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Utilizing noninvasive 2D scans with laser wires, we tomographically reconstructed the 4D transverse
phase space distribution of a 1-GeV hydrogen ion (i.e., H−) beam during operation. The 4D tomography is
based on two new advances. First, we extended the formulation of maximum entropy phase space
tomography to take 2D projections as input and derived theoretical results relevant to our application.
Second, we introduced the method of “perpendicular scans” to obtain cross-plane information from a laser
wire emittance scanner. Perpendicular scans are two unconventional 2D measurements performed with
perpendicular front and back wires. In contrast, only parallel front and back wires (i.e., “parallel scans”) are
utilized in ordinary measurements of the horizontal and vertical 2D phase space distributions. When we
applied the technique to the laser emittance station in the high-energy beam transport of the Spallation
Neutron Source, experimental results showed that perpendicular scans can provide significant new
information to the reconstructed 4D phase space distribution.
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I. INTRODUCTION

A. Phase space tomography

Tomography is the reconstruction of a multidimensional
distribution from its lower-dimensional projections. In the
context of beam diagnostics, where the number of measured
projections ≈10, tomographic reconstruction of the beam
phase space distribution is typically an inverse problem with
nonunique solutions. One commonly adopted approach in
solving such an underdetermined problem is to invoke the
principle of maximum entropy (MENT), which states that,
among the many possible solutions, one should select the
solution that maximizes the entropy of the resulting dis-
tribution. A general discussion of the MENT principle and
its usage in data analysis can be found in Ref. [1].
MENT tomographic reconstruction for beam diagnostics

was first formulated and applied at Los Alamos National
Laboratory (LANL) [2,3]. In these pioneering studies, 2D
and 4D transverse phase space distributions were recon-
structed from wire scanner measurements of 1D beam
density profiles. The technique of MENT tomography has
since been widely employed in many accelerator facilities to
characterize the beam phase space distribution, e.g., [4–8].

To help simplify the ensuing discussion, we introduce
the terms “2D-from-1D beam tomography” and “4D-from-
1D beam tomography” to denote the aforementioned 2D
and 4D transverse phase space reconstruction from 1D
beam profile measurements. Similarly, “4D-from-2D beam
tomography” refers to the reconstruction of 4D transverse
phase space from 2D projections.
While 2D-from-1D and 4D-from-1D beam tomography

are common, few studies have been performed on 4D-from-
2D beam tomography, because direct 2D phase space
measurements are more complicated and less available
than 1D profile measurements. Three previous studies on
4D-from-2D beam tomography are Refs. [9–11], and none
employed the MENT principle in obtaining the solutions.
In this paper, we extend our work in Ref. [12] and

present the first results on 4D-from-2D beam tomography
using the MENT principle. With advances in both data
collection (new cross-plane scans) and data analysis (theo-
retical results on MENT tomography), we successfully
utilized the laser wire system [13,14] at the Spallation
Neutron Source (SNS) [15] to take noninvasive 2D mea-
surements and reconstruct the 4D transverse phase space
distribution of a 1-GeV hydrogen ion (i.e., H−) beam
during operation.

B. Organization

The paper is organized as follows. Section II reviews
MENT tomography and extends the formulation such that
2D projections can be taken as input for the purposes of
4D-from-2D beam tomography. The analytical solution of an
important special case is proved, and the algorithm for
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numerical solution of thegeneral case is presented. Section III
describes the laser emittance station in the SNS high-energy
beam transport (HEBT) and how it performs phase space
measurements on a H− beam. Section IV shows that, in
addition to the two routine parallel scans, one can introduce
two “perpendicular scans” which contain information on x-y
coupling. With this new method, four noninvasive 2D
measurements of the 4D transverse phase space distribution
can be taken without changing the beam optics. A coordinate
transformation is also introduced to cast this particularMENT
tomography problem into a more elegant form. The sym-
metrical properties of the transformed problem is exploited in
Sec.V toderive a rigorous error boundon theMENTsolution.
The derivation relies on the total variation distance, ameasure
that quantifies the difference between two phase space
distributions. Detailed proofs of certain results in Sec. V
are included in the Appendix A.
Using the tools developed in preceding sections, Sec. VI

shows experimental results of 4D-from-2D beam tomog-
raphy of an operational 1-GeV H− beam in the SNS HEBT.
We obtained two MENT solutions, one using only the two
parallel scans and one using all four scans (two parallel and
two perpendicular). Comparison between these two sol-
utions shows that the two perpendicular scans provide
valuable information and bring much richer structure to the
4D transverse phase space distribution. Tomography results
also find finite x-y coupling in the 4D transverse phase
space distribution. We employ a simulation example in
Appendix B to verify that the MENT tomography tech-
nique we employed can obtain accurate information on x-y
coupling. Finally, we conclude our findings and outline
further work in Sec. VII.

II. MENT TOMOGRAPHIC RECONSTRUCTION

A. Formulation

We extend the formulation of MENT tomography such
that 2D projections can be used as input data. The approach
closely follows the pioneering work at LANL [2,3] which
dealt with 1D projections.
To reconstruct a 4D transverse phase space distribution

from 2D projections, the MENT approach seeks to maxi-
mize the entropy:

H½ρ� ¼ −⨌ ρðx; x0; y; y0Þ ln ρðx; x0; y; y0Þdxdx0 dydy0 ð1Þ

given n constraint equations, with n being the number of
2D measurements. The jth constraint equation is given by

