
 

Coherent photons with angular momentum in a helical afterburner
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We analytically examine several important characteristics of coherent radiation emitted from a
relativistic electron beam in a helical undulator. The goal is to highlight specific attributes relevant to
the production of bright x-rays with angular momentum in a free-electron laser (FEL) afterburner. The far-
field complex electric field distribution is derived, and for small forward emission angles, it is confirmed
that the spin and orbital components of angular momentum in the radiation are separable, additive, and
aligned with the handedness of the electron motion. The coherent energy radiated at harmonics h from a
bunched electron beam is then calculated, and used to evaluate the emission energy from a FEL afterburner
configuration. Results show that an afterburner undulator with Nu ≫ 1 periods and of sufficient strength
will produce harmonic pulses with energy ∼1=Nh−1

u times that of the fundamental, depending on the
Fresnel number N ¼ kσ2x=Lu of the radiating electron beam.

DOI: 10.1103/PhysRevAccelBeams.23.020703

I. INTRODUCTION

In addition to spin angular momentum (SAM), electro-
magnetic waves can also carry a projection of orbital
angular momentum (OAM) along the axis of propagation.
This can be realized, for example, in the spherical waves
emitted from multipoles [1], though in such cases a
distinction between the spin and orbital parts is not clear.
More recently, Allen et al., [2] showed that for Laguerre
Gaussian (LG) modes, which are cylindrical solutions to
the paraxial wave equation, the spin and orbital compo-
nents are separable and that the aziumuthal modes carry lℏ
units of OAM per photon, where l is an integer. The OAM
is attributed to the helical phase fronts and corresponding
azimuthal momentum about an on-axis phase singularity.
The scientific impact of such beams has been a topic of
intense research (see, e.g., [3–8]), including numerous
studies on the precise manner in which the OAM may
manifest in interactions with physical systems [9–15].
Motivated by the myriad of physical and practical

applications, there has been growing interest in the pro-
duction of bright OAM light at sub-optical wavelengths in
free electron lasers (FELs). FELs use relativistic electron
beams propagating through magnetic undulators to produce
intense pulses of light down to Ångstrom wavelengths and
at femtosecond pulse durations [16–18]. Sasaki and
McNulty [19] first pointed out that the harmonic radiation

in helical undulators (in which the electrons follow a helical
path) carried a helical phase, and thus that helical undu-
lators might serve as intense sources of OAM light. While it
has long been known that the harmonic radiation is off-axis
(i.e., Refs. [20–22]), the predicted helical phase was first
experimentally measured only recently in spontaneous
undulator emission by Bahrdt and colleagues [23], and
later in coherent emission from a density modulated
(bunched) electron beam [24]. Subsequent demonstration
experiments confirmed the basic principles [25,26].
Here, to provide theoretical foundation for emerging

science and applications with coherent OAM light pro-
duced in modern FELs, we examine several critical proper-
ties of the radiation from helical undulators, including the
polarization, phase handedness, and total pulse energy of
coherent emission. To provide a cohesive framework, we
first provide a general expression for the far-field angular
emission spectrum from a single electron. At small forward
emission angles and within certain limits, we confirm
previous conclusions that the SAM and OAM components
add, and are in the same direction as the electron motion
[27,28]. An important finding is that this conclusion is
reliable only when the undulator has sufficiently many
periods (Nu ≫ 1) and is sufficiently strong in undulator
field strength. We then use these results to derive simple
expressions for the energy of coherent OAM radiation from
a bunched electron beam (e-beam) for the first few
harmonics. We then examine the emission energy in an
FEL OAM afterburner arrangement as proposed in
Ref. [24], in which a helical undulator is placed down-
stream of an FEL to produce coherent OAM pulses from
the spent, bunched e-beam. We then look at an example
case that produces 20 MW x-ray OAM beams that, if

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 020703 (2020)

2469-9888=20=23(2)=020703(10) 020703-1 Published by the American Physical Society

https://orcid.org/0000-0001-9197-6620
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.23.020703&domain=pdf&date_stamp=2020-02-11
https://doi.org/10.1103/PhysRevAccelBeams.23.020703
https://doi.org/10.1103/PhysRevAccelBeams.23.020703
https://doi.org/10.1103/PhysRevAccelBeams.23.020703
https://doi.org/10.1103/PhysRevAccelBeams.23.020703
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


focused to a 100 nm spot, can reach intensities of
1015–16 W=cm2 (electric fields 109 V=cm, or 1 a.u.) and
may be of use to examine, for example, dipole-forbidden
electronic transitions in localized samples near the well-
defined phase singularity [29,30].

