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Determining a model for the time scaling of the dynamic aperture of a circular accelerator is a topic of
strong interest and intense research efforts in accelerator physics. The motivation arises in the possibility of
finding a method to reliably extrapolate the results of numerical simulations well beyond what is currently
possible in terms of CPU time. In earlier work, a proposal for a model based on Nekhoroshev theorem and
Kolmogorov–Arnold–Moser theory was made. This model has been studied in detail and proved successful
in describing the evolution of the dynamic aperture in numerical simulations, however a number of
shortcomings had been identified and new models are proposed in this paper, which solve the observed
issues. The new models have been benchmarked against numerical simulations for a simple system, the 4D
Hénon map, as well as a realistic, non-linear representation of the beam dynamics in the LHC at 6.5 TeV
providing in both cases excellent results.
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I. INTRODUCTION

The advent of superconducting, high-energy hadron
colliders elevated nonlinear beam dynamics to the forefront
of accelerator design and operation. In the domain of single-
particle dynamics, the concept of dynamic aperture (DA),
namely the extent of the phase space region where bounded
motion occurs, has been the key observable to guide the
design of several past (see, e.g., [1–7]), present (see, e.g.,
[8]), and future hadron machines (see, e.g., [9–16]).
DA involves a number of challenging aspects, notably to

understand which mechanisms are determining its features
as well as to address the numerous computational issues.
In this paper we focus on a very specific aspect, namely the
possibility of modeling the scaling law of DA as a function
of the number of turns. This problem has been considered
since the end of the 1990s [17,18], as finding how to
describe and efficiently predict the value of the DA would
solve some fundamental problems in accelerator physics

and performance optimization of circular accelerators.
A reliable model for the time evolution of the DA would
allow the severe limitations in terms of CPU-time to be
overcome. In fact, to perform numerical simulations
required to predict the performance of a circular accelerator
over a realistic time interval is beyond the reach of current
computers. For the LHC case, simulations up to 106 turns
are at the limit of the CPU-time capabilities, but this
represents only ≈89 s of storage time, whereas a typical fill
time is of the order of several hours. Ultimately, such a
model would also open the possibility to study observables
that are more directly linked with machine’s performance,
such as beam losses and lifetime [19].
To obtain a satisfactory solution to this problem, the

attempt made in earlier work addressed the possibility of
building models for the DA scaling with time based on
fundamental results of dynamical system theory, such as
Kolmogorov–Arnold–Moser (KAM) [20–23] theory and
Nekhoroshev [24–27] theorem. In fact, to ensure appli-
cability across machines and for different physical con-
ditions, we need a scaling law based on the solid ground
of fundamental theorems. Although very successful, this
approach revealed two issues: the possibility of obtaining
nonphysical model’s parameters [18,19] and the presence
of internal dependencies among them [28,29]. The first
generates a contradiction with the key assumptions of the
scaling law, as, according to KAM theory and Nekhoroshev
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theorem, the parameters should always be positive. The
latter affects the numerical stability of the model parameters
whenever their dependence on physical quantities, such as
linear coupling, is investigated, practically preventing this
type of investigations.
An in-depth review has been carried out, the outcome of

which is that it is indeed possible to overcome the two
limitations observed. The first is solved by proposing a
scaling law based on Nekhoroshev theorem, only. This is
justified by the fact that the condition for the applicability
of the stability-time estimate provided by Nekhoroshev
theorem is more general than the existence conditions of
KAM tori. Moreover, the phenomenon of Arnold diffusion
that occurs in generic Hamiltonian systems with more than
two degrees of freedom is extremely slow and affects a set
of initial conditions having a very small measure. Note that
the proposed models describing DA as a function of time
provide a positive DA for finite time, which is compatible
with the physical sense, but in the limit of infinite time they
provide a zero DA, which is compatible with the math-
ematical framework. The second one is solved by using the
parameters’ dependencies obtained from a closer inspection
of the form of the estimate of the stability time of
Nekhoroshev theorem. All these important advances will
be presented and discussed in detail in this paper.
The applicability of the Nekhoroshev theorem to circular