Gj½ρ� ¼ gjðuj; u0jÞ −
ZZ

ρ½x⃗ðu⃗jÞ�dvjdv0j

¼ gjðuj; u0jÞ −
ZZ

ρðA−1
j u⃗jÞdvjdv0j

¼ 0; ð2Þ

where gjðuj; u0jÞ is a measured 2D projection. u⃗j, the
coordinates over which the jth projection is taken, and
x⃗, the transverse phase space coordinates of the beam at the
reconstruction location, are assumed to be related by a
linear transformation:

u⃗j ≡

0
BBB@

uj
vj
u0j
v0j

1
CCCA ¼ Aj

0
BBB@

x

y

x0

y0

1
CCCA≡Ajx⃗ ð3Þ

with Aj being a 4 × 4 matrix.
The MENT solution can be found by introducing a new

functional that contains Lagrange multiplier functions:

K½ρ� ¼ H½ρ� þ
Xn
j¼1

ZZ
λjðuj; u0jÞGj½ρ�dvjdv0j: ð4Þ

The variation of K½ρ� by ρ should vanish, which leads to

ρ ¼ C1 exp

�Xn
j¼1

λjðuj; u0jÞ − 1

�

¼ C2

Yn
j¼1

hjðuj; u0jÞ ð5Þ

with C1 andC2 being constants. Hence, the MENT solution
is a product of n component functions hj which are to
be solved using the constraint equations. We present the
analytical solution for a special case in Sec. II B, followed
by Sec. II C which discusses how to obtain a numerical
solution in the general case.

B. Two-scan analytical solution

Two 2D projections of the 4D transverse phase space
are routinely measured: the horizontal and vertical 2D
phase space distributions ρxx0 ðx; x0Þ and ρyy0 ðy; y0Þ. Given
only these two 2D projections, the constraint equations
expressed in the form of Eq. (2) are

G1½ρ� ¼ ρðmeasÞ
xx0 ðx; x0Þ −

ZZ
ρðx; x0; y; y0Þ dydy0

¼ 0; ð6Þ

G2½ρ� ¼ ρðmeasÞ
yy0 ðy; y0Þ −

ZZ
ρðx; x0; y; y0Þ dxdx0

¼ 0: ð7Þ

It can then be seen from Eq. (5) that the MENT solution to ρ
has the form

ρðx; x0; y; y0Þ ¼ f1ðx; x0Þf2ðy; y0Þ: ð8Þ
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We can plug Eq. (8) into Eq. (6) and invoke normalization
to get

f1ðx; x0Þ ¼ ρðmeasÞ
xx0 ðx; x0Þ ð9Þ

and similarly for f2ðy; y0Þ.
Therefore, given only the horizontal and vertical 2D

phase space measurements, MENT tomographic recon-
struction has the analytical solution

ρðx; x0; y; y0Þ ¼ ρðmeasÞ
xx0 ðx; x0ÞρðmeasÞ

yy0 ðy; y0Þ: ð10Þ

Such a phase space distribution has no x-y coupling at all,
which seems to be a natural consequence of the fact that the
input data provide no cross-plane information.
A consequence of Eq. (10) is that any cross-plane 2D

projection is simply the product of the respective 1D
distributions; for example

ρxyðx; yÞ ¼
ZZ

ρðx; x0; y; y0Þdx0dy0

¼
Z

ρðmeasÞ
xx0 ðx; x0Þdx0

Z
ρðmeasÞ
yy0 ðy; y0Þdy0

¼ ρðmeasÞ
x ðxÞρðmeasÞ

y ðyÞ: ð11Þ

C. Numerical solution

In general, component functions of Eq. (5), and, hence,
the MENT distribution, have to be solved numerically using
the n constraint equations. Combining Eqs. (2) and (5),
we obtain n coupled equations:

gkðuk;u0kÞ¼hkðuk;u0kÞ
ZZ

C2

Yn
j¼1;j≠k

hjðuj;u0jÞdvkdv0k ð12Þ

whereupon the component functions hkðuk; u0kÞ can be
solved iteratively using a Gauss-Seidel–type algorithm as
shown in Eq. (13) below:

hðmþ1Þ
k ðuk; u0kÞ ¼

gkðuk; u0kÞ
g̃ðmþ1Þ
k ðuk; u0kÞ

; ð13Þ

where

g̃ðmþ1Þ
k ðuk; u0kÞ

¼
ZZ

C2

Yk−1
j¼1

hðmþ1Þ
j ðuj; u0jÞ

Yn
j¼kþ1

hðmÞ
j ðuj; u0jÞdvkdv0k:

ð14Þ

The superscript in parentheses denotes the iterative index for
the component function, starting from m ¼ 1. As shown in
Eq. (14), each updated function is immediately employed
in all subsequent calculations. Since this algorithm does not
guarantee convergence, if the solution does not converge
after some number of iterations, we can resort to direct
fitting, which will, of course, be much slower.

III. PHASE SPACE MEASUREMENT USING
LASER WIRE

A laser-based noninvasive method [14] is used to
perform 2D measurements of the transverse phase space
of 1-GeV hydrogen ion (H−) beams in the SNS HEBT
downstream of the superconducting linac. The schematic
of such a laser emittance station is shown in Fig. 1. The
measurement consists of three steps. In the first step, a
narrow slice of the neutralized hydrogen (H0) beam is
created by a focused laser beam, i.e., a laser wire, through
the photoneutralization of the ion beam. In the second step,
the H0 beam slice is separated from the ion beam path in a
dipole magnet and propagates directly to the linac dump. In
the last step, the divergence angle of the H0 beam slice is
obtained via wire scanner measurements of its transverse
profiles after its propagation over ≈11.6 m. Since the H0

beam preserves the angular distribution of the original ion
beam, the measurement of the divergence of the H0 beam
slice leads to the determination of the ion beam divergence.

