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We report on the application of machine learning (ML) methods to extract longitudinal phase
information such as parameters of the synchrotron damping oscillation. Parameters of the synchrotron
damping oscillation are important for the evaluation of machine status and bunch stability. It is of concern
to extract these parameters with high-speed and high-precision. The previous methods, such as multi-
parameter nonlinear fitting and table look-up, are slower and easily fall into local optimal solutions. Our
approach based on ML-image processing consists of training a virtual diagnostic to predict parameters
using the beam position monitor (BPM) electrical signal data as inputs. We find that when the noise of data
is large, our ML-model can still get better results than other methods, an important step toward on-line
multiparameter extraction from multidimensional raw data.
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I. INTRODUCTION

The injection transient process is a good starting point to
study the beam instabilities since it occurs frequently in
top-off mode. Oscillations will be invoked due to the
energy mismatch between the storage ring and the injector.
The study of the injection transient is helpful for optimizing
the state parameters of the injector and understanding the
physical process of the merging of the stored charge and the
refilled charge during the injection process [1–4]. Starting
from 2012, the BI (beam instrument) group of SSRF
(Shanghai Synchrotron Radiation Facility) performs
bunch-by-bunch phase measurement and study the injection
transient [5].
The refilled bunch contains the stored charge, refilled

charge, and the crosstalks from other stored bunches. The
stored bunch contains the stored charge and the crosstalks.
If we get the turn-by-turn longitudinal phase of the refilled
charge, the synchrotron damping oscillation can be moni-
tored. The data collected by beam position monitors
(BPMs) is a combination of the stored charge, refilled

charge, and the crosstalks from other stored bunches.
The BI group of SSRF developed a series of algorithms
to separate the refilled charge part from the refilled bunch
data. The longitudinal phase of the refilled charge was
obtained by using the look-up table method to process the
separated refilled charge data. These phase data are fitted
by gradient descent method or the fitting function library in
commercial data software such as MATLAB to get the
synchrotron damping oscillation parameter [6].
Although the existing method can obtain the synchrotron

damping oscillation parameters from the BPM data, many
problems have been found in practical applications. First,
the method is very complicated and takes a long time to get
the synchronous oscillation damping parameters. This
method needs to construct the corresponding functions
and look-up tables of the BPM in advance. Afterwards, this
method also needs to eliminate the signal of stored charge
and crosstalk between bunches. At last, phase of refilled
charge needs to be fitted by gradient descent method or the
fitting function library in commercial data software. This
cannot meet the requirements of online measurement of the
synchrotron damping oscillation at each injection transient.
Second, this method wastes a lot of information in the
BPM signal. In the existing methods, we believe that the
longitudinal phase of the stored charge in each bunch is
consistent. Therefore, we use the average of all the stored
bunch phase as the stored charge phase in the refilled
bunch, or simply choose the phase of several stored
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bunches as the stored charge phase. This means that the
phase relationship between the bunches is ignored.
Underutilizing the data means more noise. Furthermore,
linear fitting is easy to encounter the problem of getting into
a local optimal solution. When the noise of signal is large,
different initial parameter settings will result in different
fitting results. When the initial parameters are too different
from the fitted line, the time required for convergence
cannot be estimated. Therefore, recently we developed a
method based on machine learning image processing
technology to solve these problems. With this method,
we can fully extract information from large matrix data that
is not easily quantified by physics theory, and get more
stable conclusions quickly.
With the enhancement of computer computing perfor-

mance, machine learning technology has been greatly
developed in recent years. In particular, the concept of
deep learning allows us to use algorithms to deal with the
complex problem with a large amount of data. Accelerator
engineers have also begun to gradually apply machine
learning technology to beam measurement and diagnosis,
and have achieved some remarkable results [7].
The development of machine learning in image process-

ing is obvious to all, such as face recognition, automatic
driving and so on. Using image processing techniques, we
can give machines the ability to process image data [8,9]. In
our field of beammeasurement, we collect huge amounts of
data every day. These data are often stored in two-dimen-
sional or even multi-dimensional arrays. If the two-dimen-
sional array is restored according to the storage method of
the grey value image, it can be drawn into a greyscale
image. Therefore, can we use cutting-edge image process-
ing techniques to process such data in the form of
multidimensional arrays and extract the information we
need from it? In this regard, we made a preliminary attempt.
The object we are dealing with is the electrical signal data

of the BPM when injection transients. We hope to use these
data to extract the relevant parameters of synchrotron
damping oscillation.
A digital acquisition board is used to collect the BPM

data. These electrical signals are stored in the form of multi-
dimensional arrays. A two-dimensional array can be treated
as an image. We can use a large amount of data at the same
time by using machine learning image processing technol-
ogy. Even if a part of data has noise due to instability, we
can get more accurate result than other methods, which can
improve the robustness of the algorithm.

