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Regenerative multibunch beam breakup instabilities are a well-known phenomenon in recirculating
linacs where particle bunches pass multiple times through the same superconducting rf cavities with
extremely high quality factor. This is in particular true for energy recovery linacs. Parasitic electromagnetic
modes excited in the cavities can affect bunch dynamics in such a way, that on its subsequent passes it
excites the modes further and a positive feedback loop is formed. Direct bunch tracking and a stability
analysis technique can be used to study the instability. Usually only dipole modes are considered. In the
present work, similar approaches are applied to monopole and quadrupole modes and illustrated with
simulation results for the S-DALINAC and MESA facilities. An approximated stability analysis technique
with better performance for the case of multiple recirculations is proposed. Countermeasures including
betatron phase advance adjustment and additional betatron coupling are considered and a universal
criterion for assessment of their effectiveness is proposed. A simple model of a damped oscillator with
feedback is proposed as a universal example illustrating the phenomenon in general.
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I. INTRODUCTION

Recirculating linac can be regarded as a hybrid of a
conventional linac and a storage ring. This concept allows
multiple acceleration of the particles using the same
accelerating structure, to achieve higher energies as in
storage rings. At the same time the high beam quality is
preserved as in linacs. Moreover, it allows recovering the
energy from the beam by passing it through the accelerating
structure in decelerating phase before ejection. This tech-
nique is implemented in so called energy recovery linacs
(ERLs) [1].
However, the concept of a recirculating linac brings not

only advantages but also a new type of instability, which
was not possible in conventional linacs: regenerative multi-
bunch beam breakup (BBU) instability. It is caused by
parasitic electromagnetic modes, that are excited in the

accelerating structure. Their negative effect was already
known and well-studied for conventional linacs [2]. In
recirculating machines, where the same particles pass
several times through the same cavity, formation of a
feedback loop is possible. Therefore, the achievable beam
current may be limited at levels much lower than that of
conventional linacs.
Usually parasitic modes are referred to as higher-order

modes (HOMs) because their azimuthal symmetry order is
higher than that of the fundamental mode (the mode used
for acceleration/deceleration of the beam) which always
has monopole symmetry. In the present work they will be
referred to simply as modes because there are parasitic
monopole modes; moreover, interaction with the funda-
mental mode can be neglected in BBU study (only energy
variation along the beam path should be taken into
account). It is the reason for another naming convention:
recirculating linacs and ERLs are not distinguished here
and both named recirculating machines.
Usually only dipole modes are considered as the source

of the instability, but it can be also triggered by monopole
and quadrupole modes. It will be shown how the effect of
all these modes can be studied in a very similar way and
only in terms of linear beam dynamics.
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BBU studies are already an essential design part for new
machines but they can be also very useful for existing
facilities. Two different techniques are widely used: bunch
tracking and stability analysis. The most complete theory
exists for dipole modes [3,4,5], also there are several papers
on monopole [6] and quadrupole [7] modes. The present
study is an attempt to compile all these approaches into a
universal approach taking advantage of the existence of
two completely different techniques which can be cross-
checked.
One of the main questions which can be answered within

BBU studies is how to increase the threshold current. It can
be done using various means but here the focus is on the
simplest ones. Techniques related only to recirculation arc
optics manipulation were already proposed and studied in
[5]. Here an attempt is taken to consider them in a more
general way.
Recently there are several recirculating machines in

operation or in design/construction phase, e.g., S-DALINAC
(Darmstadt, Germany) [8], MESA (Mainz, Germany) [9],
bERLinPro (Berlin, Germany) [10], CBETA (USA) [11],
PERLE (Orsay, France) [12], NovoFEL (Novosibirsk,
Russia) [13]. Examples in the present work are given for
the first two facilities in this list.

II. MESA AND S-DALINAC FACILITIES

MESA (Mainz Energy recovery Superconducting
Accelerator) is a recirculating machine under construction
at Johannes Gutenberg University in Mainz. It will be
operated in the External Beam (EB) mode (as a recirculat-
ing linac) with 150 μA electron beam at 155 MeV and in
the Energy Recovery (ER) mode (as an ERL) with 1 mA
(first stage) and later 10 mA (second stage) electron beam at
105 MeV.
S-DALINAC is a recirculating machine which is in

operation at Technische Universität Darmstadt since
1991 as a twice recirculating linac [8]. During a major
upgrade in 2015/2016 the third recirculation was added as
well as ERL operation mode. In thrice-recirculating mode
the maximum beam energy is 130 MeV at design beam
currents up to 20 μA [14,15]. In ERL operation beam
energies of up to 68 MeV are possible. First operation in
ERL mode was achieved in 2017 [16].
Both facilities can operate in CW (Continuous Wave)

mode. The present paper describes results of BBU studies
only for the ER mode of MESA and for the twice-
recirculating ERL mode of S-DALINAC. Schemes of
the facilities corresponding to these operation modes
with naming of the recirculation arcs are presented in
Figs. 1 and 2.
MESA uses four 9-cell 1.3 GHz TESLA-type super-

conducting rf cavities [17] grouped into two accelerating
modules. In the ER mode the beam passes the arcs in the
following order: T1→T2→T3→PIT→T3→T2→T1.
The length of the PIT (Pseudo-Internal Target) arc equals

half-integer rf wavelengths, therefore, particles gain
12.5 MeV on the first two passes through each cavity and
lose the same amount on the second two. The injection
energy is 5 MeV, so the maximal gained energy in this mode
is 105 MeV.
S-DALINAC uses eight 20-cell 3 GHz superconducting

rf cavities [18] (not including the cavities in the injector
linac which are not relevant for BBU study). In the twice-
recirculating ERL mode the beam passes the arcs in the
following order: F → S → F. The length of the S arc is
adjusted using dedicated equipment [19] to be equal to half-
integer rf wavelengths, therefore particles gain energy in
the cavities before passing this arc and lose energy after.
The rf phases and corresponding energy gain/loss are set
individually for each cavity to provide the best particle
transmission.

III. BBU SIMULATION MODEL

For the purpose of BBU simulations a recirculating
machine can be represented as a sequence of rf cavities
connected by lattice regions in the order seen by one bunch
on its way from injector to beam dump or ejection. Each
cavity and lattice region may appear several times in this

FIG. 1. The MESA facility scheme (ER mode) used in this
study.