FIG. 1. Schematic of the laser wire station in the SNS HEBT.
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By a nested scan of the laser and metal wires in horizontal
or vertical directions, one takes a 2D measurement of the
ion beam’s transverse phase space distribution. As the
photoneutralization results in only a negligible beam
loss while the metal wire is located in the linac dump,
the measurement process is completely noninvasive.
Therefore, direct 2D measurements can be performed on
a 1.4-MW neutron production ion beam which significantly
improves the speed and accuracy.
The light source used in the measurements is a custom-

ized hybrid laser system including a fiber seeder and solid-
state optical amplifiers [16]. The laser operates in a 30-Hz
macropulse mode, and each macropulse consists of micro-
pulses with a pulse width of ≈60 ps and a repetition rate of
402.5 MHz. Both macropulses and micropulses of the laser
beam are synchronized to the ion beam. The recently
upgraded laser system has a beam quality factor of about
1.2, and the focused laser beam diameter varies from 80 to
200 μm within an up to 10-mm laser-ion beam interaction
region, which assures sufficient spatial resolution for the
phase space measurement. Meanwhile, the metal wire used
in the divergence angle measurement is composed of ten
50-μm titanium wires, a configuration that enables both
high transmission of electrons and high detection effi-
ciency. Positions of laser and metal wires are controlled
with step motors which have position accuracy of better
than 0.1 mm. In a typical phase space measurement, both
the laser and the metal wires take 0.5-mm steps which
translate into spatial and angular resolutions of 0.5 mm and
0.043 mrad, respectively. Quantities associated with wire
sizes and their position errors have little effect on the
resolutions, because they are much smaller than the wire
step sizes. During the scan, the detector output is averaged
over 15 laser pulses to improve the measurement accuracy.
A measurement involving ≈1500 points in the phase space
takes about 30 min to complete.

IV. 4D PHASE SPACE TOMOGRAPHY
WITH 2D LASER WIRE SCANS

The technique of 4D MENT tomography from 2D
projections can be applied to 2D measurements obtained
using the SNS laser wire station described in Sec. III. In the
rest of the paper, we refer to the laser metal wires as “slits”
for simplicity. Functionally, the station performs two-slit–
type emittance scans where the laser wires function as the
1st slit that selects a slice of particles and physical wires
downstream of a drift act as the 2nd slit to detect the spread
of the slice.

A. Parallel scans

When the two slits are parallel, such a configuration
performs the usual emittance scans whose results are
the 2D phase space distributions in the horizontal and
vertical planes:

ZZ
ρðxi; x0i; yi; y0iÞ dyidy0i ¼ ρðmeasÞ

xix0i
ðxi; x0iÞ; ð15Þ

ZZ
ρðxi; x0i; yi; y0iÞdxidx0i ¼ ρðmeasÞ

yiy0i
ðyi; y0iÞ: ð16Þ

Here, we introduce a distinction between raw and
processed data that will prove useful below. When we
perform parallel scans, the actual raw data are distributions
in two position coordinates (i.e., the position of the

two wires) which we denote by ρ̃ðmeasÞ
xixf ðxi;xfÞ and

ρ̃ðmeasÞ
yiyf ðyi;yfÞ. The 2D phase space distributions we want,

ρðmeasÞ
xix0i

ðxi; x0iÞ and ρðmeasÞ
yiy0i

ðyi; y0iÞ, are derived from them by

calculating angles based on the positions of the two wires.
The conversion can be stated explicitly as follows:

ρðmeasÞ
xix0i

�
xi;

xf − xi
L

�
¼ Lρ̃ðmeasÞ

xixf ðxi; xfÞ; ð17Þ

ρðmeasÞ
yiy0i

�
yi;

yf − yi
L

�
¼ Lρ̃ðmeasÞ

yiyf ðyi; yfÞ; ð18Þ

where the subscripts i and f denote the longitudinal
locations of the laser wire and physical wire, respectively.
L ¼ 11.6 m is the drift length between these two locations.
We must emphasize that we use the symbol ρ̃ujuk to

denote 2D “position density functions” whose arguments
are both positions, whereas the symbol ρvjv0k represents 2D
phase space distribution functions whose arguments con-
tain one position and one angle. They even have different
units as can be seen from Eqs. (17) and (18). Without going
into any detail, we know the units must be balanced by
inserting L to the appropriate power, because L is the only
relevant length parameter in the setup.
Parallel scans do not contain any information on the

dependence between horizontal and vertical phase space
coordinates. If we perform only these two scans, the MENT
solution would say there is no dependence as shown
in Eq. (10).

B. Perpendicular scans

To obtain cross-plane information, two additional scans
can be made with perpendicular slits where the laser wire
was horizontal but the physical wire was vertical, or vice
versa. Using the notation introduced above, these mea-
surements correspond to the following 2D projections:

ZZ
ρ

�
xi;

xf − xi
L

; yi; y0i

�
dxidy0i ¼ Lρ̃ðmeasÞ

xfyi ðxf; yiÞ; ð19Þ

ZZ
ρ

�
xi; x0i; yi;

yf − yi
L

�
dx0idyi ¼ Lρ̃ðmeasÞ

xiyf ðxi; yfÞ: ð20Þ
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To see Eq. (19), note that, when only the second wire is
vertical (moved horizontally), the wire signal has contri-
bution from all pairs of ðxi; x0iÞ that will arrive at xf. Hence,
the integrand has the form as shown, and an analogous
reasoning applies to Eq. (20).
As discussed in Sec. IVA, scan results with perpendicular

slits are not distributions in phase space coordinates.
Therefore, they are denoted by ρ̃ujuk on the right-hand sides
of Eqs. (19) and (20).