II. RADIATED FIELD DISTRIBUTION

Consider a helical magnetic undulator field described by
the vector

B⃗ ¼ B0½cosðωutÞx̂ ∓ sinðωutÞŷ� ð1Þ

where ωu ¼ kuvz is the angular frequency of rotation of a
particle with constant z-velocity vz, and z ¼ vzt ¼ βzct.
The upper sign refers to a left-handed (LHU) undulator, and
the lower sign refers to a right-handed (RHU) undulator,
corresponding to the evolution of the B⃗ field vector along z.
The coordinate vector that describes the evolution of an
electron is

w⃗ðtÞ ¼ K
γku

½� sinðωutÞx̂þ cosðωutÞŷ� þ βzctẑ: ð2Þ

The undulator field strength (in cgs units) is K ¼
qB0=kumc2. The electron trajectory has the same handed-
ness as the undulator field. The scaled velocity vector of
the electron is then

β⃗ðtÞ ¼ dw⃗ðtÞ
cdt

¼ K
γ
½� cosðωutÞx̂ − sinðωutÞŷ� þ βzẑ: ð3Þ

These vectors are used to calculate the properties of the
radiation from electron spiraling through the undulator.
We first define the Fourier transform of the temporal

electric field,

E⃗ðωÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

E⃗ðtÞeiωtdt: ð4Þ

Far from the electron, the electric field radiated from within
the undulator with Nu periods is given in the frequency
domain by (e.g., Ref. [31])

E⃗ðωÞ ¼ −iqωeiωr=cffiffiffiffiffiffi
2π

p
cr

Z Nuπ
ωu

−Nuπ
ωu

½n̂ × ðn̂ × β⃗Þ�eiωðt−n̂·w⃗=cÞdt; ð5Þ

where

n̂ ¼ r⃗=r ¼ sin θ cosϕx̂þ sin θ sinϕŷþ cos θẑ ð6Þ

is the unit vector pointing from the origin to the observation
point, θ is the forward inclination angle from the z-axis,
and ϕ is the azimuthal angle.

Combining Eqs. (3) and (6), the combination of cross
products within the integral gives the different components
of the field polarization,

n̂× ðn̂× β⃗Þ

¼

0
B@

∓α1 cosðωutÞ−α2sin2θ sinðωutÞþβzα3 cosϕ

α1 sinðωutÞ�α2sin2θcosðωutÞþβzα3 sinϕ
K
γ α3½�cosϕcosðωutÞ− sinϕsinðωutÞ�−βzsin2θ

1
CA

ð7Þ

with

α1 ¼
K
γ
ðcos2θ þ sin2θcos2ϕÞ;

α2 ¼
K
γ
cosϕ sinϕ; α3 ¼ cos θ sin θ: ð8Þ

The terms within the exponential are

ω

c
n̂ · w⃗ ¼ ξ½sinϕ cosðωutÞ � cosϕ sinðωutÞ� þ ωtβz cos θ

ð9Þ

where we define the dimensionless parameter

ξ ¼ ωK
γkuc

sin θ: ð10Þ

Using series expansions, we can write the eiωðt−n̂·w⃗=cÞ as a
sum over Bessel functions and compute a number of
straightforward integrals (see the Appendix in Sec. A).
Assuming an undulator with many periods, Nu ≫ 1, the
spectrum is peaked at the harmonic frequencies

ωhðθÞ ¼
hωu

1 − βz cos θ
ð11Þ

where h is the harmonic. Near the harmonics, solutions for
each of the field components are