FIG. 2. The S-DALINAC facility scheme (twice recirculating
ERL mode) used in this study.
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sequence depending on the topology of the machine. Set of
modes which can be excited in each cavity should be
defined.
The beam is represented as a sequence of equidistant

bunches injected into the machine. Interval between adja-
cent bunches is tb, average beam current is I0. Each bunch
is characterized with its total charge q ¼ I0tb, centroid
vectorX and second-order distribution moment matrix Σ in
accelerator coordinates:

X ¼ ðx; px; y; py; z; pzÞT; Σ ¼ hXTXi;

where h…i denotes averaging over particles of the bunch.
Usage of different injection patterns and higher-order
distribution moment tensors is also possible and planned
for the future study.
Each cavity is considered as a set of thin rf-multipoles

(one for each mode which can be excited) placed at the
center of the physical cavity. Each mode λ is characterized
with azimuthal symmetry order nλ (0 for monopole modes,
1 for dipole mode, etc.), frequency fλ (or angular frequency
ωλ ¼ 2πfλ), quality factor Qλ (or damping factor
Γλ ¼ ωλ

2Qλ
), and ðR=QÞλ. Modes with nλ ≥ 1 also have

polarization angle θλ and always appear in pairs (for axially
symmetric cavity the only difference between mode proper-
ties within a pair is 2jθλ2 − θλ1 j ¼ π=nλ).
An important remark is needed concerning ðR=QÞλ. This

quantity shows the efficiency of energy transfer between
the electromagnetic field in the cavity and the beam passing
through it. It is defined as follows [20]:

�
R
Q

�
λ

¼ jVaccj2
2ωλW

; ð1Þ

where Vacc is the accelerating voltage seen by the particle
passing through the cavity (in complex representation), W
is the total energy stored in the cavity. This definition works
only for monopole modes, therefore, in the present paper a
slightly modified quantity ðR=QÞ0λ will be used instead:

�
R
Q

�0

λ

¼ jVaccjr¼r0;φ¼θλ
j2

2ωλWr02nλ
; ð2Þ

where r0 is a small shift of the particle’s trajectory from the
cavity axis. Note that ðR=QÞ0λ has different units for
different nλ.
Field patterns for a variety of eigenmodes in MESA and

S-DALINAC cavities have been calculated using CST
MICROWAVE STUDIO [21]. For each mode with signifi-
cant values of ðR=QÞλ near the axis, this quantity depends
on transversal coordinates in a similar way as for a thin
rf-multipole containing a mode TMnλ10. Therefore, in
simulations each mode was represented with the corre-
sponding TMnλ10 rf-multipole with the same ωλ, Γλ and θλ
values. It is worth noting that for implementation of such a

replacement in a real machine not necessarily thin pillbox
cavities would be used because there is an unambiguous
relationship between ωλ and ðR=QÞλ for modes in a pillbox
cavity. “Pillbox-like” cavities with unchanged fields near
the axis but modified outer contour would be used instead
to obtain different expression for stored energyW in Eq. (1)
providing the required ðR=QÞλ value. Exact shape is not
important here since only fields near the cavity axis are of
interest. Electric field has only longitudinal component and
may be approximated as follows:

Ezðr;φ; tÞ ¼
E0

nλ!

�
ωλ

2c
r

�
nλ
cos ½nλðφ − θλÞ�eðiωλ−ΓλÞt; ð3Þ

where E0 is a field amplitude; for a thin cavity it can be
expressed via complex mode voltage:

E0 ¼
ReVλ

ΔL
; ð4Þ

where ΔL → 0 is the cavity length. Usability of the
definition Eq. (2) here becomes obvious because in this
approximation ðR=QÞ0λ is independent on r0 and com-
pletely characterizes energy transfer between a bunch and a
mode with arbitrary nλ.
Therefore, voltage gain of the mode after passage of a

short bunch with transversal distribution density ρðx; yÞ can
be written as follows:

ΔVλðtÞ ¼
ωλ

2

�
2c
ωλ

�
nλ
�
R
Q

�0

λ

M̂λ;

where

M̂λ ¼
Z

ρðr;φÞrnλþ1 cos ½nλðφ − θλÞ�drdφ:

The integral used here has clear properties of a beam
distribution moment but also depends on the mode polari-
zation angle θλ. Therefore, M̂λ can be called bunch—mode
interaction moment or simply interaction moment. Also
specific interaction moment can be defined as M̂λ per unit
bunch charge:

m̂λ ¼
M̂λR

ρðr;φÞrdrdφ :

It will be used in the next section devoted to stability
analysis.
The described energy transfer scheme is only one half of

the mechanism of the feedback loop formation which
possibly leads to the BBU instability. The second half is
provided via slightly different schemes for different nλ. For
monopole modes (nλ ¼ 0) this is a relation between
average bunch momentum and arrival time to a cavity
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via T56 transport matrix element. Bunches interacted with a
parasitic monopole mode change their average momentum
by Δp (in addition to the interaction with the fundamental
mode) and arrive next time to the same cavity sooner or
later (Δt ¼ T56

c
Δp
p ). If this change leads to a more effective

energy transfer from the bunch to the cavity and the loss
rate is not high enough to dissipate this energy from the
parasitic mode, then instability arises.
Interaction of on-axis bunches with a nλ ≥ 1 mode does

not change their average momentum but they are affected
by magnetic field of the mode (which is negligible near the
axis for nλ ¼ 0). Using Eq. (3) and Maxwell’s equations
one can obtain an expression for magnetic field near the
cavity axis. This is the field of a magnetic multipole, the
same as those used for representation of thin dipole,
quadrupole, etc., lenses in lattice design software such
as elegant [22] and MAD-X [23]. Such elements are
characterized with multipole order (corresponds to nλ), tilt
angle (rotation around beam axis, corresponds to θλ) and
2nλ-pole focusing strength:

K2nλ ¼
Gnλ−1

Bρ
;

where Bρ is the magnetic rigidity defined by charge qe of a
single particle in a beam and its momentum pλ at the time
instant of passing the element:

Bρ ¼ pλ

qe
;

Gnλ−1 is a 2nλ-pole gradient integrated over the element’s
length. In case of zero tilt angle (θλ ¼ 0) it can be expressed
as follows:

Gnλ−1 ¼
Z ∂nλ−1By

∂xnλ−1 dL:

Using Eqs. (3), (4) and Maxwell’s equations one can
rewrite focusing strength, the expression is independent
on θλ:

K2nλ ¼
qe

pλωλ

�
ωλ

2c

�
nλ
ImVλ:

Therefore, complex mode voltages Vλ (measured in Volts
for any nλ) are the most convenient quantities for describing
current state of the modes in simulations.
Lattice regions between centers of two cavities (or two

passages of the same cavity) are characterized with 6 × 6
transport matrix T, reference momentum p, corresponding
particle velocity v and time-of-flight Δt. For brevity, these
regions will be further referred to as arcs. Particle momen-
tum value pλ at the time instant of passing the cavity

containing mode λ in simulations is chosen to be an average
of reference momenta of two adjacent arcs.
A Python script for BBU simulations has been devel-

oped. It is organized in the following way. Sequence of Na
arcs and pointlike cavities between them seen by a bunch is
unrolled onto the positive longitudinal semiaxis z. Nb
bunches are placed initially onto the negative z-semiaxis
and given with a velocity corresponding to the injection
energy. Bunch spacing is chosen according to the required
injection rate. During the simulations bunch sequence is
moved forward along z-axis until the last bunch reaches the
beam dump. Bunch velocity depends on arc’s reference
momentum. Calculations should be performed only at
instants when a bunch encounters a cavity, they consist
of three tasks: 1. Bunch coordinate transformation through
the previous arc:

z ↦ zþ vΔtb; X ↦ TX; Σ ↦ TΣTT;

where Δtb is the time passed since the previous calculation
done for this bunch. 2. Voltage recalculation for all modes
excited in this cavity:

Vλ ↦ Vλeðiωλ−ΓλÞðΔtcþz=vÞ;

where Δtc is the time passed since the previous recalcu-
lation done for this cavity. 3. Simulation of all bunch—
mode interactions (depends on nλ).
For monopole modes (nλ ¼ 0):

X6 ↦ X6 þ
qe
pλc

Re

�
Vλ −

1

4
qωλ

�
R
Q

�0

λ

�
;

Vλ ↦ Vλ −
1

2
qωλ

�
R
Q

�0

λ

:

For dipole modes (nλ ¼ 1):

Vλ ↦ Vλ þ qc

�
R
Q

�0

λ

ðX1 cos θλ þ X3 sin θλÞ;

X ↦ Xþ qeImVλ

2pλc
ð0; cos θλ; 0; sin θλ; 0; 0ÞT: ð5Þ

For quadrupole modes (nλ ¼ 2):

Vλ↦Vλþ
2qc2

ωλ

�
R
Q

�0

λ

ððΣ11−Σ33Þcos2θλþ2Σ13 sin2θλÞ;

X↦TqX; Σ↦TqΣTT
q ; ð6Þ

where
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Tq ¼

0
BBBBBBBBB@

1 0 0 0 0 0

−P cos 2θλ 1 P sin 2θλ 0 0 0

0 0 1 0 0 0

P sin 2θλ 0 P cos 2θλ 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1
CCCCCCCCCA

;

P ¼ ωλqeImVλ

4pλc2
:

Bunch order is preserved during the simulations, there-
fore at each step only the first bunch on each arc should be
checked to find the next bunch to encounter a cavity. Thus
only OðNaÞ operations are needed to simulate each of
Na × Nb bunch—mode interactions. Therefore, calculation
time grows linearly with Nb.
To make a decision concerning stability at a given beam

current one may approximate all jVλjðtÞ dependencies with
exponential functions: if there is at least one rising exponent
then the current is unstable. Then, e.g., dichotomy method
can be used to find the threshold current value with required
accuracy, as in bi code by I. Bazarov [24]. However the
number of injected bunches Nb should be large enough to
mitigate the influence of the transition process in the
beginning of the tracking. Also this technique is not
applicable in case of nonzero equilibrium voltages. This is
a natural situation for quadrupole modes because bunches
cannot be round or pointlike in all cavities. It is also possible
for dipole modes when reference orbit is off-axis in cavities,
e.g., due to misalignments. In such cases the following
alternative criterion can be used: time period Nbtb between
entrance of the first and the last bunch into the lattice is
divided in 4 equal parts, the first two quarters are discarded to
exclude transition process, then jVλj dispersion values in the
third and fourth quarters are compared. If ðDjVλjÞ3 >
ðDjVλjÞ4 then the current is stable and vice versa.

IV. STABILITY ANALYSIS

A. Mode—mode interaction

After development of the BBU simulation algorithm and
determining main instability drivers, one may want to find a
way how to decide whether system is stable or not without
direct simulation. It is worth noting that at the level where
BBU-related phenomena become important, the effect of
every single bunch—mode interaction is small. This is also
the case for the net effect of all such interactions on a single
bunch during its passage through the lattice. Freshly
injected bunches have no BBU-related information and
receive it only from the modes, where it was deposited by
preceding bunches. Moreover, lifetime of a mode is much
larger than that of a single bunch and even potentially
infinite for CW operation. Therefore, it makes sense to
consider modes as main actors and bunches as an

interaction medium. Then one needs to switch from
bunch—mode interactions to mode—mode interactions,
which should be studied separately for different nλ.
Using coordinate and mode voltage transformations

mentioned in the previous section, one can express all
mode voltages via their values at previous instants of time.
Stability analysis technique for dipole modes developed in
[3,4,5] makes use of the fact that for nλ ¼ 1 under the
assumptions made so far resulting equations are linear.
Additional linearization was applied in [6] to use similar
technique for monopole modes and only a special case
where the equations are linear for quadrupole modes was
considered in [7]. The present paper makes an attempt to
summarize all these cases. As in the papers mentioned
above, all equations are linearized by mode voltages where
needed, therefore, superposition principle holds for them.
This means that all interactions between modes are pair-
wise and independent (including interaction of a mode with
itself). Moreover, interactions between the same modes but
via different number of recirculations are also independent.

B. Basic definitions

In the previous section the bunch—mode interaction
moment M̂λ and the specific bunch—mode interaction
moment m̂λ were defined. Now one can define complex
wake potential as a complex mode voltage per unit
interaction moment:

WλðtÞ ¼
dVλðtÞ
dM̂λ

:

More convenient quantities (used, e.g., in [3]) are longi-
tudinal Wlλ and transversal Wtλ wake potentials which are
simply real and imaginary parts of Wλ:

Wlλ ¼ ReWλ; Wtλ ¼ ImWλ:

Then complex mode voltage can be expressed as follows:

VλðtÞ ¼
Z

t

−∞
Wλðt − t0ÞIðt0Þm̂λðt0Þdt0; ð7Þ

where IðtÞ is the beam current. For bunched beam in case of
pointlike bunches, average current I0 and bunch spacing tb
it can be expressed as follows:

IðtÞ ¼
X∞

m¼−∞
I0tbδDðt −mtbÞ; ð8Þ

where δD is the Dirac delta function.
After substitution of Eq. (8) into Eq. (7) the integral in

Eq. (7) is readily calculated and transformed into infinite
sum. To proceed analytically, one needs it to be a sum of a
geometric series. This is possible when for all Vλ the
following condition is fulfilled:
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Vλðtþ tbÞ − Ṽ0λ ¼ ðVλðtÞ − Ṽ0λÞeiωtb ;

where Ṽ0λ is a constant (equilibrium value in the case of
stable motion). Thus, Vλ can be expressed as a series:

VλðtÞ ¼ Ṽ0λ þ
X∞
n¼−∞

Vnλe
iðωþ2πn

tb
Þt: ð9Þ

C. Multiple recirculations

If a bunch in a recirculating machine passes the same
cavity more than twice, then there are modes interacting
with each other via several different paths (which can be
also the case for a mode interacting with itself). The
simplest way to find all these paths is to unroll the cavities
and the arcs between them onto a straight line in the order
seen by a bunch and then find all possible transitions from
the first to the second mode. Figure 3 illustrates this
approach for ER operating mode of MESA (for simplicity
each of the two accelerating modules is represented as a
single cavity with a single mode). Here Lμλ is the number of
different paths between modes μ and λ. The approach is
also correct for the case of different mode sets excited in the
cavities.
Mode should have large Q-factor to cause BBU, thus

mode damping during time interval tb is negligible.
Moreover, parasitic modes are not in resonance with the
beam, i.e., they interact with bunches at nonfixed phases.
Therefore, relative phasing of the bunches on different
paths between the same modes may be neglected. This
approximation leads to simpler formulas and better
performance than those of the exact stability analysis
technique [4], its correctness can be controlled using
cross-check with tracking results.