II. PREPARATION

Before building the model, we need to choose a suitable
machine learning model. This model requires a fast running
speed for online data processing. In addition, we need
enough data for model building and testing. After consid-
eration, we chose the convolutional neural networks (CNN)
as our predictive model and established a data acquisition
system to obtain training data. The true value of the training
data is obtained by the bunch-by-bunch phase acquisition
system that has been implemented by the SSRF BI Group.
This method compares the electrical signal stimulated by
the bunch through BPM with the corresponding function of
the BPM electrode established by the oscilloscope to obtain
the longitudinal phase. After that, the relevant parameters
of the synchrotron damping oscillation during the injection
transients process are obtained by the complex multi-
parameter nonlinear fitting of refilled charge phase [5,10].

A. Dataset for training and testing

Figure 1 shows the framework of the bunch-by-bunch
measurement system, which is used to obtain the dataset.
The dataset we got consists of 482 sets of BPM electrical
signals captured at the instant of 482 accelerator injection

FIG. 1. The system framework of the bunch-by-bunch monitor. The BPM sum signal from four electrodes was split into two parts with
300 ps delay lines by a power divider (BW 1MHz1000 MHz). Two sampling points on the rising edge of the BPM signal were captured
by a high-speed ADQ digitizer (14 bits, 1 GHz sampling rate, 1:2 GHz bandwidth). The ADC external clock signal of 499.654 MHz,
directly come from the timing system of the machine, aiming at the synchrotron sampling of signals. The clock was followed by a
tunable shifter with maximum phase excursion of 2 ns to ensure the capture of zero-crossing point of the rising edge of the signal.
The system can achieve 3 million points (2083 turns) of data, which is enough for us to obtain the whole oscillation process.
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processes. We use a threshold trigger algorithm to auto-
matically capture the injection process. In order to realize
the acquisition of BPM electrical signals, we choose a high-
speed data acquisition board. With the fixed delay lines, we
realize that each single bunch collects two sampling points
each turn when it goes through the BPM. The two data
points are both sum of four electrodes of a BPM, separated
by 300 ps delay. We use channel A and channel B to refer
to these two data channels. The stored data format is
512 × 2080 × 2. Among them, 512 means more than
500 bunches in the storage ring of SSRF. We collect more
than 2000 turns data in each injection process, in which the
injection process starts from the first hundred turns. 2
represents the two data channels A and B. In order to
facilitate and speed up the training process, we cut and
normalize the data. What is more, we expanded the refilled
bunch by 300 times to highlight the refilled bunch. It means
that there is only one refilled bunch, but we copy it into
three hundred bunches to increase its visual size. The
data finally introduced into the algorithm is 482 × 800 ×
1800 × 2 in the range of 0–1. The dataset is shown in
Table I.

B. Convolutional neural network

Convolutional neural networks (CNN) is a type of
feedforward neural networks with convolutional computa-
tion and deep structure. It is one of the representative
algorithms of deep learning [11–13]. CNN has the ability to
represent learning, and can shift-invariant classification of
input information according to their hierarchical structure.
Therefore, it is also called “shift-invariant artificial neural
networks (SIANN)” [14]. CNN is inspired by the visual
organization of living things. Visual cortical cells receive
signals from photoreceptors on the retina. A single visual
cortical cell does not receive all of the signals from the
photoreceptor, but only accepts the signal from the stimulus
region it dictates. Only by feeling the stimulation in the
field can the neuron be activated. Multiple visual cortical
cells systematically superimpose the receptive field, com-
pletely receiving signals transmitted by the retina and
establishing a visual space.
It is beneficial to use CNN to obtain synchrotron

oscillation parameters from BPM multidimensional array
data. First of all, the data we need to process is data which
contains 500 bunches in more than thousands of turns. If
we use common back propagation neural networks instead
of CNN, it will requires an extremely large number of
weights [15]. If we want to process M × N two-
dimensional array, the number of model’s weights will be

weight number ≥ M2 × N2: ð1Þ

According to Eq. (1), processing data with 500 bunches
and 1800 turns requires more than 80 billion weights,
which is unacceptable for online processing. However,
CNN has the feature of weight sharing, which greatly

TABLE I. Dataset for CNN.