E⃗ðωÞ ¼ E0ðωÞ

0
B@

∓α1ζ1 − α2ζ2sin2θ þ βzα3ζ3 cosϕ

α1ζ2 � α2ζ1sin2θ þ βzα3ζ3 sinϕ
K
γ α3½�ζ1 cosϕ − ζ2 sinϕ� − βzζ3sin2θ

1
CA

ð12Þ

where the term common to all the complex field vectors is

E0ðωÞ ¼
−iqωffiffiffiffiffiffi
2π

p
cr

Nuπ

ωu
eiωr=csinc

�
Nuπh

�
ω

ωhðθÞ
− 1

��
;

ð13Þ

and
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ζ1 ¼ ð�1Þhþ1½e∓iðh−1ÞϕJh−1ðξÞ þ e∓iðhþ1ÞϕJhþ1ðξÞ�
ζ2 ¼ ið�1Þhþ1½e∓iðh−1ÞϕJh−1ðξÞ − e∓iðhþ1ÞϕJhþ1ðξÞ�
ζ3 ¼ 2ð�1Þhe∓ihϕJhðξÞ: ð14Þ

In general, the fields have rich spatial-frequency correla-
tions that lead to a mixing of the spin and orbital angular
momentum components. In most cases, however, many of
the less-significant terms in (12) and (14) can be ignored
when evaluating the dominant forward emission near
the axis.

III. SMALL ANGLE SOLUTIONS

At small forward angles θ ≪ 1 and for the first few
harmonics, the polarization and transverse distributions
become well-separated. Namely, if the Bessel argument is
small, ξ ¼ 2hKγθ

1þK2 ¼ 2hKγ2zθ=γ < 1 then only the lowest
order Bessel functions in (14) contribute,

ζ1≈ ð�1Þhþ1e∓iðh−1ÞϕJh−1ðξÞ; ζ2≈ iζ1; ζ3≈0: ð15Þ

For θ ≪ 1 from (8) we can write α1 ≈ K
γ and α3 ≈ θ. The

individual field components then have much simpler forms,
and the total field vector in (12) is expressed compactly as

E⃗ðωÞ ≈∓E0ðωÞ
K
γ
ζ1

0
B@

1

∓i

−θe∓iϕ

1
CA: ð16Þ

IV. ANGULAR MOMENTUM

From Eq. (16), the transverse components of the radiated
field are�π=2 out of phase, EyðωÞ ¼ ∓iExðωÞ, describing
circularly polarized waves. For harmonics h > 1, they also
have a pure azimuthal dependence e∓iðh−1Þϕ from ζ1.
Combined with Eq. (13), the transverse fields can therefore
be summarized as

E⃗⊥ →

�
1

iσ

�
eiðkz−ωtþlϕÞ ð17Þ

where k ¼ ω=c, and the spin and orbital contributions are

σ ¼ ∓1; l ¼ ∓ðh − 1Þ: ð18Þ

This separation of spin and orbital components in the
small angle approximation bears a strong similarity with
the behavior predicted in previous studies of paraxial and
nonparaxial beams [32]. Here, inspection shows that at a
fixed point in space, the polarization rotates in time in the
same direction as the electron motion [33]. The z-component
of the spin is then Sz ¼ σℏ.

The spatiotemporal correlation with ϕ describes a phase
that winds helically about the axis of propagation for
harmonics h > 1. If l < 0, (i.e., an LHU) the surface of
constant phase in (z;ϕ) corkscrews in a right-handed sense
for a fixed time. This is shown in Fig. 1(a). However, the
Poynting vector, which is normal to the phase front and
describes the direction of momentum flow, winds in a left-
handed sense along z. Thus, in agreement with the
convention of previous studies [2,3], this describes a field
which has a projection of OAM in the −z direction. This is
consistent if we recall that the z-component of the quantum
mechanical operator for orbital angular momentum is
represented in the position space as L̂z →

ℏ
i
∂
∂ϕ. The

OAM of the harmonic fields is thus Lz ¼ lℏ, and has
the same sign as the SAM. It is concluded that the
two contributions to the total angular momentum add in
the described limits, and are related by the harmonic
frequency [28],