D. Dipole and quadrupole modes

Consider a single bunch of charge q, momentum pμ

and second-order moments matrix Σl
μλ interacting with a

mode μ, then passing certain region of the lattice with
transport matrixTl

μλ in a time period tlμλ and then interacting
with a mode λ (on the lth loop). Its interaction moment with
the second mode will depend on the voltage of the first
mode (except for monopole modes where specific inter-
action moment always equals to unity). Effect of all
preceding bunch—mode interaction is simply summed
up because only linear beam dynamics is considered.
Therefore, in case of dipole modes:

m̂λjnλ¼1 ¼
X
μ

XLμλ

l¼1

C
1 l

μλδ
⊥
μ ðt − tlμλÞ;

where

δ⊥μ ðtÞ ¼
qe
pμc

ImVμðtÞ

and the expression for C
1
l
μλ can be derived from the

coordinate transformation Eq. (5):

C
1
l
μλ ¼ ðTl

μλÞ12 cos θλ cos θμ þ ðTl
μλÞ34 sin θλ sin θμ

þ ðTl
μλÞ32 sin θλ cos θμ þ ðTl

μλÞ14 cos θλ sin θμ:

Similar expression can be written for quadrupole modes:

m̂λjnλ¼2 ¼
X
μ

XLμλ

l¼1

½C2 l
μλδ

⊥
μ ðt − tlμλÞ þ C

2
l
μλðδ⊥μ ðt − tlμλÞÞ2�;

where term independent on mode voltages is omitted and

C
2
l
μλ ¼ alμλ cos θμ cos θλ þ blμλ sin θμ cos θλ

þ clμλ cos θμ sin θλ þ dlμλ sin θμ sin θλ; ð10Þ

coefficients alμλ, blμλ, clμλ, and dlμλ are given in the
Appendix A. They can be obtained from the coordinate
transformation Eq. (6) and have much more complicated
form than for dipole modes because of double matrix

product in the Σ-matrix transformation. Coefficient C
2 l

μλ is
zeroed out in case of no betatron coupling, initially round
bunches and a special optics between cavities:

ðΣl
μλÞ11 ¼ ðΣl

μλÞ33; jðTl
μλÞ12j ¼ jðTl

μλÞ34j:

The latter condition here is more relaxed than that used in
[7] (round bunches on both passes). These conditions are
not necessarily exactly fulfilled but usually they are a

FIG. 3. Interaction loops between accelerating modules in ER
operating mode of MESA.
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guiding line in the machine design because they allow
minimization of the quadrupole mode excitation in the

cavities. Therefore, for realistic recirculating machines C
2 l

μλ

may be neglected and the same formulas can be used
further for dipole and quadrupole modes.
According to [4], integer (nlμλ) and fractional (δ

l
μλ) part of

the ratio tlμλ=tb can be introduced as follows:

tlμλ ¼ ðnlμλ − δlμλÞtb; 0 ≤ δlμλ < 1:

Substituting IðtÞ and m̂ðtÞ into Eq. (7) one obtains a
relation between complex voltage VλðtÞ and the set of
instant values of ImVλðtÞ. Taking imaginary part of its both
sides transforms WλðtÞ into WtλðtÞ. For the purpose of
stability analysis only one harmonic from Eq. (9) may be
used:

VλðtÞ ¼ V0λeiωt:

Then at t ¼ 0 one obtains the relation between ImV0λ

values where Im sign can be omitted:

V0λ ¼ I0
X
μ

V0μ

XLμλ

l¼1

K
nλ

l
μλ

2i

Xnlμλ
m¼−∞

eΓλmtb

× ðe−iωλmtb − eiωλmtbÞe−iωmtbeiωtμλ ;

where

K
nλ

l
μλ ¼

C
nλ

l
μλqe
2pμ

�
R
Q

�0

λ

tb; nλ ¼ 1; 2:

It can be rewritten in a matrix form:

1

I0
V0 ¼ WðωÞV0; ð11Þ

where the elements of the matrixWðωÞ after summation of
geometric series become:

WμλðωÞ ¼
XLμλ

l¼1

K
nλ

l
μλ

2i
eiωn

l
μλtb−δ

l
μλΓλtb

×

�
eiδ

l
μλωλtb

1 − eð−ΓλþiωþiωλÞtb −
e−iδ

l
μλωλtb

1 − eð−Γλþiω−iωλÞtb

�
:

Therefore, the 1=I0 values are simply eigenvalues of the
WðωÞmatrix. The result corresponds to that obtained in [4]
but the approach used here allows one to apply it also to
quadrupole modes.
In the exact theory proposed in [4] the sizes of theWðωÞ

matrix equal to the number of active modes excited in all
cavities multiplied by the number of recirculations. Here it

is just the number of active modes, which leads to better
performance for multiple recirculations case.

E. Monopole modes

Equation (7) is also correct for monopole modes. M̂λ ≡ 1
for nλ ¼ 0, however, its right-hand side depends on mode
voltages anyway because expression for beam current in
Eq. (8) should be rewritten:

IλðtÞ ¼
X∞

m¼−∞
I0tbδDðt −mtb − ΔtmλÞ;

where

Δtmλ ¼
X
μ

XLμλ

l¼1

ðTl
μλÞ56qe
pμc2

ReVμðmtb − tlμλÞ:

In all real cases longitudinal motion does not change the
order of the bunches, therefore, this expression can be
interpreted as a beam current modulation by mode voltages.
If this modulation is weak enough that

ωλΔtmλ ≪ 1; ∀ m; λ; ð12Þ

then Eq. (7) can be linearized to matrix form Eq. (11) with

WμλðωÞ ¼
XLμλ

l¼1

iK
0 l

μλ

2

×

�
ω−

�
eiðωt

l
μλþωmmδ

l
μλtbÞ

1 − eiωmmtb
þ e−iðωt

l
μλþωpmδ

l
μλtbÞ

1 − e−iωpmtb

�

− ωþ

�
eiðωt

l
μλþωmpδ

l
μλtbÞ

1 − eiωmptb
þ e−iðωt

l
μλþωppδ

l
μλtbÞ

1 − e−iωpptb

��
;

where

ω− ¼ ωλ − iΓλ; ωþ ¼ ωλ þ iΓλ; ωmm ¼ ω−ω−;

ωmp ¼ ω−ωþ; ωpm ¼ ωþω−; ωpp ¼ ωþωþ;

K
0

l
μλ ¼ −

ðTl
μλÞ56ωλqe
4pμc2

�
R
Q

�0

λ

tb:

Simulation results show that if parasitic monopole modes
are not excited initially then instability threshold is always
reached while assumption Eq. (12) is still valid.