C. Coordinate transformation

While Eqs. (15), (16), (19), and (20) constitute a valid set
of 2D projections for performing 4D-from-2D beam
tomography, the perpendicular scans are not direct projec-
tions of the 4D phase space which render the solution more
involved. The problem can be vastly simplified by intro-
ducing a coordinate transformation as follows.
Define a new set of coordinates xi, xf, yi, yf where

0
BBB@

xi
xf
yi
yf

1
CCCA ¼

0
BBB@

1 0 0 0

1 L 0 0

0 0 1 0

0 0 1 L

1
CCCA

0
BBB@

xi
x0i
yi
y0i

1
CCCA: ð21Þ

The 4D beam distribution in this set of new coordinates
is denoted by ρ̃:

ρ̃ðxi; xf; yi; yfÞ ¼ L−2ρ

�
xi;

xf − xi
L

; yi;
yf − yi

L

�
: ð22Þ

The choice of symbol ρ̃, which is identical to that used
for actual scan data in Secs. IVA and IV B, is no accident.
With the given coordinate transformation, four orthogonal
2D projections of ρ̃, the beam distribution in transformed
coordinates, are now measured directly by the parallel and
perpendicular laser wire scans:

ZZ
ρ̃ðxi; xf; yi; yfÞdyidyf ¼ ρ̃ðmeasÞ

xixf ðxi; xfÞ; ð23Þ
ZZ

ρ̃ðxi; xf; yi; yfÞdxidxf ¼ ρ̃ðmeasÞ
yiyf ðyi; yfÞ; ð24Þ

ZZ
ρ̃ðxi; xf; yi; yfÞdxfdyi ¼ ρ̃ðmeasÞ

xiyf ðxi; yfÞ; ð25Þ
ZZ

ρ̃ðxi; xf; yi; yfÞdxidyf ¼ ρ̃ðmeasÞ
xfyi ðxf; yiÞ: ð26Þ

Such orthogonal projections are highly favorable to cal-
culations. When one applies the MENT formalism for
tomographic reconstruction, the linear transformation
described by Eq. (3) is simply a permutation matrix for
every constraint.

Furthermore, the set of 2D orthogonal projections in
Eqs. (23)–(26) are highly symmetrical. If we take

0
BBB@

x1
x2
x3
x4

1
CCCA ¼

0
BBB@

xi
xf
yf
yi

1
CCCA; ð27Þ

where the order of yi and yf is flipped, Eqs. (23)–(26) can
be rewritten into the form

ZZ
ρ̃ðx1; x2; x3; x4Þdx3dx4 ¼ ρ̃ðmeasÞ

x1x2 ðx1; x2Þ; ð28Þ

ZZ
ρ̃ðx1; x2; x3; x4Þdx1dx2 ¼ ρ̃ðmeasÞ

x3x4 ðx3; x4Þ; ð29Þ

ZZ
ρ̃ðx1; x2; x3; x4Þdx2dx4 ¼ ρ̃ðmeasÞ

x1x3 ðx1; x3Þ; ð30Þ

ZZ
ρ̃ðx1; x2; x3; x4Þdx1dx3 ¼ ρ̃ðmeasÞ

x2x4 ðx2; x4Þ: ð31Þ

Equations (28)–(31) make explicit the symmetry of the
constraint equations and the fact that every coordinate is
included in two of the four 2D projections. These properties
will be exploited to study error bounds in the section below.

V. INCONSISTENCIES IN MEASURED
PROJECTIONS

When one performs MENT tomographic phase space
reconstruction, the measured projections are invariably
inconsistent among themselves. A few common reasons
include (i) measurement errors, (ii) imperfect knowledge
of the beam optics, and (iii) changing beam conditions
throughout the course of measurements.
As a consequence, the MENT solution cannot possibly

reproduce all measured projections perfectly; i.e., projec-
tions of the MENT solution must deviate from measured
projections. A natural question then arises: How large are
such deviations given the inconsistencies among measured
projections?
To the best of our knowledge, no answer exists, in

general, except for the qualitative argument that the
deviations are small as long as the inconsistencies are
minor. The fact that they are small is checked by
comparing measured projections against projections from
the MENT solution.
In this particular case, given the symmetrical structure of

the 2D projections as given by Eqs. (28)–(31), we show that
we can derive a simple expression that quantifies how
inconsistencies in the measured projections impose a lower
bound on the errors of the MENT solution.
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A. Total variation distance

To explore how inconsistencies in the projections affect
the MENT solution, we have to first define a measure that
quantifies the difference between two distributions. The
measure we have chosen is the total variation distance,
which is defined as follows in 1D and 2D, respectively:

DTV½fðxÞ; gðxÞ�≡ 1

2

Z
jfðxÞ − gðxÞjdx; ð32Þ

DTV½fðx1; x2Þ; gðx1; x2Þ�

≡ 1

2

ZZ
jfðx1; x2Þ − gðx1; x2Þjdx1dx2: ð33Þ

Although the same symbol D is used for the total variation
distance of both 1D distributions and 2D distributions, one
can readily distinguish between them by inspecting the
dimension of the argument of the functional.
We note that, for normalized distributions, the total

variation distance is 0 when the two distributions are identical
and 1 if the two distributions are completely disjoint.