Jz ¼ Sz þ Lz ¼ ∓hℏ: ð19Þ

Note that one cannot readily flip the sign of the polarization
without also changing the direction of OAM for helical
undulator emission.
We stress that the clean separation of angular momentum

components in Eq. (18) comes from the small-angle
solutions in Eq. (16), but that isolation of singular

FIG. 1. Constant phase contours for second harmonic emission
from (a) left-handed undulator (LHU) and (b) right-handed
undulator (RHU). Also indicated are the corresponding projec-
tions of spin Ŝz and angular L̂z momentum for the electromag-
netic fields, which point in the same direction as the classical
orbital angular momentum of the electrons on their helical
trajectory through the undulator.
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contributions is not as simple in general. In fact, even for the
cases where the small angle approximation is valid, more
than one OAM mode may be present, particularly for high
harmonics. For the second harmonic at resonance, one can
see by inspection of Fig. 2, for example, that there is a slight
azimuthal asymmetry in the intensity profiles that indicates
the presence of more than one azimuthal mode. This is
ultimately the result of the complicated angular spectral
coupling in the full field expressions. Decomposing the field
profiles into the constituent modes (e.g., as in [35]), the
profile only approaches a single azimuthal mode for suffi-
ciently large Nu and K, as shown in Fig. 3.

Finally, we note that the annular shape of the harmonic
radiation profile is due, in part, to the Bessel function
dependence on θ, so the emitted fields from a single
electron are not strictly LG modes, even at a single
frequency. However, for sufficiently large Nu and K, it
is straightforward to show that the coherent emission from a
bunched beam of electrons with a round Gaussian trans-
verse profile can produce an exact LG mode. Consider the
LGp;l ¼ LG0;∓1 mode at the second harmonic. As exam-
ined in the next section, if the transverse e-beam size
satisfies σx > γz

ffiffiffiffiffiffi
Nu

p
=k, then the narrow forward emission

angles are dominated by the e-beam and not the undulator
emission kernel. This further simplifies the complicated
angular-spectral coupling in the full field expression such
that the transverse field distribution can be written as

E⊥ ∝ θe−
ðσxkθÞ2

2 eikz∓iϕ ¼ 1

σxk

� ffiffiffi
2

p
ρ

w0

�
e
−ρ2

w2
0eikz∓iϕ: ð20Þ

Spherical coordinates have been converted to cylindrical
coordinates with ρ ¼ z tan θ ≈ zθ. In this form, the field is
precisely that of an LG0;∓1 mode with waist size w0 ¼ffiffiffi
2

p
z=σxk. Therefore, for coherent radiation in the proper

limits, it is suitable to describe the OAM content at the
lower harmonics in terms of the LG mode basis.

V. COHERENT RADIATION

The radiated spectral energy distribution is given in
general by [31]

FIG. 2. Top: Second harmonic emission calculated from the full field expression in Eq. (5) with Nu ¼ 100, K ¼ 2.3, γ ¼ 7828
(4 GeV), λu ¼ 3.9 cm, λ ¼ 1 nm. Parameters are inspired by LCLS–II project at SLAC [36]. Top: LHU produces σ ¼ −1 polarization
and an l ¼ −1 vortex. Bottom: An RHU produces σ ¼ þ1 polarization and an l ¼ þ1 vortex.

FIG. 3. Fraction of power in the l ¼ 1 mode (integrated over
radial modes) emitted at the second harmonic in a RHU for a
single electron with γ ¼ 7828, λ ¼ 1 nm. It reaches 98% at
Nu ¼ 100, and K ¼ 1.
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dW
dΩdω