F. Complex current plot

The eigenvalues of matrix WðωÞ cannot be found
analytically, thus the indirect way is used. There are no
infinitely growing solutions for I0 ¼ 0, this means that all
ω’s have negative imaginary parts. An instability emerges
when I0 exceeds a threshold value, this means that one of
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the ω’s gets a positive imaginary part. Therefore, ω should
be varied along the real axis within some region which
spans the frequencies ωλ of all excited modes. In general,
the resulting current values will be complex, then the value
with zero imaginary part and the smallest positive real part
is the threshold current.
This leads to the complex current plot technique when

I0ðωÞ values are plotted as a curve on the complex plane
and then the closest to zero intersection of this curve with
the positive real semiaxis is searched for. But in calcu-
lations this curve is represented as a set of points with
varying step between them. Moreover, the number of
curves is equal to the total number of modes excited in
all cavities (in case of the exact stability analysis technique
it is also multiplied by the number of recirculations).
Eigenvalue solver does not guarantee the order of the
eigenvalues. This means that their order may be different
for adjacent ω values. Without special countermeasures this
would lead to jumps between curves and possible spurious
intersections. The following algorithm was used to solve
the problem: for each I0 on the current step the closest value
from the previous step is found (values with smaller jI0j are
considered first), and values from the current step are sorted
accordingly. Then the order of the curves is preserved
and for sufficiently small step in ω intersection I� with real
axis between adjacent values I1 and I2 exists only if
ImI1ImI2 ≤ 0 and can be found as follows:

I� ¼
�minðRe I1;Re I2Þ; Im I1 ¼ Im I2 ¼ 0

Re I1Im I2−Re I2Im I1
Im I2−Im I1

; otherwise
:

An example of a complex current plot is given later in the
text in Fig. 7.

V. MODES IN MESA AND S-DALINAC CAVITIES

A. Mode types

As it was already mentioned, for BBU simulations and
stability analysis only nλ, fλ, Qλ, ðR=QÞ0λ, and θλ param-
eters of modes to be studied are important. For Python
scripts developed as a part of the present work these data
were obtained using eigenmode solver of CST
MICROWAVE STUDIO and compiled into two tables
with numerical values, one for 9-cell MESA cavity and
one for 20-cell S-DALINAC cavity.
MESA and S-DALINAC cavities are arrays of coupled

cells, therefore, their eigenmodes tend to form passbands.
Modes within one passband have the same nλ, thus
passbands may be called monopole, dipole, quadrupole,
etc. Modes of a pillbox cavity fall into two groups: TE
(transversal electric, with no longitudinal electric field) and
TM (transversal magnetic, with no longitudinal magnetic
field). MESA and S-DALINAC cavities have axial sym-
metry but profile of a single cell differs from that of a
pillbox cavity, thus such a classification is valid only for

monopole modes. Modes with nλ ≥ 1 may combine TE-
and TM-like field patterns in different cells, therefore they
are usually called hybrid modes (Hy). Most important
properties of the lowest passbands for both cavity types are
presented in Table I and Table II.
Differences between mode types are, in principle, not

important for calculation of their properties, but they may
help to determine the modes with large quality factors
which may potentially cause BBU. Quality factors used in
simulations constitute of two contributions:Qloss caused by
residual losses in superconducting cavity walls and external
quality factor Qext caused by coupling of the cavity with
nearby equipment:

Q ¼
�

1

Qloss
þ 1

Qext

�
−1
:

Most of the modes haveQloss ∼ 109 which does not prevent
them from causing BBU. More important is Qext which is
mainly determined by coupling of the cavity to mode
couplers and cutoff tubes attached to the end-cells of the
cavity. Both cavity types have power input couplers, MESA
cavity additionally has HOM couplers especially designed
to extract power from parasitic modes. This design differ-
ence explains much largerQext values for several passbands
in S-DALINAC cavity compared to that of MESA cavity.
But also cutoff frequencies of the cutoff tubes are impor-
tant. They determine which modes are trapped inside the
cavity (and most likely have larger quality factors and cause

TABLE I. Lowest passbands of the MESA cavity.

nλ, type fmin, GHz fmax, GHz Qextmin
Qextmax

0, TM 1.276 1.3 1.35 × 106 4.45 × 107

1, Hy 1.621 1.789 4.59 × 103 6.31 × 105

1, Hy 1.799 1.889 6.02 × 103 8.01 × 105

2, Hy 2.288 2.319 3.15 × 105 1.85 × 107

0, TM 2.379 2.454 2.81 × 104 3.15 × 105

2, Hy 2.472 2.492 1.18 × 106 4.93 × 107

1, Hy 2.475 2.586 1.19 × 101 3.72 × 103

0, TE 2.487 2.506 1.21 × 107 1.12 × 1010

0, TM 2.676 2.773 2.66 × 104 5.40 × 105

TABLE II. Lowest passbands of the S-DALINAC cavity.

nλ, type fmin, GHz fmax, GHz Qextmin
Qextmax

0, TM 2.885 2.992 5.83 × 1011 1.96 × 1014

1, Hy 3.389 3.983 1.28 × 101 6.82 × 106

1, Hy 4.009 4.337 2.42 × 102 2.96 × 104

2, Hy 4.971 5.072 6.52 × 1010 9.93 × 1012

0, TM 5.113 5.402 7.63 × 100 3.06 × 104

1, Hy 5.392 5.658 8.98 × 103 3.49 × 104

0, TE 5.485 5.528 2.68 × 109 2.27 × 1010

2, Hy 5.583 5.701 4.44 × 106 3.23 × 109
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BBU) and which can propagate through the beampipe.
Propagating modes have TE or TM type and may be excited
by the modes of the same nλ and type in the cavity (hybrid
modes may excite both types). Cutoff frequencies are
presented in Table III. In MESA cavity a few lowest
passbands of each type are trapped, while in S-DALINAC
cavity larger fundamental frequency and larger cutoff pipe
diameter push dipole cutoff frequency inside the lowest
dipole passband. Therefore, one may expect dipole and
quadrupole modes in these cavities to be of different relative
importance in terms of BBU. This assumptionwill be proven
later in Sec. VII with the stability analysis results.

B. Mode separation

Another property of an eigenmode spectrum which is
really important for calculations is mode separation within
passbands. It was shown in [4] that if modes in the spectrum
do not overlap, then BBU threshold current caused by their
combination is close to the minimal threshold current caused
by each of them separately. Then during stability analysis
eigenvalue problem may be solved for smaller matrices
which increases performance.
Mode width may be estimated as follows:

Δfλ ¼
fλ
2Qλ

:

According to simulations in CST MICROWAVE STUDIO,
within each passband with nλ ≥ 1 separation between
adjacent mode pairs is always several orders of magnitude
larger than within one mode pair; also separation between
adjacent monopole modes and adjacent nλ ≥ 1 mode pairs
is always at least one order of magnitude larger than the
width of the modes.
Two sets of fλ andQλ measurements were performed for

two lowest dipole passbands in 4 MESA cavities: during
cold tests at DESY Hamburg [25] and horizontal tests at
Helmholtz Institut Mainz (HIM) [26]. Measured distances
between adjacent modes compared to measured mode
widths (mean value and standard deviation) are presented
in Fig. 4. As expected, the first series falls into two parts:
distances between mode pairs and distances within pairs.
According to statistical spread, some modes within pairs
may overlap but for different pairs overlapping is unlikely.
Therefore, in all subsequent simulations only one

monopole mode or one pair of nλ ≥ 1 modes is excited
in each cavity. Successive calculations are performed and
minimal threshold current values are taken in case of larger
number of active modes.