accelerators requires two assumptions, namely that the
system under consideration is time independent and that it
is quasi-integrable with analytic dependence on the phase
space variables. The first assumption is not too restrictive.
Indeed, one can apply a number of logical steps to be
always in that condition. First, to each map it is possible
to associate a smooth Hamiltonian that interpolates the
dynamics generated by the map [30]. This implies that all
considerations made for Hamiltonian flows can be easily
transferred to similar statements valid for maps. Second, a
time-dependent Hamiltonian system can always be trans-
formed in a time-independent one by increasing the
dimension of the phase space [31,32]. In the extended
phase space, the role of time is taken by another indepen-
dent parameter s. The key point is that it is possible to chose
s such that dt=ds ¼ 1 [31]. Therefore, thanks to these
observations it is indeed possible to apply Nekhoroshev
theorem to a time-dependent map. The latter assumption
is not satisfied closed to the DA. Nonetheless, the func-
tional form of the stability-time estimate provided by the
Nekhoroshev theorem is a very robust result. In fact, it is
based on the optimal estimate of the remainders of the
perturbative series rather than on their convergence proper-
ties. Therefore, it is applicable even when a large fraction
of the KAM tori are destroyed and replaced by a weakly-
chaotic region.
The plan of the paper is as follows: in Sec. II the estimate

of the stability time derived from the Nekhoroshev theorem
is briefly reviewed and the connection with the Lambert-W

function is discussed. The models proposed for describing
the time variation of the dynamic aperture are presented
and reviewed in detail in Sec. III, while their behavior is
analyzed in Sec. IV. Here, applications to the results of
numerical simulations for the 4D Hénon map and a detailed
model of the beam dynamics in the LHC at 6.5 TeV are
presented. In Sec. V the predictive power of the proposed
DA models is discussed in some detail, while an interesting
observation of the properties of the DA models is discussed
in Sec. VI. Finally, the conclusions are drawn in Sec. VII
and some detailed considerations on the Lambert function
can be found in the Appendices.

II. NEKHOROSHEV THEOREM AND THE
LAMBERT-W FUNCTION

The Nekhoroshev theorem provides an estimate for
the number of turns NðrÞ for which the orbit of an initial
condition of amplitude r remains bounded [25–27], namely

NðrÞ
N0

¼
ffiffiffiffiffi
r
r�

r
exp

��
r�
r

�1
κ

�
; ð1Þ

where r� and κ are positive quantities each capturing some
key features of the system under consideration. In [26] the
estimate of the stability time has been obtained by firstly re-
scaling all coordinates by appropriate factors so that they
do not have a physical dimension. r� is a dimensionless
constant whose value represents an apparent convergence
radius of the asymptotic perturbative series arising in the
normal form problem of a symplectic map near an elliptic
fixed point. According to this interpretation of the physical
meaning of r�, its value should decrease when increasing
the strength of the nonlinearities present in the system.
In the original version of the Nekhoroshev theorem [25],

κ is a function of the number d of degrees of freedom of the
system under consideration. However, there is no guarantee
that the expression found for κ represents an optimal
estimate. In the case of a symplectic map near an elliptic
fixed point [26,27] the simpler expression κ ≈ ðdþ 1Þ=2
was given in a generic framework, but once again without
guarantee of being the optimal estimate when one considers
a specific case.
Equation (1) is valid for the region in r constrained by

r
r�

≤
�
2

3κ

�
κ

: ð2Þ

For the sake of generalization, we recast Eq. (1) into

NðrÞ
N0

¼
�
r
r�

�
λ

exp

��
r�
r

�1
κ

�
ð3Þ

where λ ≥ 0. We can recover the original formulation
(Eq. (2.16) in [26]) by making the identifications:
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λ ¼ 1

2
; ð4aÞ

ρ� ¼
�
κ

2e

�
−κ
r�; ð4bÞ

N0 ¼
7
ffiffiffi
6

p

48
rλ� ð4cÞ

from which it is clear that r�; ρ�; κ and N0 are not
independent parameters. In particular, it is worth stressing
that N0 is not an independent parameter, but a function of
r�; λ. For this reason, it will not be used as a fit parameter
in the models presented in the following sections.
Equation (4c) is consistent with the theoretical result only
for the case λ ¼ 1

2
. For other values of λ, the scaling rλ� still

holds but the factor 7
ffiffi
6

p
48

might be normalized differently.
When fitting models where λ ≠ 1

2
, it is therefore advised to

either use N0 as a fitting parameter, or to ignore the
normalization factor and only use the scaling, i.e.,

N0 ∝ rλ�: ð5Þ

A. Inverting the Nekhoroshev stability-time estimate

To be able to invert Eq. (3), we need to solve equations of
the form

z ¼ wζ1 expfwζ2g: ð6Þ

First we make the substitution τ ¼ ζ2
ζ1
wζ2 :

z ¼
�
ζ1
ζ2

τ

�ζ1
ζ2 exp

�
ζ1
ζ2

τ

�
; ð7Þ

and next we take the root ζ1=ζ2

ζ2
ζ1

z
ζ2
ζ1 ¼ τ expfτg; ð8Þ

which we can now trivially solve:

τ ¼ W
�
ζ2
ζ1

z
ζ2
ζ1

�
⇒ w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ1
ζ2

W
�
ζ2
ζ1

z
ζ2
ζ1

�
ζ2

s
; ð9Þ

where W is the so-called Lambert-W function, a multi-
valued function whose properties are briefly reviewed in
the Appendix A. Comparing (6) with (3) and identifying
ζ1 ¼ λ and ζ2 ¼ − 1

κ, we finally get:

r ¼ r�

�
1

Λ
W
�
Λ
�
N
N0

�
Λ
��

−κ
where Λ ¼ −

1

λκ
: ð10Þ

The choice between the two real branches W0 and W−1
(see Appendix A) will be determined by the requirement
thatW remains real and it will hence depend on the sign of
the parameters as shown in the Appendix B. The summary
is reported in Table I, where conditions on the parameters
and the validity region are reported.

B. Application of the Lambert function
and of its series expansion

Equation (10) represents the formula linking the size
of the stability region to the stability time. Therefore, the
closed-form model for the scaling law of dynamic aperture
is represented by

DðNÞ ¼ r�

�
1

Λ
W−1

�
Λ
�
N
N0

�
Λ
��

−κ
Λ ¼ −

1

λκ
: ð11Þ

While Eq. (11) is the exact solution of the dynamic
aperture scaling law according to the Nekhoroshev esti-
mate, it might not be so useful in practice. To this aim, one
might use the series expansion of W−1 as given in [33],
namely

W−1ðxÞ ¼ lnð−xÞ − ln ½− ln ð−xÞ�

þ
X∞
l¼0

X∞
m¼1

clm½lnð−xÞ�−ðlþmÞfln ½− lnð−xÞ�gm;

ð12Þ

where

clm ¼ ð−1Þl
m!

�
lþm

lþ 1

�
ð13Þ

and the symbol in square brackets represents a Stirling
cycle number [34,35].
Note that the inverse-logarithm law [17,18] (see also

Sec. III A)

r ¼ r�
lnκ N

N0

ð14Þ

can be recovered by taking the limit λ → 0þ

TABLE I. Possible values for the parameters λ and κ, and the
resulting admissible region of validity.

λ κ Branch Validity region

0 < λ ≤ 3
2

κ > 0 W−1
N
N0

≥ ð 2
3κÞλκ exp f32 κg

λ > 3
2

κ > 0 W−1
N
N0

≥ ð eλκÞλκ
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lim
Λ→−∞

1

Λ
W−1ðΛzΛÞ ¼ ln z: ð15Þ

The expansion (13) can be used to prove the limit (15), as
it can be recast in the following form

lim
Λ→−∞

1

Λ
W−1ðΛ expfΛ ln zgÞ

¼ lim
Λ→−∞

1

Λ
fln ðjΛj expfΛ ln zgÞþ

− ln ð− ln ðjΛj expfΛ ln zgÞÞ

þ
X∞
l¼0

X∞
m¼1

clm½ln ðjΛj expfΛ ln zgÞ�−ðlþmÞ

× ðln ½− ln ðjΛj expfΛ ln zgÞ�Þmg: ð16Þ

We note that the series expansion depends on two terms
of the same form that can be transformed into

ln ðjΛj expfΛ ln zgÞ ¼ ln jΛj þ Λ ln z ð17Þ

ln ½− ln ðjΛj expfΛ ln zgÞ� ¼ ln ð− ln jΛj þ jΛj ln zÞ: ð18Þ

These terms are divided by Λ, which overcompensates
the logarithmic divergence of the various terms except
for that of the form Λ ln z. Hence, the result in Eq. (15) is
easily proven.