¼ c
2π

jrE⃗ðωÞj2: ð21Þ

Using this equation and the field components in (12), we
can calculate an explicit, general expression for the energy
radiated per unit solid angle, per unit frequency in an
undulator. Near a harmonic h, the answer has already been
given by Colson [20]. At small forward angles and near the
first couple of harmonics, the approximate field expression
in Eq. (16) produces

d2Wh

dΩdω
≈
q2N2

u

2c
sinc

�
πNuh

�
ω

ωhð0Þ
ð1þ θ2γ2zÞ − 1

��
2

×

�
2hKγ
1þ K2

�
2

J2h−1

�
2hKγθ
1þ K2

�
: ð22Þ

For a long beam of Ne particles, the coherent emission is
calculated in general with

d2WC

dΩdω
¼ N2

eFðωÞ
d2Wh

dΩdω
ð23Þ

where FðωÞ is the e-beam form factor, calculated from the
Fourier transform of the spatial charge distribution,

FðωÞ ¼
����
Z

fðx⃗Þe−iωn̂·x⃗=cdx⃗
����
2

: ð24Þ

Let us assume a transversely round Gaussian beam with
rms radius σx and a flattop longitudinal current profile of
length τ,

fðx⃗Þ ¼ 1

2πσ2x
e−ðx2þy2Þ=2σ2x Πðt=τÞ

τ
½1þ 2b cosωbt� ð25Þ

where b ≪ 1 is the bunching factor at the frequency
ωb ≫ 1=τ, and Πðt=τÞ is the rectangle function that is
unity for jtj ≤ τ=2 and zero otherwise. The form factor near
the bunching frequency is [37]

FðωÞ ¼ b2sinc2
�
τ

2
ðωb − ω cos θÞ

�
exp

�
−σ2x

ω2

c2
sin2θ

�
:

ð26Þ

The sinc term captures the impact of the e-beam length on
the bunching spectrum, and the Gaussian term describes the
forward angular projection effects due to the finite trans-
verse e-beam size. For small forward angles θ ≪ 1, the
form factor of the e-beam restricts the forward emission to
angles that satisfy

FIG. 4. Coherent OAM emission for different LHU harmonics (rows) and undulator detuning (columns). Top to bottom the rows are
harmonics h ¼ 2, h ¼ 3, and h ¼ 4, respectively, with resonant undulator strengths K2 ¼ 2.3, K3 ¼ 2.9, and K4 ¼ 3.4. The 4 GeV
beam is bunched at λ ¼ 1 nm, and the undulator has Nu ¼ 100 periods of λu ¼ 3.9 cm. The detuning increases left to right according to
K → Khð1 − δÞ, with δ ¼ 0, 1=4Nu, and 1=2Nu. The annular intensity profile is observed to expand and become more symmetric with
detuning, which, with the phase, indicates that the power is directed into a single OAMmode. The phase is weighted by the intensity for
better visibility. A small σx ¼ 5 μm e-beam (N ¼ 0.04) is modeled to highlight the effect of detuning without strongly suppressing the
output.
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θ < c=σxω: ð27Þ

For comparison, the intrinsic forward angular spread of the
single particle undulator radiation is Δθ ≈ 1=γz

ffiffiffiffiffiffi
Nu

p
near

resonance.
Figure 4 shows the coherent intensity and phase profiles

from full solutions for different harmonics and at different
undulator detunings; i.e., at undulator strengths K such
that the on-axis undulator resonant frequency ωhð0Þ ¼
2hγ2ωu=ð1þ K2Þ in Eq. (11) is higher than the micro-
bunching frequency, ωhð0Þ > ωb. Detuning the undulator
resonance by slightly reducing K pushes the radiation off-
axis. For the higher harmonics, this has the beneficial effect
of making the transverse profiles more rotationally sym-
metric, thus increasing the power in a single azimuthal
mode. Detuning off-axis may also increase the emitted field
energy as long as the annular intensity peak is at an angle
that satisfies Eq. (27). The total emitted energy dependence
on detuning is shown in Fig. 5 for parameters of the
LCLS-II project at SLAC [36], where results indicate that
approximately 1 MW of peak power is emitted into the
l ¼ �1mode with the baseline design. If the electron beam
size can be reduced to σx ¼ 5 μm (N ¼ 0.04), this
increases to 20 MW.
Integrating Eq. (23) over frequency and angle gives the

