig. 6(e). For
simplicity, the sensor is modeled as a current source with
a value of either 0 or Is, depending on the sensed charge.
The readout fidelity is limited by the noise introduced by
the sensor and by the readout circuit, indicated in Fig. 6(e)
as in,s and in,c, respectively. Assuming the typical matched-
filter detection [89], i.e., integrating the signal current for a
duration Tread and comparing the result to a threshold, the
probability of a correct measurement under the presence of
Gaussian-distributed noise is given by the following:

Pdetect =
1 + erf

(√
S/N

8

)

2
, (17)

with

S/N = I 2
s∫ ∞

0
Si( f )

[
sin(π f Tread)

π f

]2

df

, (18)

where Si( f ) is the PSD of the total noise in = in,s + in,c.
When the noise is white, this simplifies to the following:

S/N = I 2
s

SiBENBW
, (19)

with effective noise bandwidth BENBW = 1/(2Tread).

D. Case study of the specifications for a qubit readout

The example specifications presented in this section
build on those presented in Secs. IV C and V C and hence
assume the same charging energy and lever arm for the
detuning control. For the singlet-triplet energy splitting,
a typical value of EST = 50 μeV is used. As a result,
the optimum detuning is at 83.2 mV. The resulting spec-
ifications are summarized in Table V and assume equal
contributions from Pcharge, Psense, and Pdetect [Eq. (15)].

Following Fig. 6(c), to achieve the required Pcharge, the
tunnel coupling must be even lower than is required to
turn off the two-qubit operation (see Sec. V C), thereby
extending the required tunnel-coupling tuning range to
approximately 18×. In the example of Table V, the detun-
ing control can be achieved by an AWG with low sample
rate, as the detuning must change adiabatically and the
readout generally takes a relatively long time. Assuming
that the AWG has to cover a voltage range from 0 to 2U,
it must have a 9-bit resolution to meet the accuracy spec-
ification of the detuning energy [Fig. 6(b)]. As a result,
the same circuitry as used for the two-qubit operation
(Sec. V C) could potentially be used.
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In this example, Pdetect assumes a direct readout of a
QPC, following the numbers provided in Ref. [64] (Is =
400 pA and in,s = 57 fA/

√
Hz). Assuming that the read-

out circuit is designed to contribute about half the noise
compared to the shot-noise limit of the QPC (in,c ≈ in,s/2),
an integration time of at least Tread = 0.6 μs is required to
achieve an signal-to-noise ratio (SNR) of 46 for a Pdetect of
99.967% [for F = 99.9%, Eq. (15)]. For such short read-
out times, the assumption of white noise is valid and the
effects of qubit relaxation (T1) could be negligible.

VII. DISCUSSION

Case studies targeting a 99.9% average gate fidelity have
been presented in Secs. IV C, V C, and VI D. This target
fidelity is particularly relevant since the minimum error
rate to reach fault-tolerant quantum computing is around
99% for a complete error correction cycle, thus requir-
ing a single-operation fidelity above 99.9% for a typical
cycle of ten operations [14]. Reaching a 99.9% fidelity for
all operations is currently an ambitious goal for all qubit
platforms. However, our model can be directly applied to
analyze specifications for any given fidelity.

The derived electronic specifications can now be com-
pared to the performance achieved by state-of-the-art elec-
tronics. To this end, Table VI summarizes the performance
of commonly used AWGs and microwave vector sources
[90–94].

For the generation of the detuning control and the
microwave envelope, an AWG is required. We compare
the specifications of the Tektronix 5014C, as used in,
e.g., Refs. [44,52,56], with the specifications derived in
the case study. This AWG achieves a sample rate of 1.2
GS/s with 14-bit resolution, thereby providing enough res-
olution for the amplitude and duration of the microwave
envelope (150 MS/s and 8 bits). The worst-case spurious-
free dynamic range of −56 dBc is well below the required
−41 dBc. The specified random jitter of 5.0 psrms is well
below the required value of 3.6 nsrms. Finally, the output
noise level is not clearly specified but can be assumed to
be not much larger than the amplitude resolution of 1 mV.

In the case in which the AWG’s output is attenuated by
approximately 40 dB, this also meets the specifications.
This AWG can also be used for detuning control in two-
qubit gates. The sample rate is high enough to meet the
required timing resolution (> 1 GS/s) and the resolution
is sufficiently high to reach the detuning requirements (a
worst case 0.10 mV for a < 100 mV pulse) with a 20 dB
attenuator. As the specifications for Pauli-spin blockade
readout are found to be more relaxed, the same AWG again
suffices.

Finally, for the generation of the microwave carrier,
some setups use the Agilent MW vector source E8267D
[12,44,45,52,55,56], which has a frequency resolution well
below the requirements (1 mHz versus approximately 20
kHz). The single-sided phase noise is also well below the
required −106 dBc/Hz at a 1 MHz offset from the car-
rier (at the worst point, the E8267D achieves better than
−100 dBc/Hz at a 100 kHz offset). The broadband noise
is specified as 63 nV/

√
Hz (−141 dBc/Hz at 10 dBm) and

therefore at least 20 dB attenuation is required to meet the
specification of 7.1 nV/

√
Hz.

It can be concluded that typically adopted instruments
are capable of supporting a 99.9% fidelity. However, for
the currently used instrumentation, the specifications on
the amplitude noise and wide-band additive noise are the
most stringent and consequently require the use of atten-
uators to reduce the noise reaching the quantum devices.
Moreover, these instruments are bulky, consume several
watts of power, and cannot be operated at cryogenic
temperatures, therefore hindering scalability.