Parameter Original data Preprocessed data

Shape 482*512*2080*2 482*800*1800*2
Set 482 482
Bunch 512 800
Turn 2080 1800
Channel 2 2
Range −15000–20000 0–1
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FIG. 2. Data is drawn into images. (a) and (b) show two sets data with two channels. B channel is similar to A channel. The difference
between them is caused by the delay(300 ps). With both of them, we can remove the influence of different charge quantities to get the
phase oscillation parameters. The area in the red dotted box is refilled bunch. There is only one refilled bunch, but we copy it into three
hundred bunches to increase its visual size. Outside is stored bunches. (c) shows refilled bunch longitudinal phase. (d) shows injection
process. The refilled bunch is consisted of refilled charge and stored charge.The difficulty of our work is how to remove the oscillation of
refilled charge from the refilled bunch.
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reduces the complexity of the network when the size of
input data is large. Second, SSRF injects selectively during
each injection process. Only a few bunches will be refilled.
It means that which bunch will be refilled each time is not
determined. Identification of refilled bunches can be done
by directly comparing BPMs sum signal before and after
injection. But we need using all the data as model’s input
because the synchrotron damping oscillation of refilled
charge is stripped from refilled bunch (refilled charge and
stored charge) by using stored bunch (stored charge). It is
not sufficient with the refilled bunch data alone. As a result,
the position of different kind of bunches in the data is not
determined. The refilled bunch is in red dotted box which
shown in Fig. 2. The position of red dotted boxes is
different in different datasets. We use the whole image
[Fig. 2(a) and (b)] as models input. It means that our model
needs to find which area of images is the refilled bunch.
This is a difficulty for ordinary machine learning models.
Ordinary machine learning models such as BP neural
networks will give different outputs when the location of
the information is different. This does not satisfy our
physical theory. But CNN has the characteristics of trans-
lation invariance, no matter where the refilled bunch is, the
model can easily find the information we need. Last but not
least, the image data processed by CNN retains the spatial
and time relationship, that is, the laterally adjacent pixels
are spatially adjacent bunches, and the vertically adjacent
pixels are continuous time, which is beneficial to mining
the intrinsic relationship of the data.

III. APPLICATION OF CONVOLUTIONAL
NEURAL NETWORK IN DATASET

After data preprocessing is completed, the data of two
channels A and B in each dataset can be drawn into two
image which shown in Fig. 2. Figure 2(a) and (b) is two
different sets of data with A and B channel. The area in the
red dotted box is refilled bunch. There is only one refilled
bunch, but we copy it into three hundred bunches to
increase its visual size. Outside of the red dotted box is
stored bunches. Our predictive model needs to distinguish
where is refilled bunch area and stored bunch area which
are different in different datasets. You can see ripples
(oscillation) in the refilled bunch area (red dotted box). The
refilled bunch longitudinal phase we obtained by look-up
table method is shown in Fig. 2(c). The synchrotron
damping oscillation cannot be distinguished because the
refilled bunch is composed of refilled charge and stored
charge [shown in Fig. 2(d)]. The synchrotron damping
oscillation is carried by refilled charge. Therefore, what we
must do is separate the refilled charge phase from refilled
bunch by using stored bunches which are outside the red
dotted box and get the oscillation amplitude and the
synchrotron damping time. We let the machine learn
how to deal with this problem through convolutional neural
networks.

We divided the dataset of 482 injection processes into the
training sets and the test sets according to 3∶1, which
means that there are 321 sets of data used to train the model.
The remaining 121 sets of data are not known by the model.
Therefore, we use this data to test the performance of the
model. Our goal is to establish a model that can extract the
amplitude and the damping time of the synchrotron damp-
ing oscillation of the refilled charge directly from the BPM
sum signal image by a convolutional neural networks.
For prediction, we have two images including A and B

channels. The corresponding position pixel of two images
is the BPM data of the same bunch on the same turn. There
are 300 ps delay between two channels. If two-channel
sampling with delay lines is not used, it is difficult to
determine whether the difference of data value is due to
phase oscillations or due to differences of bunches’ charge.
Using this two-channel data, we can remove the effects of
different charge between bunches and extract the phase
oscillation parameters. Therefore, we want our CNN model
to process two channels of data at once, that means using
two images as input. Considering the relationship between
two images, we refer to the three-channel simultaneous
processing method of color image with three primary colors
(cyan, magenta, and yellow). We treat each training image
as a color image with two primary colors. It means that the
input data is a 1800 × 800 image with a thickness of 2.
We establish a convolutional neural networks consisting