total radiated energy

WC ¼ N2
e

Z
FðωÞ d

2Wh

dΩdω
dΩdω: ð28Þ

To solve this for the distribution in (22), we assume the
e-beam is long enough that the spectral bandwidth is
dominated by the e-beam rather than the undulator,
ωbτ ≫ 2πNu. That is, the number of wavelengths in the
e-beam is much greater than the number of undulator

periods. In this case the bunching frequency just picks
out a specific narrow portion of the undulator bandwidth,
and the frequency integral can be solved easily with the
approximation

sinc2
�
τ

2
ðω − ωbÞ

�
→

2π

τ
δðω − ωbÞ: ð29Þ

If the bunching is at the same frequency as the on-axis
undulator resonance ωb ¼ ωhð0Þ we obtain

WC;h ¼ τ
2π2I20b

2N2
u

c

�
2hKγ
1þ K2

�
2

Z
π

0

e−ðσxωbθ=cÞ2sinc½πNuhγ2zθ2�2J2h−1
�
2hKγθ
1þ K2

�
θdθ ð30Þ

where I0 ¼ qNe=τ is the peak e-beam current.
Full solutions to this integral are cumbersome, but useful

results can be found by series expansion of Jh−1 to lowest
order. After some straightforward manipulation (outlined in
Appendix B), the total energy emitted can then be written in
a convenient form,

WC;h ¼ τ
2π2I20b

2
hNu

c

�
K2

1þ K2

�
F hðNÞ: ð31Þ

Here N ¼ ωσ2x=cLu is the Fresnel number, Lu ¼ Nuλu is
the undulator length, and bh is the bunching factor at each
harmonic resonance. For the first few harmonics, the
functions F hðNÞ are

F 1ðNÞ ¼ 2

π

�
tan−1

�
1

2N

�
þ N ln

�
4N2

4N2 þ 1

��

F 2ðNÞ ¼ 2

π2Nu

K2

1þ K2
ln

�
4N2 þ 1

4N2

�

F 3ðNÞ ¼ 27

16

�
1

πNu

K2

1þ K2

�
2 1

πN
1

1þ 4N2
: ð32Þ

These are plotted in Fig. 6. The factor F 1ðNÞ for the
fundamental frequency was obtained by Saldin et al., [38].
It has the simple limits F 1ðNÞ → 1=2πN for N → ∞ and
F 1ðNÞ → 1 for N → 0. The factors F 2ðNÞ and F 3ðNÞ for
the second and third harmonics incorporate the effect of the
off-axis emission and show that the OAM emission energy
for higher harmonics scales like ð1=NuÞjlj. For N ≫ 1,
F 2ðNÞ scales like 1=N2, while F 3ðNÞ scales like 1=N3.
Both diverge for N → 0, so higher order corrections
are required for an accurate description at N < 0.01.
Nevertheless, they yield a reasonable approximation for
the OAM emission energy in many practical scenarios. It is
evident that emission at harmonics is suppressed for large
N, so transversely small e-beams produce coherent pulses
with more photons.

FIG. 5. Coherent emission peak power at different values of
undulator detuning, K → Khð1 − δÞ. Same parameters as Fig. 4
with bh ¼ 20% and I0 ¼ 1 kA, but with σx ¼ 25 μm (N ¼ 1) for
LCLS-II e-beams. Each x marks the coherent power emitted at
zero detuning, calculated from Eq. (31).
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VI. OAM AFTERBURNER

Given Eqs. (31) and (32), we can now consider the
coherent radiation energy at the fundamental frequency
compared with the second harmonic frequency in an OAM
afterburner configuration (see Fig. 7). Broadly speaking, an
afterburner is an undulator positioned downstream of a high
gain FEL [39]. For our purposes, the afterburner is a helical
undulator, and the arrangement is similar to the proof-of-
principle setup first described in Ref. [24]. The upstream
FEL is used to drive bunching in the electron beam, either
by lasing or by the reverse taper effect [40]. The bunched
beam then radiates coherently in the afterburner. Previous
versions of this arrangement have been used to produce
coherent circularly polarized x-rays at the h ¼ 1 afterburner
resonance [41], the energy output of which can be
calculated from Eq. (31) with F 1ðNÞ. Here, in an OAM
afterburner arrangement, the only change is the undulatorK
of the afterburner. It is increased from K1 to K2 so that the

coherent emission is at the second harmonic of the
undulator (i.e., from a Gaussian-like mode at K1 to an
OAM mode at K2) but at the same frequency in both cases,
ω1 ¼ ω2. Because the emission frequency is the same, the
Fresnel number N is the same. From Eq. (11) the relation-
ship between the two values of K is