C. Parameter randomization

As it was already seen from the measurements, mode
properties may differ from cavity to cavity due to manu-
facturing tolerances. These small changes in the mode
properties are mostly uncontrollable and may lead to
significant BBU threshold current variations. Therefore,
a correct prediction of the BBU threshold current is not a
certain value but a range of values which can be obtained
for a set of machine configurations with mode properties
generated according to their statistical distributions. Either
theoretical [27] or experimental approach can be used for
obtaining these distributions. In the present work exper-
imental results from [25,26] were analyzed for this purpose.
Distribution of the measured mode detuning from the

simulated frequency values is presented in Fig. 5. It can be
approximated with Gaussian distribution with σ ¼ 1 MHz,
nonzero mean value here may be neglected. Distribution of

TABLE III. Cutoff frequencies of the beampipe near cavities
(GHz).

nλ, type MESA S-DALINAC

0, TM 2.942 4.623
0, TE 4.688 7.366
1, Hy 2.252 3.539
2, Hy 3.731 5.863

FIG. 4. Mode separation compared to mode width for the
lowest two dipole passbands in MESA cavity.

FIG. 5. Measured mode detuning distribution for the lowest
two dipole passbands in MESA cavity compared to Gaussian
distribution.
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the ratio Qmeasured=Qsimulated shown in Fig. 6 can be
approximated with Gamma-distribution with α ¼ β ¼ 2
providing mean value of 1. Cutoff at 3σ was applied to both
distributions to prevent unrealistically large deviations.
Shunt impedance may also differ from cavity to cavity but

the effect of its variation on the BBU threshold current is
more or less straightforward because ðR=QÞ0λ acts only as a
common factor. Thus, ðR=QÞ0λ was not varied in the present
study. The last mode property in the list, polarization angle
θλ, is the most affected by manufacturing tolerances, up to
full randomization. So, uniform distribution over π=nλ was
used for the θλ of the first mode in each pair with nλ ≥ 1, the
second one was assigned with Δθλ ¼ π=ð2nλÞ.
BBU threshold current depends on the elements of arc

transport matrices as well as on mode properties. These
matrix elements may also have random errors due to
misalignments and power supply errors. This effect was
studied in simulations and found to be negligible at the
accuracy levels easily achieved in existing machines.

VI. BBU MITIGATION TECHNIQUES

Different strategies can be used for increasing BBU
threshold current in a particular machine. The most obvious
way is to decrease quality factors for parasitic modes,
which may involve cavity design optimization (especially
HOM couplers design optimization) and/or active damping
of the modes. Also systems for active damping of the beam
oscillations are possible. These strategies imply designing
of a dedicated hardware; a separate study is required for
each particular case.
Meanwhile, from the formulas mentioned above one can

see that there are parameters which are quite easy to change
and affect BBU threshold current strongly but in a
complicated manner. In linear BBU theory considered here
these parameters are transport matrix elements of the
arcs (Tij) and bunch interval tb. Adding of nonlinearities
which is planned within the present research will also allow
taking chromatic effects into account. Strategy exploiting

chromatic decoherence for dipole BBU mitigation was
proposed, e.g., in [28].
Effect of bunch interval on BBU threshold current was

studied in [5] and found to be negligible. However recently
variation of injection pattern was studied and the results are
quite promising [29]. A similar study is also planned as a
part of the present research.
In this work only transport matrix elements manipulation

will be discussed. Optical functions matching for a transport
channel is always not a trivial task because horizontal and
vertical functions should bematched simultaneously. In case
of recirculating machines the task becomes even more
complicated because, in fact, they are transport channels
with repetitive parts and varying beam energy. In turn, rf
cavities (which are located in these repetitive parts) contrib-
ute to beam focusing [30] and this contribution depends on
beam energy. Therefore, variation of beam focusing param-
eters is usually not possible because it most likely leads to
intolerable growth of horizontal and/or vertical beam size.
The simplest way to manipulate transport matrix ele-

ments without touching optical functions and beam sizes is
to use special combinations of beamline elements which do
not affect beam distribution but do swap the particles inside
it according to a certain law. Such combinations are usually
referred to as fictitious beamline elements. Fictitious
elements which are to be used for this purpose, would
have no effect in absence of BBU because all particles are
identical. But each interaction with a mode inside a cavity
(which, in fact, causes BBU) gives to every particle a “tag”
describing the interaction. Particles get individual sets of
these “tags” and become unique, therefore, mixing them
one affects beam dynamics.
Only linear beamline elements should be considered

within the linear BBU theory, then possible phase space
transformations are translations (shifts), rescalings, rotations
and reflections. The former two are not appropriate because
they do change the beam distribution. Usage of rotations and
reflections was studied in [31], several formulas from that
work will be cited here. Usage of reflections is restricted by
symplecticity condition to the cases of 180°-rotations, there-
fore, reflections will not be considered in this work.
For brevity in description of possible rotations, one can

introduce the following notation for 2 × 2 transport matrix
block (similar to that used in [5]) of a lattice region with
initial optical functions βi, αi, final optical functions βj, αj
and betatron phase advance ϕ:

MijðϕÞ ¼

0
B@

ffiffiffi
βj
βi

q
ðcosϕþαi sinϕÞ

ffiffiffiffiffiffiffiffi
βjβi

p
sinϕ

ðαi−αjÞcosϕ−ð1þαiαjÞ sinϕffiffiffiffiffiffi
βjβi

p
ffiffiffi
βi
βj

q
ðcosϕ−αj sinϕÞ

1
CA

Two independent rotations can be performed in x-px and
y-py planes using a fictitious element phase trombone (PT)
which can be implemented as a combination of quadru-
poles:

FIG. 6. Measured and simulated quality factor ratio distribution
for the lowest two dipole passbands in MESA cavity compared to
Gamma-distribution.
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MPTðϕx;ϕyÞ ¼
�
MxxðϕxÞ 0

0 MyyðϕyÞ
�
;

it is equivalent to Tdecoupledðϕx;ϕyÞ used in [5].
Rotation in x-y plane can be performed using a fictitious

element beam rotator (BR) which can be implemented as a
combination of quadrupoles, skew-quadrupoles and/or
solenoids:

MBRðϕcÞ¼
�
Mx0ð0Þ 0

0 My0ð0Þ
�
RðϕcÞ

�
M0xð0Þ 0

0 M0yð0Þ
�

¼

0
BBBBBB@

cosϕc 0 cxy 0

0 cosϕc
αy−αxffiffiffiffiffiffiffi
βxβy

p sinϕc cyx

−cyx 0 cosϕc 0
αy−αxffiffiffiffiffiffiffi
βxβy

p sinϕc −cxy 0 cosϕc

1
CCCCCCA
;

where cxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
βx=βy

p
sinϕc, cyx ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
βy=βx

p
sinϕc,RðϕÞ is

a matrix of the beam rotation around longitudinal axis:

RðϕÞ ¼

0
BBB@

cosϕ 0 sinϕ 0

0 cosϕ 0 sinϕ

− sinϕ 0 cosϕ 0

0 − sinϕ 0 cosϕ

1
CCCA:

It transforms βx;y, αx;y to some equal values β0, α0,
performs beam rotation and transforms back. Note that
the final expression is independent on the intermediate
values β0 and α0. An important restriction is that beam
rotator does not change particle distribution in the beam
only in case of equal emittances, εx ¼ εy, which is
approximately the case for MESA and S-DALINAC.
Transformation Tcoupledðϕ1;ϕ2Þ used in [5] is a combina-
tion of a phase trombone and 90°-rotation in x-y plane.
To use the fictitious elements described above one should

insert their transport matrices into certain positions in the
lattice. Within an arc their positions are not important, for
better visualization the same points near the centers of
recirculation arcs were chosen for both of them. Results
of 1D and 2D optimization over ϕc and ðϕx;ϕyÞ will be
presented in the next section. Global optimization involving
all the inserted elements is possible, but to save computation
time, it was performed separately for each arc.