III. MODELS OF DYNAMIC APERTURE
TIME EVOLUTION

A. Original model and its improvement

Based on the outcome of detailed numerical simulations
for several accelerator models, in [18] a description of the
time evolution of the dynamic aperture was proposed in the
form of

Model 1 ⇒ DðNÞ ¼ D∞ þ b
lnκN

; ð19Þ

where D∞ represents the asymptotic value of DðNÞ and
can be justified in the framework of KAM theory, while
the N-dependent term is derived from Eq. (3) for λ ¼ 0;
N0 ¼ 1 and the fit parameters are D∞, b; κ. Note that
b ¼ r� from Eq. (1). In Ref. [18] it was mentioned that in
some conditions the fit parameters might become negative.
This implies that, strictly speaking, for those cases the
scaling law cannot be justified in terms of Nekhoroshev
theorem, which is not satisfactory as we would like to
propose a general scaling law for dynamic aperture
supported by fundamental theorems of dynamical systems
theory. Moreover, in several subsequent studies a depend-
ence between the fit parameters was observed [28,29]. For
these two reasons, an alternative form of the fit has been
considered. To overcome the first limitation, in the new

model the term D∞ is dropped, so that the scaling law is
based only on the stability-time estimate provided by the
Nekhoroshev theorem. To address the second point, the
interdependence between the parameters (4a)–(4c) has
been taken into account.

Model 2 ⇒ DðNÞ ¼ ρ�

�
κ

2e

�
κ 1

lnκ N
N0

; ð20Þ

where the free parameters are ρ�; κ; N0. By comparing
Eqs. (19) and (20) one obtains

b ¼ ρ�

�
κ

2e

�
κ

ð21Þ

which is exactly the relation from Eq. (4b) as r� ¼ b and it
represents a first hint to explain the observed dependence
between the fit parameters in Model 1.
Parenthetically, the model (20) can be written also in the

following form

lnDðNÞ ¼ ln ρ� þ κ

�
ln κ − lnð2eÞ − ln

�
ln

N
N0

��
; ð22Þ

which can be more convenient for a numerical application.
In this case the natural choice for the fit parameters is
ln ρ�; κ; N0.

B. New models based on the Lambert function

By considering the expressions for the parameters as
given in Eqs. (4)–(4c) it is possible to recast the scaling law
for the dynamic aperture (11) in the following form

Model 4 ⇒ DðNÞ ¼ ρ�

×
1

½−2eλW−1ð− 1
2eλ ðρ�6 Þ1=κð87NÞ−1=ðλκÞÞ�κ ; ð23Þ

where the free parameters are ρ�, κ and, possibly, λ, unless
it is fixed to the value of 1=2 according to the analytic
Nekhoroshev estimate. In the rest of the paper Eq. (23) will
be indicated as Model 4. The notable limit discussed in the
previous section implies that Model 4 reduces to Model 2
when λ → 0þ
The series expansion of W−1 can be used to obtain an

approximate model for the time evolution of the dynamic
aperture. In fact, one can retain the lowest order terms and
reduce Model 4 to the form

Model 3 ⇒ DðNÞ ¼ ρ�

�
κ

2e

�
κ

×
1

fln N
N0

þ λκ½ln λκ þ ln ðln λκ þ 1
λκ ln

N
N0
Þ�gκ

ð24Þ
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with

lnN0 ¼ ln
7

8
þ λ ln

ρ�
6
þ λκ½ln κ − lnð2eÞ� ð25Þ

where the relations (4a)–(4c) have been used and, also
in this case, the model parameters are ρ� and κ and
possibly λ.
It is straightforward to verify that Model 3 tends to

Model 2 for λ → 0. While for Model 3 N0 is a function
of the other fit parameters, it is a constant for Model 2. It
is worth noting that Model 3 features the same logarith-
mic behavior as in Model 2, but it also includes N-
independent terms and double-logarithmic ones, which
represent an improvement in spite of the same number of
parameters (if λ is set to 1=2). In this respect, Model 3 can
be seen as an intermediate one, between Model 2 and
Model 4. Therefore, we expect a better performance than
Model 2 and a simpler numerical implementation than
Model 4 that requires the special function W. As a last
remark, Model 3 can also be written in logarithmic form,
which might be convenient from a numerical point
of view.

IV. ANALYSIS OF THE MODELS OF DYNAMIC
APERTURE EVOLUTION

In the rest of the paper, the new models of the DA
evolution with time will be scrutinized by analyzing their
behavior when applied to a simple dynamical system like
the 4D Hénon map and to realistic realizations of the LHC
ring at top energy. The most stringent conditions are used,
which means that the number of model’s parameters has
been reduced to the minimum, i.e., to 2 as λ is fixed to 1=2
and N0 is set to 1 for Model 2 or its functional relationship
on ρ� and κ is applied.

A. The 4D Hénon map

1. Generalities

The 4D Hénon map [36] is a well-known model that
combines simplicity in its form with a rich dynamical
behavior. Moreover, it represents the betatronic motion of
a FODO lattice with a single sextupole in the single-kick
representation. Such a system can be made more com-
plicated by introducing a time modulation of the linear
frequencies. The reason to consider the modulated
version of the 4D Hénon map in this context is twofold:
on one hand the tune modulation takes into account the
coupling with the longitudinal dynamics, on the other
hand in [18] it was observed for the first time that for
large values of the modulation amplitude ϵ, the proposed
model for the DA scaling was providing negative values
of the fit parameters.