K2
2 ¼ 1þ 2K2

1: ð33Þ
The interaction at the second harmonic is weaker than at the
fundamental, so the energy radiated into the OAM mode is
smaller. The ratio of the energy contained in the OAM at
the second harmonic compared to the energy at the first
harmonic is

WC;2

WC;1
¼ gðK1Þ

πNu

lnð4N2þ1
4N2 Þ

½tan−1ð 1
2NÞ þ N lnð 4N2

4N2þ1
Þ� ð34Þ

The ratio is shown in Fig. 8, and goes like 1=πNuN for
N > 1. For notational brevity we introduce the factor
gðK1Þ ¼ ð1þ 2K2

1Þ2=4K2
1ð1þ K2

1Þ which goes quickly
to gðK1Þ → 1 for K1 > 1, but goes like gðK1Þ → 1=4K2

1

for K1 ≪ 1. As a useful point of reference, we see that for
K1 > 1, a Fresnel number of N ¼ 0.1 will produce OAM
emission with total energy 1=Nu that of the fundamental.

VII. CONCLUSIONS

In the limit of small forward angles, many periods, and
sufficiently strong undulator fields, the SAM and OAM
components of radiation emission from a helical undulator
are separable, additive, and aligned with the z-projection of
OAM of the electrons on their helical orbit. For round
electron beams, the coherent emission can have the same
form as an LG mode, such that the total angular momentum
of the coherent mode is hℏ per photon. The coherent

FIG. 7. OAM FEL afterburner scheme. In contrast to the typical
case of coherent emission at the first harmonic (a), OAM light can
be produced by tuning the helical undulator so that the incoming
beam is bunched at the second harmonic (b). The upstream FEL
uses reverse tapering to generate strong bunching with little
radiation. Steering the electron beam prior to entry into the
afterburner can transversely separate the OAM light from the FEL
emission, as in Ref. [41].
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FIG. 8. Top: Ratio of radiated OAM energy at second harmonic
to the fundamental in afterburner setup from Eq. (34). Beams
with smaller N ¼ ωσ2x=cLu are favorable to produce more OAM
energy. Here K1 > 1 is assumed. Dots are from numerical
integration of Eq. (28) using the full expression for the field
in Eq. (5).FIG. 6. Functions F hðNÞ in Eq. (32). K ≫ 1 is assumed.

COHERENT PHOTONS WITH ANGULAR … PHYS. REV. ACCEL. BEAMS 23, 020703 (2020)

020703-7



emission energy is derived in simple form, and scales
roughly like 1=Nh−1

u for the harmonics, though beams with
smaller Fresnel numbers can perform better. Results indi-
cate that coherent, circularly polarized x-rays at 1 nm
wavelengths that carry l ¼ �ℏ of OAM can be produced at
LCLS-II with 1 MW of pulse power with the baseline
design. This can be increased to 20 MW or more with
smaller e-beams. If the emitted OAM mode can then be
focused to a spot size of w0 ¼ 0.1 μm, the peak electric
field strengths reach 1 a.u., which potentially enables novel
light-matter interaction experiments at soft x-rays.
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APPENDIX A: FIELD EXPANSION

The exponential in Eq. (5) can be written as a sum over
Bessel functions,

eiωðt−n̂·w⃗=cÞ ¼ eiωtð1−βz cos θÞ
X

n;m

ð−iÞnð∓1ÞmJnðξ sinϕÞJmðξ cosϕÞeiðnþmÞωut: ðA1Þ

The total electric field then has several terms that make use of the following integral,