Fully integrated complementary metal-oxide semicon-
ductor (CMOS) circuits operating at cryogenic temper-
atures can be adopted to tackle this problem [5,15–20].
In order to assess the feasibility of such a solution, the
power consumption of the required circuit blocks will be
estimated by using room-temperature CMOS circuits as
a reference. This is valid, since cryogenic CMOS circuits
are expected to show significantly less noise for the same
power budget, as shown in Refs. [5] and [19]. As a result,
the estimates given here likely overestimate the required
power consumption. Furthermore, we assume a 50-� load

TABLE VI. Specifications of commonly used AWGs and microwave vector sources.

Sample rate Resolution Jitter Output noise Spurious-free dynamic range

Tektronix AWG5014C [90] 1.2 GS/s 14 bit 5.0 psrms –a < −56 dBc
Keysight M9330A [91] 1.25 GS/s 15 bit – −150 dBc/Hz < −65 dBc
Tabor WX1282C [92] 1.25 GS/s 14 bit – – < −44 dBc

Maximum
output
frequency

Frequency
resolution

Phase noise
(100 kHz)

Wide-band
noise (10 dBm)

Agilent E8267D [93] 44 GHz 1 mHz < −100 dBc/Hz < −141 dBc/Hz
R&S SMW200A [94] 40 GHz 1 mHz < −100 dBc/Hz < −134 dBc/Hz

aAmplitude resolution: 1 mV.
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for each circuit, which is not the case for a fully integrated
controller.

The core component determining the specifications of an
AWG is its digital-to-analog converter (DAC). The 10-bit
500 MS/s DAC presented in Ref. [95] meets the specifi-
cations for the microwave envelope generation at a power
consumption of 24 mW. For the detuning control, the DAC
specifications are stricter, but can be met by the 12-bit
1.6 GS/s DAC presented in Ref. [96], with a power con-
sumption of 40 mW. Although for the tunnel barrier the
specifications will depend highly on the gate structure, a
similar DAC is assumed to be sufficient.

The core component of a microwave carrier generator,
the PLL, is also available as a CMOS circuit operating over
the required frequency range (9.2–12.7 GHz) at a power
consumption of around 13 mW [97]. Its phase-noise per-
formance is slightly worse than required. However, with
operation at cryogenic temperatures, the noise level is
expected to improve.

In a linear qubit array, one DAC is required for the bar-
rier gate and one for the plunger gate for each qubit. This
leads to an estimated power of 80 mW per qubit. For the
microwave signals, the envelope DAC and PLL together
consume approximately 40 mW. Without any form of
multiplexing, this indicates a power consumption of 120
mW/qubit. For a state-of-the-art dilution refrigerator with
a cooling power of a few watts at 4 K, this suggests a max-
imum of a few tens of qubits when operating the classical
controller at 4 K.

However, the power consumption of the DACs control-
ling the barrier gates and plunger gates could be highly
reduced if it is not being limited to a 50-� system. To
get a sufficient signal swing, in Ref. [96] a 16-mA cur-
rent is delivered to a 50-� load, thereby setting a lower
bound to the power consumption. A much lower current
would be required for a higher impedance, or even for a
lower swing as acceptable in this application, ultimately
limited by the speed or noise requirement. Furthermore,
the same fast DAC can be used to generate frequency-
multiplexed microwave envelopes. With a sample rate of
1.6 GS/s, a bandwidth of roughly 640 MHz is available
[96]. This can be used to drive 64 qubits with a Rabi
freqency of 1 MHz spaced by 10 MHz using, e.g., a Gaus-
sian envelope [Fig. 4(d)]. The combined power of the fast
DAC and PLL, i.e., 53 mW, is then shared over 64 qubits,
thus resulting in a power consumption below 1 mW/qubit.
For the readout, on the other hand, cryogenic CMOS cir-
cuits have already been proposed that can achieve a power
consumption < 1 mW/qubit [5,19].

In summary, a cryogenic CMOS controller for a large-
scale quantum processor appears to be feasible for a target
fidelity of 99.9%. However, for minimum power con-
sumption, the trade-offs in the electronics design must
be systematically investigated. The analysis proposed in
this paper provides the foundations for such optimization

and will help electronics designers to build a functional
controller.

VIII. CONCLUSION

In this paper, the effect of nonidealities in the classi-
cal controller for a quantum processor is analyzed. Even
though this work focuses on single-electron spin-qubits,
the presented approach can be used to analyze the perfor-
mance of a quantum processor in any qubit technology.
A comprehensive approach is proposed, by covering the
effect of both static and dynamic errors on all quantum
operations, i.e., single-qubit gates, two-qubit gates, and
readout.

With the results of this analysis, the impact of the con-
troller on the performance of the quantum computer as a
whole can be quantified. This is required to ensure that
the controller does not become the performance bottle-
neck as the qubit performance keeps improving. Moreover,
with the presented results, a full set of electrical speci-
fications can be derived, targeting a given qubit fidelity.
The availability of these specifications enables the design
of next-generation controllers that are tailor-made for the
quantum processor and optimized for performance, power,
cost, and size, so as to improve the scalability of the
quantum computer.

As future controllers might have to operate physically
close to the quantum processor, i.e., at cryogenic tem-
peratures where the cooling power is limited, the power
optimization of the controller will be critical in enabling
large-scale quantum computing. With the results obtained
in this paper, the trade-offs between qubit fidelity and
power spent in the controller can be analyzed, this repre-
senting the foundation for such a power optimization.
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