of one input layer, five convolutional layers, six pooling
layers, two fully connected layers, and one output layer to
deal with this problem (shown in Fig 3). The convolution
kernel in the convolutional layer can respond to converged
data. The convolutional layers extract the different char-
acteristics of the input by the movement of the convolution
kernel on input layer. By pooling the data, the pooling
layers downsamplings a large matrix into a small matrix,
reducing the amount of computation and preventing over-
fitting. The fully-connected layers are similar to common
BP artificial neural networks. Each neuron is connected by
a weight parameter with a Rectified Linear Unit as the
activation function for each neuron. In detail, when the data
enters the model, it is in the shape of 1800 × 800 × 2. The
first layer is a convolutional layer. Considering that the data
can better reflect the characteristics of the oscillation on the
time scale, the convolutional kernel is set to a rectangular
structure of 18 × 9, so that the oscillation characteristics
can be better extracted. The kernel’s moving stride is 9 in
horizontal and 4 in vertical. The data processed by the first
convolutional layer passes through a pooling layer with a
filter size of 2 × 2 and the stride of 2. After that, the data
format becomes 100 × 100 × 16. The convolutional ker-
nels of the second to fifth convolutional layers all have a
3 × 3 square structure, and the convolution kernel’s moving
stride is 2. The second to sixth pooling layers have the
same structure as the first pooling layer. These five layers
of convolutional layers and pooling layers are alternately
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connected. After all this, the data is in the shape of
4 × 4 × 128, and feature extraction at the image level
has been completed. Therefore, the subsequent fully con-
nected layer extends and compresses the data of 4 × 4 ×
128 to a long chain of 100, and the second fully connected
layer further reduces and compress the data to 2 outputs.
These two output values will represent synchrotron damp-
ing time and synchrotron oscillation amplitude. For all the
examples presented, we use Google’s open source machine
learning framework tensorflow to build models. Two
NVIDIA RTX2080 graphics cards are used to speed up
our training process. The schematic of our work is shown
in Fig 4.

IV. PERFORMANCE ANALYSIS AND
COMPARISON WITH THE TRADITIONAL

METHOD

Training the convolutional neural networks with 361 sets
of training data, our virtual diagnostic ML-models cost
function (standard deviation between true and predictive
values) quickly converges. After that, we analyze the

performance of the model and compare it with the previous
traditional methods.
We apply the trained model to the 121 sets of test data

and obtained the predictive value for each set of test data.
The time required to process each set of data is less than
10 ms. The fast processing speed meets the real-time
processing of each injection transient process data. In
contrast, in the past traditional methods, it takes several
minutes to remove noise, separate the stored charge data
from the refilled bunch data, complete table lookup, and
perform multiparameter nonlinear fitting.
We show these 121 sets of predictive value and test value

in Fig. 5 (oscillation amplitude) and Fig. 6 (synchrotron
damping time). We use standard deviation to estimate the
difference. The standard deviation of oscillation amplitude
is 5.3 ps and the standard deviation of damping time
is 0.08 ms.
The difference between the predictive value and the test

value is analyzed. On the one hand, because the capture
time period of the injection process is long, there are only
hundreds of sets of data in this training, which leads to the
model not being adequately trained. On the other hand, the
so-called true value (test value) is obtained by previous
traditional methods. Therefore, the error introduced by this
process is large. According to the error analysis about
previous traditional methods, the error of the oscillation

FIG. 3. The structure of the convolutional neural network built in this experiment which consisting of one input layer, five
convolutional layers, six pooling layers, two fully connected layers, and one output layer.

FIG. 4. Machine learning schematic to predict synchrotron
damped oscillation parameters.
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amplitude introduced by these algorithms will be around
2 ps. The error of the damping time is 0.1 ms. The main
measurement error in the refilled charge phase extraction is
derived from the random measurement error of the ADC
and the look-up table error. These systematic errors will
cause the calculated values to be evenly distributed above
and below the actual values. In a machine learning model
with a large amount of data as the training basis, errors that
are evenly distributed above and below the zero value are
averaged out by the learning process. This means that this
ML-based virtual diagnostic method does not have these
systematic errors. What is more, because of the CNNmodel
taking into account more than 500 bunches of the whole
ring rather than a few of them, it is convincing that the
result got by CNN model will be closer to the real situation
of the accelerator.
In order to compare the stability of the ML-based method