VII. SIMULATION RESULTS

A. Cross-check between tracking and stability analysis

An example of the cross-check procedure between the
two techniques for one of dipole mode pairs is presented
below. In Fig. 7 the central part of the complex current plot
is shown (threshold current value is marked with a red
point). Figures 8 and 9 show time dependencies of the

absolute values of mode voltages for beam current values
10% below and above the threshold correspondingly. It can
be seen that after a relatively short transition process mode

FIG. 7. Complex current plot for one of the mode configura-
tions in MESA (only one pair of dipole modes is active). The
threshold current value is marked with a red point.

FIG. 8. Dipole mode voltages time dependence for a current
10% below the threshold. Mode configuration is the same as in
Fig. 7.

FIG. 9. Dipole mode voltages time dependence for a current
10% above the threshold. Mode configuration is the same as
in Fig. 7.
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voltages begin to constantly fall (below threshold) or rise
(above threshold).
A similar procedure with automated and visual check

has been performed for several tens of different dipole
and quadrupole mode configurations in MESA and
S-DALINAC. Agreement is always much better than
�10%. This can be regarded as a proof of applicability
of the approximated stability analysis technique developed
in this work, at least to these facilities. Detailed comparison
to the exact technique [4] is also planned.

B. Search for the most dangerous modes

To save simulation time, modes with the strongest impact
were selected for further study. For this purpose 100
random mode configurations of MESA and S-DALINAC
were generated. Then BBU threshold current was calcu-
lated separately for each monopole mode and nλ ≥ 1 mode
pair in each configuration and minimum over all configu-
rations was found. Results are shown in Figs. 10 and 11.

As it was predicted above, the most dangerous are the modes
from the first two dipole passbands in MESA and from the
first quadrupole passband in S-DALINAC. Threshold cur-
rent values for the lowest two dipole passbands in MESA are
in accordance with the results presented in [32].

C. Optimization results

Combinations of thin phase trombones (PT) and beam
rotators (BR) were inserted near the centers of T1, T2, T3
arcs of MESA and F, S arcs of S-DALINAC. During each
optimization run only one of these elements was controlled
while others were disabled. Examples of 2D PT-scan and
1D BR-scan results for 5 the most dangerous dipole mode
pairs in MESA are presented in Figs. 12 and 13 corre-
spondingly. Figure of merit here is the maximal threshold
current value which can be achieved with a particular BBU
mitigation technique. However the minimal achievable
value is also important to characterize the effectiveness
of the technique. Also spread of the minimal and maximal

FIG. 10. Minimal threshold current for different modes in
MESA. Five of the most dangerous dipole mode pairs are
enclosed in a green box.

FIG. 11. Minimal threshold current for different modes in
S-DALINAC. Four of the most dangerous quadrupole mode
pairs are enclosed in a green box.

FIG. 12. Examples of 2D phase trombone scans for different
configurations of MESA (Qx;y ¼ ϕx;y=2π).

FIG. 13. Examples of 1D beam rotator scans for different
configurations of MESA (Qc ¼ ϕc=2π).
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values over different randomized configurations helps to
understand if the positive effect of this particular technique
is guaranteed or not. Combination of these four values can
be regarded as a universal criterion of the optimization
effectiveness.
Final results calculated for different BBU mitigation

techniques in 10 randomized configurations of MESA and
S-DALINAC are presented in Tables IVand Vas well as in
Figs. 14 and 15. It can be seen that for each technique there
is a clear gap between minimal and maximal values,
including spread, therefore, each of them should be
effective.

VIII. CONCLUSION

In this study an attempt was taken to consider the BBU
phenomenon in a more general way while keeping for-
mulas as simple as possible. In particular, the BBU caused
by monopole, dipole and quadrupole electromagmetic
modes in rf cavities were studied together using similar
frameworks. Therefore, tracking results can be easily
verified using the stability analysis technique initially
developed only for dipole modes.
The general approach to BBU mitigation techniques

related to linear lattice modifications proposed in [5] was
extended and illustrated with the examples for two different
recirculating machines, MESA and S-DALINAC. The
universal criterion proposed in [5] which can be used for
effectiveness assessment of different techniques was also
extended.
There are three main outcomes from the study with

respect to S-DALINAC and MESA: 1. The approximated
stability analysis technique can be used in the case of
multiple recirculations to achieve better performance.
Detailed comparison to the results obtained with the exact
technique [4] is planned as the next step of the present
research. 2. Quadrupole modes can be more dangerous
in terms of BBU in some particular machines (e.g.,
S-DALINAC). Therefore, one should always take them
into account in BBU studies. 3. Tools for changing and
measurement of betatron phase advances as well as
betatron coupling should be always included into the
design of new recirculating machines; they can be also
introduced into existing machines. It allows to increase the
BBU threshold current without usage of expensive dedi-
cated components.
The experimental validation of the described model is

also planned at S-DALINAC. It will include the BBU
threshold current measurements with different quadrupole
settings (betatron tune scan). Observations of the recircu-
lated beam behavior close to the BBU threshold are also
planned to determine the type of the BBU-causing modes
(dipole or quadrupole). As it was already mentioned,

TABLE IV. Effectiveness of different BBU mitigation tech-
niques in MESA.

Technique Ithmin
(A) Ithmax

(A)

1 PT in T1 arc 0.047� 0.022 1.15� 0.65
2 PT in T2 arc 0.029� 0.012 1.06� 0.51
3 PT in T3 arc 0.029� 0.018 0.65� 0.22
4 BR in T1 arc 0.072� 0.037 3.00� 1.44
5 BR in T2 arc 0.072� 0.037 2.31� 1.29
6 BR in T3 arc 0.072� 0.037 1.55� 0.71

FIG. 14. Minimal and maximal threshold current values achiev-
able with different BBU mitigation techniques for 10 randomized
configurations of MESA.

FIG. 15. Minimal and maximal threshold current values achiev-
able with different BBU mitigation techniques for 10 randomized
configurations of S-DALINAC.TABLE V. Effectiveness of different BBU mitigation tech-

niques in S-DALINAC.