B. Error bound

We introduce the following notation to denote measured
and reconstructed distributions. Measured 2D projections

are denoted by ρðmeasÞ
xjxk ðxj; xkÞ. For each measured 2D

projection, it is possible to obtain 1D projections via
integration which are denoted by

ρ
ðmeas;xjxkÞ
xj ðxjÞ≡

Z
ρðmeasÞ
xjxk ðxj; xkÞdxk; ð34Þ

ρ
ðmeas;xjxkÞ
xk ðxkÞ≡

Z
ρðmeasÞ
xjxk ðxj; xkÞdxj: ð35Þ

In each case, the superscript “(meas)” indicates that the
distribution comes from measurement. On the other hand,
once 4D-from-2D beam tomography is performed, the
solution to the phase space reconstruction is a 4D distri-
bution whose projections can be obtained. Such projections

are denoted by ρðsolÞxjxk ðxj; xkÞ, where the superscript “(sol)”
indicates that the distribution comes from the MENT
solution.
In the context of 4D-from-2D beam tomography with

laser wire scans, from four 2D scans, each 1D profile is
effectively measured twice, and the two resulting distribu-
tions are not entirely consistent. An example of such
inconsistencies is illustrated in Fig. 3.
Define

Dðxj; xk; xlÞ≡DTV½ρðmeas;xjxkÞ
xj ðxjÞ; ρðmeas;xjxlÞ

xj ðxjÞ�: ð36Þ

Using the concept developed in Sec. VA, the degree
of inconsistency between different projections can be

quantified using the total variation distance. The fact that
the measurements are inconsistent among themselves
means every term on the right-hand side of

d1 ¼ Dðx1; x2; x3Þ þDðx2; x1; x4Þ
þDðx3; x1; x4Þ þDðx4; x2; x3Þ ð37Þ

is positive. Therefore,

d1 > 0; ð38Þ

and we take d1 to be a quantity that measures the overall
degree of inconsistency among measured 2D projections.
After we perform 4D-from-2D beam tomography, 2D

projections can be obtained from the solution and compared
against measured 2D projections. Define the predicate

Pðxj; xkÞ∶ ρðsolÞxjxk ðxj; xkÞ ≠ ρðmeasÞ
xjxk ðxj; xkÞ: ð39Þ

Since the measured projections are themselves inconsistent,
at least one of the measured projections must deviate from its
counterpart obtained from the solution, i.e.:

Pðx1; x2Þ∨Pðx3; x4Þ∨Pðx1; x3Þ∨Pðx2; x4Þ is true: ð40Þ

Introducing the following notation for the 2D total
variational distance of our interest:

Dðxj; xkÞ≡DTV½ρðsolÞxjxk ðxj; xkÞ; ρðmeasÞ
xjxk ðxj; xkÞ�; ð41Þ

we know from Sec. VA that

Pðxj; xkÞ ⇒ Dðxj; xkÞ > 0: ð42Þ

If we define a quantity d2 as follows:

d2¼Dðx1;x2ÞþDðx3;x4ÞþDðx1;x3ÞþDðx2;x4Þ; ð43Þ

Eqs. (40) and (42) imply

d2 > 0: ð44Þ

In the language of MENT tomography, d2 measures
how far the MENT solution deviates from constraints
which the solution should obey, whereas d1 measures
the inconsistency among the constraints themselves. We
prove in Appendix A that

d2 ≥
1

2
d1: ð45Þ

This expression gives a rigorous lower bound on how well
the MENT solution can agree with measured 2D projec-
tions. To our knowledge, such an error bound is the first
known result of its kind.

WONG, SHISHLO, ALEKSANDROV, LIU, and LONG PHYS. REV. ACCEL. BEAMS 25, 042801 (2022)

042801-6



VI. EXPERIMENTAL RESULTS IN SNS HEBT

Using the method of perpendicular scans described in
Sec. IV, four 2D laser wire scans (two parallel and two
perpendicular) were conducted on a 1-GeV hydrogen ion
beam in the SNS HEBT. Taken while the beam was
operational, these measurements were noninvasive and
did not affect the ongoing neutron production.
All four 2D scan results are shown in the left column in

Fig. 2. The two on the top are parallel scans which give the
2D phase space distribution in each respective plane, and
the two on the bottom are perpendicular scans. Together,
they constitute four 2D projections of the distribution
ρ̃ðxi; xf; yi; yfÞ as described by Eqs. (15)–(20). Once
ρ̃ðxi; xf; yi; yfÞ is tomographically reconstructed, it can
be converted into the 4D transverse phase space distribution
ρðxi; x0i; yi; y0iÞ using Eq. (22), or vice versa. For this reason,
we will refer to ρ̃ and ρ interchangeably in the rest of
this section.

A. Two-scan and four-scan MENT solutions

It is illuminating to consider two MENT solutions to this
4D-from-2D tomography problem. The respective 2D
projections of both solutions are plotted in Fig. 2.
If we ignore the two perpendicular scans and consider

only the two parallel scans which are routinely per-
formed, MENT tomographic reconstruction has an ana-
lytical solution as given by Eq. (10). We refer to this as
the two-scan solution and denote it by “sol 1.” Being the
product of the two measured 2D phase space distribu-
tions, the solution is exact in the sense that it must
reproduce the input data perfectly. This can be seen by
comparing the top two rows of the left and middle
columns in Fig. 2.
If we use all four 2D projections, the 4D MENT solution

can be obtained numerically using the iterative algorithm
described in Sec. II C. After the MENT tomography
problem is cast into the symmetrical form in Sec. IV C,
the numerical solution typically converges within a few
iterations. We refer to this as the four-scan solution and
denote it by “sol 2.” As we discussed in Sec. V, the four-
scan MENT solution cannot perfectly reproduce the four
2D measured projections, because the measurement them-
selves are slightly inconsistent. Whether the four-scan
solution is correct is investigated in detail in the following
subsection.

B. Correctness of the four-scan solution

The inconsistencies among the four 2D scan results are
shown in Fig. 3, where the 1D profile as measured by two
projections are compared. The total variation distances
between two measurements of each 1D profile are listed
in Table I.
Such inconsistencies seem to have a minor effect on the

four-scan solution if we compare the left and right columns

in Fig. 2. Projections of the four-scan solution (right
column) closely reproduce all four 2D measured projec-
tions (left column); this indicates that the numerical
solution is valid.
To perform a more rigorous analysis enabled by theo-

retical results in Sec. V, we calculate the total variation
distance between each of the measured 2D projection and
its counterpart from the four-scan 4D MENT solution. The
values are given in Table II.
Summing the total variation distances in Tables I and II,

respectively, and using the notation from Sec. V, we find

d1 ¼ 0.2094; ð46Þ

d2 ¼ 0.1258: ð47Þ

Not only do the values of d1 and d2 satisfy the error bound
condition in Eq. (45), d2 is only slightly larger than the
minimum value d1=2. This means that the four-scan
solution has reproduced the measured 2D projections
almost as closely as is possible given the inconsistencies
in the measurement data. In this sense, our analysis strongly
suggests that the four-scan solution is correct.