Z Nuπ
ωu

−Nuπ
ωu

eiωðt−n̂·w⃗=cÞþipωutdt ¼ 2Nuπ

ωu

X

n;m

ð−iÞnð∓1ÞmJnðξ sinϕÞJmðξ cosϕÞsinc
�
Nuπ

�
hω

ωhðθÞ
þ nþmþ p

��

≈
2Nuπ

ωu
ð�1Þhþpe∓iðhþpÞϕJhþpðξÞsinc

�
Nuπh

�
ω

ωhðθÞ
− 1

��
ðA2Þ

In the second step it has been assumed that h ¼ −ðnþ
mþ pÞ and the summation theorem for Bessel functions
has then been applied to collapse the sum. One should be
aware that this approximation is common, but that it also
removes some of the more subtle couplings between angles
and frequencies. As a result, it describes radiation profiles
that can be artificially more azimuthally symmetric (inde-
pendent of ϕ) than when compared to the exact solution,
especially for higher harmonics. In most cases of interest
for lower harmonics, however, the deviation is small and
this is a good approximation.

APPENDIX B: ENERGY INTEGRAL

Solutions to the total energy integral in Eq. (30) are
obtained with the help of two relations. The first is the
integral representation of the Bessel function,

JnðxÞ ¼
1

2π

Z
π

−π
e−inτþix sin τdτ: ðB1Þ

The second is the Fourier transform of the sinc2ðxÞ function

sinc2ðωT=2Þ ¼
Z

1

−1
ð1 − jξjÞeiωTξdξ; ðB2Þ

where the triangle function is defined as triðξÞ ¼ 1 − jξj for
jξj < 1, and triðξÞ ¼ 0 otherwise. After some straightfor-
ward manipulations, the integral in Eq. (30) can then be
written as

Z
∞

0

e−ðνθÞ2sinc½ηθ2�2J2h−1ðαθÞθdθ

¼ π

4η

X

n¼0

Ih;n

ð2nÞ!
�
α2

4η

�
n ∂n

∂Nn F 1ðNÞ ðB3Þ

where ν ¼ σxωh=c, η ¼ πNuhγ2z , α ¼ 2hγ2zK=γ, ν2=2η ¼
2N. The sum originates from a series expansion over
small values of the Bessel argument. For the fundamental
harmonic, the lowest order term is the exact integral

Z
∞

0

e−ðσxωbθ=cÞ2sinc½πNuθ
2γ2z �2θdθ ¼ 1

4Nuγ
2
z
F 1ðNÞ ðB4Þ

where

F 1ðNÞ ¼ 2

π

�
tan−1

�
1

2N

�
þ N ln

�
4N2

4N2 þ 1

��
ðB5Þ

as also obtained in Ref. [38]. Values for individual
harmonics and different terms in the sum are calculated
by the integral

Ih;n ¼
1

ð2πÞ2
Z

π

−π
dτdτ0e−iðh−1Þðτ−τ0Þðsin τ − sin τ0Þ2n: ðB6Þ

The first few terms for the fundamental are I1;0 ¼ 1,
I1;1 ¼ 1, and I1;2 ¼ 9=4. For the second harmonic,
I2;0 ¼ 0, I2;1 ¼ −1=2, and I2;2 ¼ −3=2, and for the third
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harmonic, I3;0;I3;1 ¼ 0, and I3;2 ¼ 3=8, and so on. The
lowest order contributor for the harmonic h corresponds to
the h − 1 derivative of F 1ðNÞ.
In the practical case of small coefficients

α2

4η
¼ h

πNu

K2

1þ K2
≪ 1 ðB7Þ

the higher order terms become ever smaller, so for each
harmonic we can take only the first nonzero term in the
sum. Calculation is aided with the help of the relations

∂
∂N F 1ðNÞ ¼ 2

π
ln

�
4N2

1þ 4N2

�
; ðB8Þ

and

∂2

∂N2
F 1ðNÞ ¼ 4

πN
1

1þ 4N2
: ðB9Þ
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