Technique Ithmin
(μA) Ithmax

(μA)

1 PT in F arc 0.0428� 0.0404 537� 534

2 PT in S arc 0.415� 0.406 467� 392

4 BR in F arc 1.34� 1.27 105� 94.6
5 BR in S arc 0.00301� 0.00282 95.7� 95.3
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S-DALINAC cavities have no HOM couplers, which
means that the voltages and actual parameter values of
the parasitic modes cannot be measured. Therefore, the
variety of possible BBU experiments at S-DALINAC is
significantly limited. The diagnostics possibilities at the
future MESA ERL will be much larger.
A simple model of a damped oscillator with feedback is

proposed in Appendix B as a universal example illustrating
the BBU phenomenon in general. This model cannot be
used for the BBU threshold current calculations in a
particular machine but it clearly demonstrates the essence
of the instability.
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APPENDIX A: COEFFICIENTS FOR BBU
STABILITY ANALYSIS WITH

QUADRUPOLE MODES

Coefficients in expression Eq. (10) have the following
form:

alμλ ¼ 2½ðT31T32 − T11T12ÞΣ11 þ ðT32
2 − T12

2ÞΣ12 þ ðT11T14 − T31T34 þ T32T33 − T12T13ÞΣ13

þðT32T34 − T12T14ÞΣ14 þ ðT12T14 − T32T34ÞΣ23 þ ðT13T14 − T33T34ÞΣ33 þ ðT14
2 − T34

2ÞΣ34�;

blμλ ¼ 2½ðT11T14 − T31T34ÞΣ11 þ ðT12T14 − T32T34ÞΣ12 þ ðT11T12 − T31T32 þ T13T14 − T33T34ÞΣ13

þðT14
2 − T34

2ÞΣ14 þ ðT12
2 − T32

2ÞΣ23 þ ðT12T13 − T32T33ÞΣ33 þ ðT12T14 − T32T34ÞΣ34�;

clμλ ¼ 2½−ðT11T32 þ T12T31ÞΣ11 − 2T12T32Σ12 þ ðT14T31 − T12T33 þ T11T34 − T13T32ÞΣ13

−ðT12T34 þ T14T32ÞΣ14 þ ðT14T32 þ T12T34ÞΣ23 þ ðT13T34 þ T14T33ÞΣ33 þ 2T14T34Σ34�;

dlμλ ¼ 2½ðT11T34 þ T14T31ÞΣ11 þ ðT14T32 þ T12T34ÞΣ12 þ ðT14T33 þ T11T32 þ T12T31 þ T13T34ÞΣ13

þ2T14T34Σ14 þ 2T12T32Σ23 þ ðT13T32 þ T12T33ÞΣ33 þ ðT14T32 þ T12T34ÞΣ34�;

where indices l
μλ are omitted in all ðTl

μλÞij and ðΣl
μλÞij for brevity.

APPENDIX B: ILLUSTRATION OF BBU
PHENOMENON

After considering BBU mechanisms and development of
the techniques for BBU simulations and stability analysis
which can be used in real machines, one may want to study
the simplest possible system showing similar behavior.
Obviously, in terms of recirculating machines this should
be a lattice with one recirculation arc and single cavity,
where only one dipole mode can be excited (dipole mode
should be chosen to keep the problem as linear as possible).
For further simplification bunched beam can be replaced
with a coasting beam continuously injected into the
machine. Needless to say, such beam cannot be accelerated
or decelerated using conventional means, but now it is not
needed. Moreover, acceleration or deceleration is a result of

beam interaction with the fundamental mode which is also
not necessary for the simplest example, therefore, cavity
excitation can be just switched off. Then the voltage uðtÞ of
the only mode existing in the cavity can be described with a
differential equation of a damped oscillator with a feedback
(driven by itself via delay loop):

üðtÞ þ b _uðtÞ þ ω2uðtÞ ¼ kuðt − τÞ; ðB1Þ

where ω is the mode frequency, b ¼ ω=ð2QÞ is damping
coefficient, k is feedback strength, τ is feedback loop delay
time. For Eq. (B1) to describe a linear or nonlinear oscillator,
its right-hand side should be a linear or nonlinear function of
uðtÞ, correspondingly. But presence of the linear term with a
time delay provides some unique properties while partly
keeping linear behavior. In particular, the equation has a
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harmonic solution uðtÞ ¼ Cezt, which leads to the following
dispersion relation:

z2 þ bzþ ω2 ¼ ke−zτ;

but depending on k the solution may be either stable or
unstable. To find k ¼ kth corresponding to a separatrix
between stable and unstable solutions, one should consider
purely imaginary values z ¼ iy, where y ∈ R, then

ω2 − y2 ¼ kth cos τy;

by ¼ −kth sin τy:

Without loss of generality, these equations can be multiplied
by τ2 in order to switch to dimensionless parameters
φ ¼ ωτ, ψ ¼ yτ, B ¼ bτ, K ¼ kthτ2:

φ2 − ψ2 ¼ K cos ψ ;

Bψ ¼ −K sin ψ ;

which can be rewritten as

B cot ψ ¼ ψ −
φ2

ψ
; ðB2Þ

K2 ¼ ðφ2 − ψ2Þ2 þ ðBψÞ2: ðB3Þ

Equation (B2) has multiple solutions which can be found
numerically but only one of them providing minimum to K
in Eq. (B3) should be chosen. Therefore, only ψ values

around ψ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 − B2=2

p
should be checked in Eq. (B2).

Figures 16 and 17 show KðφÞ dependency at two
different values of B. The graph is confined between lines
K ¼ Bφ and K ¼ ffiffiffiffiffiffi

2B
p

φ which can be also proven
theoretically. Moreover, it can be approximated as follows:

K ≈
Bφ
sinφ

in the region K ≤
ffiffiffiffiffiffi
2B

p
φ, which resembles the approximate

formula for the BBU threshold current from [4].
The example under study can be further extended to

illustrate applicability of the eigenvalue approach proposed
in [3]. Now consider a set of N oscillators with frequencies
ωi and damping factors bi pairwise connected via feedback
loops, multiple loops are possible for each pair. Ikijl and τijl
are strengths and delay times of nij feedback loops between
ith and jth oscillator, then

üiðtÞ þ bi _uiðtÞ þ ω2
i uiðtÞ ¼ I

XN
j¼1

�Xnij
l¼1

kijluðt − τijlÞ
�
:

ðB4Þ

These oscillators correspond to all possible modes which
can be excited in the cavities of the machine; multiple
feedback loops between the same oscillators correspond to
multiple recirculations; common factor I in feedback
strengths corresponds to the beam current. System of
equations (B4) has a set of harmonic solutions

uiðtÞ ¼ Ciezt;

leading to a system of dispersion relations

Ciðz2 þ bizþ ω2
i Þ ¼ I

XN
j¼1

Cj

�Xnij
l¼1

kijle−zτijl
�
:

which is a linear equation system on Ci. It can be solved
only when 1=I is an eigenvalue of a matrix with the
following elements:

MijðzÞ ¼
Pnij

l¼1 kijle
−zτijl

z2 þ bizþ ω2
i
:

Therefore, coupled system of linear damped oscillators
driven by themselves via multiple delay loops shows similar
behavior to a systemwithout delays and can be studied using
conventional techniques. The main difference caused by theFIG. 16. KðφÞ dependency at B ¼ 0.1.

FIG. 17. KðφÞ dependency at B ¼ 0.001.
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delays is a nontrivial shapeof the stability region inparameter
space. Certain form of this stability region cannot be
predicted using this simplified model, numerical analysis
is necessary for realmachines.However, one should be aware
of the capabilities and limitations of such analysis which
were illustrated using the model.
One can find more detailed information on systems with

feedback and time delay from the point of view of control
theory in [33,34]. Certain similarities can be found between
complex current plot and Nyquist plot which is widely used
for stability analysis in control theory. However, here
emphasis is not placed on them to keep the example as
simple as possible.
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