C. Cross-plane information

The aim of this beam tomography experiment is to
obtain detailed information on the 4D transverse phase
space distribution with an emphasis on cross-plane
information.
The inadequacy of the two-scan solution is immediately

apparent from measurement results. As the discussion in
Sec. II B shows, with parallel scans alone, the pair of
coordinates xi-yf are independent of each other. As can be
seen in the two bottom rows in Fig. 2, the two-scan
solution would predict a star-shaped distribution for the
2D projection in xi-yf which strongly deviates from
the distribution that was actually measured by the
perpendicular scan. A similar phenomenon holds for
the pair of coordinates yi-xf.
To answer whether perpendicular scans provide useful

cross-plane information, we compare the two-scan solution
against the four-scan solution below.
The four-scan solution can be illustrated by projecting

the reconstructed distribution onto the four pairs of cross-
plane coordinates whose 2D phase space distributions are
not directly measured by the laser wire station. These
results are shown in the middle left column in Fig. 4.
We also plot in the leftmost column in Fig. 4 the 2D

phase space distributions of the two-scan solution (i.e.,
only the conventional parallel scans are used). One can
observe that cross-plane projections of the two-scan
solution display starlike or ellipselike shapes for reasons
we already discussed above. These projections have much
simpler structure than their counterparts from the four-
scan solution.
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FIG. 2. Four 2D scan results at the SNS HEBT laser wire station (left column, denoted by superscript “meas”) compared against the
corresponding 2D projections of two 4D distributions (middle and right columns) that are tomographically reconstructed based on these
scan results. Among the two reconstructed 4D distributions, the superscript “sol 1” denotes the two-scan analytical MENT solution that
only uses the two conventional scans with parallel wires, whereas “sol 2” denotes the four-scan numerical MENT solution obtained
using all four 2D scans.
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To further illustrate how the four-scan solution contains a
much higher level of detail than the two-scan solution,
we plot in the two columns on the right the normalized
density of 1D slices of the 2D distributions of the four-scan
solution. These 1D slice densities vary strongly with the
value at which they are taken. This means that every pair of
cross-plane coordinates is highly dependent. For example,

ρðsol 2Þxiyi ≠ f1ðxiÞf2ðyiÞ ð48Þ

and is far from any function of the form on the right-
hand side.
In contrast, due to the independence between cross-plane

coordinates [see Eq. (11)], each 1D slice density of the two-
scan MENT solution always equals the 1D projected beam

profile regardless of the location. The 1D projections of the
two-scan MENT solution are denoted by black dotted lines.
These results show that the 4D transverse phase space
distribution has a much more sophisticated structure when
perpendicular scans are included as input data.
We can also examine the second-order moments of the

four-scan MENT solution—they are listed in Table III. The
six uncoupled moments are all within 10% of the laser wire
scan results, which again indicate that the MENT solution
is valid. Furthermore, even though none of the four coupled
moments are measured directly, they can be obtained from
the reconstructed 4D transverse phase space distribution.
Note that, if we do not take perpendicular scans, the two-
scan MENT solution will predict that all four coupled
moments are zero. The x−y coupling coefficients can be
calculated as follows:

hxiyiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihxixiihyiyii
p ¼ 0.10; ð49Þ

hx0iyiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihx0ix0iihyiyii
p ¼ 0.00; ð50Þ

hxiy0iiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihxixiihy0iy0ii
p ¼ 0.12; ð51Þ

hx0iy0iiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihx0ix0iihy0iy0ii
p ¼ −0.04: ð52Þ

These results show that there exists a small correlation
between the two transverse planes. We have confidence
in these x-y coupling coefficients, because a simulation
example in Appendix B shows that the 4D tomography
technique we employed at the SNS HEBT can approx-
imately recover coupled beam moments.

TABLE I. Total variation distances of 1D projections in xi, xf,
yi, and yf as shown in Fig. 3.

Total variation distance Value

Dðxi; xf; yfÞ 0.0446
Dðxf; xi; yiÞ 0.0405
Dðyi; xf; yfÞ 0.0577
Dðyf; xi; yiÞ 0.0666

TABLE II. Total variation distances between 2D laser wire scan
results and 2D projections of the four-scan 4D reconstructed
transverse phase space distribution.

Total variation distance Value

Dðxi; xfÞ 0.0303
Dðyi; yfÞ 0.0478
Dðxi; yfÞ 0.0405
Dðyi; xfÞ 0.0072

FIG. 3. Measured 1D profiles in the set of coordinates xi, xf, yi, and yf. The 1D profiles in solid lines are obtained from projections
over the four 2D scan results at the SNS HEBT laser wire station. Each 1D profile can be obtained from two 2D scans, and both are
plotted to illustrate their differences. The total variation distances between two different measurements of each 1D profile are shown in
Table I. For xi and yi, the 1D profiles can also be measured separately by a Faraday cup which collected electrons stripped by the laser
wire during the scan. These profiles, plotted in dashed and dotted lines, are consistent with projected 1D profiles from 2D scans and
successfully verified their accuracy.
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FIG. 4. Cross-plane 2D phase space projections of the 4D MENT numerical solution obtained from four 2D projections at the SNS
HEBT laser wire station. The superscript sol 1 denotes the two-scan (parallel slits only) MENT solution, and sol 2 denotes the four-scan
(both parallel and perpendicular slits) MENT solution.
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VII. CONCLUSION