and the traditional method, we present the results calculated
by the two methods in the form of a distribution chart in
Fig. 7. It can be seen that the results calculated by both
methods are divided into three clusters. This is due to the
fact that the data comes from the three days of SSRF
injection in 15th March 2019, 22nd March 2019, and 17th
July 2019. The results calculated by the ML-based method
are more concentrated in the cluster center. The parameters
of synchrotron damped oscillation depend on the state of
the injector and the storage ring. As a result, they will
oscillate in a very small range in one day. Because the
ML-based method eliminates evenly distributed error
through a large amount of training data, the results
calculated by ML models will be more concentrated, which
is consistent with the real situation.
Erroneous outliers caused by algorithm failures appear in

the results of traditional method and machine learning
algorithms do not have this problem. It can be seen that an
outlier (red arrow shown in first image of Fig. 7) appears in
the test values, which is unreasonable in a stable machine
environment. So we reprocess this set of data and get the
longitudinal phase of the refilled charge (shown in Fig. 8).
Large noise appears at the end of the data, which will

undoubtedly affect the accuracy of the fitting. We believe
that the source of this noise may be that the refilled bunch is
in a position where the crosstalk is large, and the signal of
the stored charge of the refilled bunch is too different from
the signal of the stored charge in other stored bunches.
Therefore, the traditional method does not completely
remove the stored charge signal and the crosstalk signal.
We choose two methods to fit, including MATLAB Curve
Fitting (we use this method to get test values) and gradient
descent algorithm (realized by ourselves). We find that
different fitting results will be obtained by different
methods or different initial parameters. It means that the
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result falls into a local optimal solution because of the noisy
and different initial parameters. The synchrotron damping
time we got by fitting is in the range of 3.29 ms to 3.62 ms.
We plot a fitted result with a 3.6 ms damping time in the
same figure. The fitting result and the actual value still have
large residuals. Therefore, when the noise is large, it is
difficult to obtain accurate results by fitting. The CNN
model can consider the state of all bunches in a coordinated
manner. After reprocessing, we find that the results
obtained by the CNN prediction model are similar to the
global optimal solution (3.54 ms). This reflects the stability
of the CNN algorithm. Although the data used to train the
model is from traditional methods, the number of outliers
less than 1% of the total do not affect the model structure in
a model which is not overfitting. The regularization term
used in training the model causes a large number of correct
values to eliminate the impact of small-scale abnormal
training data.

V. CONCLUSION

In order to better understand the state of the beam, there
will be more and more beam measuring instruments and
higher and higher sampling rate. As a result, an accelerator
will produce an extremely large amount of data every
moment. These data are often time related or spatially
related. It is a very important task to extract the beam
parameters with high speed and high efficiency.
In this paper, the machine learning image processing

technology, convolution neural network (CNN), is used to
process the BPM electrical signal data stored in the form
of multidimensional array. The innovation of this work is
processing two-dimensional data with two channel as an
image of two primary colors. Convolutional neural net-
works has two characteristics that is translation invariance
and weight sharing. They solve the problem that the refilled
bunch appear randomly in more than 500 bunches and
realizes high-speed processing of large scale data. Using
machine learning technology, we have realized extraction
of synchrotron damping oscillation parameters directly
from the BPM sum data which is important for the
evaluation of machine state and bunch stability.
Compared with traditional methods, machine learning

methods have many advantages and are more suitable for
online systems. A trained virtual diagnostic model com-
pletely replaces the previously complicated algorithms. The
time required for one parameter extraction was reduced
from minutes to 10 milliseconds. Large amount of training
data is eliminated the random measurement error of the
ADC and the look-up table error which is unavoidable in
traditional method. Because of the trapped local optimal
solution and the effects of stored charge signals and
crosstalk are not completely eliminated, the traditional
method sometimes get wrong results. The ML-based model
is trained on most of the correct data and takes the complete
data of all bunches as input. We found that the results

obtained using machine learning models did not appear to
be wrong. The oscillation parameter distribution is more
concentrated, which is consistent with the state of the
machine.
We still have a lot of work to do to optimize our model.

For some reason, we only got more than 300 sets of data to
train the model. This causes our model to be undertrained.
In addition, we only used the data collected over three days
to train the model. This means that the ML-based model
might fail to predict other day data if it is very different from
these three days. Therefore, we need to collect more data
in different machine states to continue training the model.
An online training data collection system is needed. In
subsequent experiments, we intend to capture more training
data to improve prediction accuracy. The BPM signal
actually contains almost all the information of the bunch,
we need to mine the data efficiently. Our future goal is to
extract all the parameters we need from a multi-dimensional
BPM data array. With this model, we can give the operating
status of different monitors. What is more, we hope use this
method to reduce unnecessary monitors in the future.
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