We extended the formulation of MENT tomography to
reconstruct 4D transverse phase space distribution from
multiple 2D projections. To perform such 4D tomography
at the SNSHEBT laser wire station, we proposed the method
of perpendicular scans where, in addition to conventional
configurations with parallel slits, two-slit–type 2D scans are
conducted with perpendicular slits to obtain cross-plane
information. For this particular tomography problem, we
also derived a rigorous error bound on the MENT solution
that arises from inconsistencies in measurements.
Utilizing noninvasive laser wire scans, we conducted a

tomography study on the 1-GeV beam at the SNS during
operation. Experimental results showed that, in comparison
with just the horizontal and vertical 2D phase space
measurements, the addition of perpendicular scans provides
valuable information on x-y coupling and gives a MENT
distribution with more sophisticated structure. In future
implementation, this technique may enable online 4D
transverse phase space tomography to improve under-
standing of the beam dynamics and enhance control of
the beam at the stripping foil and target. With favorable
initial results from the simulation example in Appendix B,
how well the MENT solution in 4D-from-2D beam
tomography agrees with the true phase space distribution
will be a subject of further investigation.
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APPENDIX A: PROOF OF EQ. (45)

We first introduce two lemmas.
Lemma A1.—Suppose there are two functions fðx1; x2Þ

and gðx1; x2Þ whose integrals are denoted as follows:

f1ðx1Þ≡
Z

fðx1; x2Þdx2; ðA1Þ

f2ðx2Þ≡
Z

fðx1; x2Þdx1; ðA2Þ

g1ðx1Þ≡
Z

gðx1; x2Þdx2; ðA3Þ

g2ðx2Þ≡
Z

gðx1; x2Þdx1: ðA4Þ

Then

DTV½fðx1;x2Þ;gðx1;x2Þ�≥
1

2
DTV½f1ðx1Þ;g1ðx1Þ�

þ1

2
DTV½f2ðx2Þ;g2ðx2Þ�: ðA5Þ

To prove Lemma A1, we first prove that

DTV½fðx1; x2Þ; gðx1; x2Þ� ≥ DTV½f1ðx1Þ; g1ðx1Þ�; ðA6Þ

DTV½f1ðx1Þ; g1ðx1Þ�

¼ 1

2

Z
jf1ðx1Þ − g1ðx1Þjdx1

¼ 1

2

Z ����
Z

fðx1; x2Þdx2 −
Z

gðx1; x2Þdx2
����dx1

¼ 1

2

Z ����
Z

fðx1; x2Þ − gðx1; x2Þdx2
����dx1

≤
1

2

ZZ
jfðx1; x2Þ − gðx1; x2Þjdx2dx1

¼ DTV½fðx1; x2Þ; gðx1; x2Þ�: ðA7Þ

Similarly,

DTV½fðx1; x2Þ; gðx1; x2Þ� ≥ DTV½f2ðx2Þ; g2ðx2Þ�: ðA8Þ

Thus, a combination of Eqs. (A6) and (A8) proves
Lemma A1.

TABLE III. Second-order moments of the beam’s 4D transverse
phase space distribution from (i) 2D laser wire scans and (ii) four-
scan 4D MENT reconstruction.

Second-order beam
moment

2D laser emittance
scan

4D reconstructed
distribution

hxixii [mm2] 2.35 2.45
hxix0ii [mm-mrad] −5.10 × 10−1 −5.33 × 10−1

hx0ix0ii [mrad2] 3.59 × 10−1 3.87 × 10−1

hyiyii [mm2] 3.37 3.50
hyiy0ii [mm-mrad] 5.18 × 10−1 5.55 × 10−1

hy0iy0ii [mrad2] 1.82 × 10−1 1.98 × 10−1

hxiyii [mm2] Not measured 2.85 × 10−1

hx0iyii [mm-mrad] Not measured 2.27 × 10−3

hxiy0ii [mm-mrad] Not measured 8.31 × 10−2

hx0iy0ii [mrad2] Not measured −9.25 × 10−3
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Lemma A2.—

DTV½fðxÞ; hðxÞ� þDTV½gðxÞ; hðxÞ� ≥ DTV½fðxÞ; gðxÞ�:
ðA9Þ

One can invoke the triangle inequality to obtain

jfðxÞ − hðxÞj þ jgðxÞ − hðxÞj
≥ jfðxÞ − hðxÞ þ hðxÞ − gðxÞj
≥ jfðxÞ − gðxÞj; ðA10Þ

whereupon integration over x proves Lemma A2.
To use the two lemmas, we first define

Cðxj; xkÞ≡DTV½ρðsolÞxj ðxjÞ; ρðmeas;xjxkÞ
xj ðxjÞ�; ðA11Þ

where ρðsolÞxj ðxjÞ is the 1D projection of the 4D reconstructed
phase space along the coordinate xj.
From Eq. (41), we invoke Lemma A1 to obtain

Dðxj; xkÞ ≥
1

2
Cðxj; xkÞ þ

1

2
Cðxk; xjÞ; ðA12Þ

which can be applied to Eq. (43) to get

2d2 ≥ Cðx1; x2Þ þ Cðx2; x1Þ þ Cðx3; x4Þ þ Cðx4; x3Þ
þ Cðx1; x3Þ þ Cðx3; x1Þ þ Cðx2; x4Þ þ Cðx4; x2Þ:

ðA13Þ

Next, we observe that

Cðxj; xkÞ þ Cðxj; xlÞ ≥ Dðxj; xk; xlÞ; ðA14Þ

because

DTV½ρðsolÞxj ðxjÞ; ρðmeas;xjxkÞ
xj ðxjÞ�

þDTV½ρðsolÞxj ðxjÞ; ρðmeas;xjxlÞ
xj ðxjÞ�

≥ DTV½ρðmeas;xjxkÞ
xj ðxjÞ; ρðmeas;xjxlÞ

xj ðxjÞ� ðA15Þ

by Lemma A2.
Applying Eq. (A14) to Eq. (A13), we pair terms whose

first arguments are identical to get

2d2 ≥ ½Cðx1; x2Þ þ Cðx1; x3Þ� þ ½Cðx2; x1Þ þ Cðx2; x4Þ�
þ ½Cðx3; x1Þ þ Cðx3; x4Þ� þ ½Cðx4; x2Þ þ Cðx4; x3Þ�

≥ Dðx1; x2; x3Þ þDðx2; x1; x4Þ
þDðx3; x1; x4Þ þDðx4; x2; x3Þ

¼ d1; ðA16Þ

which proves Eq. (45).

APPENDIX B: SIMULATION EXAMPLE:
TRUNCATED GAUSSIAN DISTRIBUTION

WITH LARGE x-y COUPLING

In this Appendix, we simulate a truncated Gaussian beam
with large x-y coupling to show that the 4D tomography
technique developed in Sec. IV is capable of recovering
cross-plane information in the 4D transverse phase space.
Taking the setup of the laser emittance station in the

SNS HEBT, we generate a beam whose 4D transverse
phase space distribution is a 4σ-truncated Gaussian dis-
tribution given by

ρðsimÞðxÞ ¼
�
ρðxÞ; if ρðxÞ ≥ e−4;

0; otherwise;
ðB1Þ

where

ρðxÞ ¼ exp

�
−
1

2
x⊺Σ−1

x x

�
ðB2Þ

with

x ¼

0
BBB@

xi
x0i
yi
y0i

1
CCCA: ðB3Þ

Normalization of ρðxÞ and ρðsimÞðxÞ are omitted for con-
venience. Σx is the 4 × 4 input covariance matrix of the full
Gaussian distribution whose values were chosen to (i) pro-
vide x and y emittances and beam sizes similar to the real
measured values and (ii) introduce significant x − y cou-
pling. After truncation, the simulated 4D transverse phase
space distribution ρðsimÞðxÞ has second-order moments
as shown in Table IV. The x-y coupling coefficients are
listed below:

TABLE IV. Second-order moments of the beam’s 4D transverse
phase space distribution for (i) the simulated distribution and
(ii) four-scan 4D MENT reconstruction.

Second-order beam
moment

Simulated
distribution

4D reconstructed
distribution

hxixii [mm2] 2.08 2.08
hxix0ii [mm-mrad] −4.17 × 10−1 −4.17 × 10−1

hx0ix0ii [mrad2] 3.00 × 10−1 3.00 × 10−1

hyiyii [mm2] 2.90 2.90
hyiy0ii [mm-mrad] 4.15 × 10−1 4.15 × 10−1

hy0iy0ii [mrad2] 1.50 × 10−1 1.50 × 10−1

hxiyii [mm2] 7.13 × 10−1 8.31 × 10−1

hx0iyii [mm-mrad] −3.22 × 10−1 −3.32 × 10−1

hxiy0ii [mm-mrad] 1.76 × 10−1 1.66 × 10−1

hx0iy0ii [mrad2] −5.94 × 10−2 −6.67 × 10−2
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FIG. 5. Four cross-plane 2D projections of the transverse phase space distribution for (i) the simulated distribution (left column),
(ii) the two-scan analytical solution (middle column), and (iii) the four-scan numerical solution (right column).
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hxiyiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihxixiihyiyii
p ¼ 0.29; ðB4Þ

hx0iyiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihx0ix0iihyiyii
p ¼ 0.32; ðB5Þ

hxiy0iiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihxixiihy0iy0ii
p ¼ −0.35; ðB6Þ

hx0iy0iiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihx0ix0iihy0iy0ii
p ¼ −0.28; ðB7Þ

from which one can see that the coupling is strong.
In the simulation, four 2D scan results (two parallel scans

and two perpendicular scans) are synthesized assuming the
beam has transverse phase space distribution ρðsimÞðxÞ at
the laser wire location. These four 2D scans are used to
perform 4D MENT tomography on the transverse phase
space distribution. Just as we did with the real measurement
data in Sec. VI, both the two-scan analytical solution and
four-scan numerical solutions are obtained. They are
denoted by sol 1 and sol 2, respectively. The four-scan
numerical solution is valid as it reproduced the synthesized
measurement results perfectly—this is shown in Table IV
where uncoupled second-order moments (i.e., the first six)
of the four-scan solution are shown to be identical to those
of the simulated distribution.
To examine whether the MENT solutions correctly

reconstruct the simulated distribution which has large
x-y coupling, we plot in Fig. 5 the four cross-plane 2D
projections for the simulated distribution and the two 4D
MENT solutions. As we expect based on the discussion in
Sec. II B, if we take only the two conventional 2D phase
space measurements in the horizontal and vertical planes
(i.e., parallel scans), the MENT solution for the 4D trans-
verse phase space contains no x-y coupling at all. On the
other hand, if we also take perpendicular scans, compar-
isons between the left and right columns in Fig. 5 show that
the four-scan MENT solution produces cross-plane pro-
jections that are close to the projections of the true
distribution (the true distribution is the simulated distribu-
tion in this example). The second-order moments of the
simulated distribution and the four-scan MENT solution
are listed in Table IV. One can observe that, for the four
coupled moments, the MENT solution is accurate to within
≈10%. These results, thus, verify that the 4D MENT
tomography technique we developed can recover cross-
plane information.
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