The modulated 4D Hénon map reads

0
BBBBB@

xðnþ1Þ

pðnþ1Þ
x

yðnþ1Þ

pðnþ1Þ
y

1
CCCCCA ¼ L

0
BBBBB@

xðnÞ

pðnÞ
x þ ½xðnÞ�2 − ½yðnÞ�2

yðnÞ

pðnÞ
y − 2xðnÞyðnÞ

1
CCCCCA; ð26Þ

where ðx; px; y; pyÞ are the phase-space coordinates after
transformation to linear normalized coordinates, i.e.,
Courant-Snyder co-ordinates, and after rescaling by the
strength of the sextupole to make the map independent
from the sextupole strength [36]. L is a matrix given by the
direct product of two 2D rotations R, namely

L ¼
 
RðωðnÞ

x Þ 0

0 RðωðnÞ
y Þ

!
; ð27Þ

where the linear frequencies ωðnÞ
x , ωðnÞ

y are varying with the
discrete time n according to

ωðnÞ
x ¼ ωx0

�
1þ ϵ

Xm
k¼1

ϵk cosðΩknÞ
�
; ð28Þ

ωðnÞ
y ¼ ωy0

�
1þ ϵ

Xm
k¼1

ϵk cosðΩknÞ
�
: ð29Þ

As for the values for the parameters, we have considered
ωx0 ¼ 0.168 and ωy0 ¼ 0.201 and for the Ωk frequencies
and ϵk amplitudes the values are listed in Table II using the
same values as in [18].
A plot of the map stability is reported in Fig. 1 for three

values of ϵ.
The tracking has been performed up to 107 turns for

several values of the modulation amplitude ϵ in the interval
0 ≤ ϵ ≤ 64. A polar grid of initial conditions have been
built, with the angular interval ½0; π=2� divided into 100
parts and a step in amplitude of 10−2. The DA of the map is
computed by using the amplitude of the last stable initial
condition for each angle and by taking the angular average,
as discussed in [37].

TABLE II. Parameters of the modulated Hénon map.

k Ωk 104ϵk

1 2π=868.12 1.000
2 2Ω1 0.218
3 3Ω1 0.708
4 6Ω1 0.254
5 7Ω1 0.100
6 10Ω1 0.078
7 12Ω1 0.218
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2. Results of numerical investigations

Detailed numerical simulations have been performed,
aimed at computing the DA as a function of ϵ using the
approach reported in [37] for the computation of the DA
and the associated numerical error. A summary plot is
shown in Fig. 2, where the DA as a function of turn
number is reported, including the errors associated with
the numerical computation, as well as the results of
Model 1 and 2, only, as Model 3 and 4 provide results
that are essentially indistinguishable from those of
Model 2.
All models provide a good agreement with the numerical

data. The essential differences between them can be better
appreciated by inspecting their dependence on ϵ, which is
shown in Fig. 3. In the upper row, the three parameters

for Model 1 are plotted, while in the second row the two
parameters of Model 2, 3, and 4 are shown, together with
the R2

adj, the adjusted coefficient of determination, for all
four models. For Model 1, it is clearly visible that κ and b
are varying in sign, with rather larger changes of their
absolute values. Such large variations are also visible in the
behavior of D∞, which also features some outliers. On the
other hand, the remaining three models feature a rather
smooth dependence on ϵ and a strong similarity between
them. It is worth noting that Model 2 and 3 feature
parameters values that resemble more to each other than
those of Model 4.
These results indicate that negative parameters are only a

feature of Model 1. All this indicates that the observations
made in [18] about the presence of negative values of the
model parameters are an artefact of the model form, in
which a constant term D∞ is added to that derived from the
Nekhoroshev estimate of the stability time. In general, this
form provides positive fit parameters, but in some cases
negative values might appear, which stem from the com-
pensation between the two terms of the model. Of course,
this improves the fit quality as shown in the behavior of the
R2
adj, which is in general higher for Model 1 as compared to

the other models. The special care needed to analyze a
model made of the sum of different terms, with respect to a
model made of product of various terms, will be discussed
again in Sec. VI. Moreover, it is important to stress that the
new models depend on two free parameters, only. Hence,
they really seem to outperform Model 1.

B. Realistic LHC models

1. LHC dynamic aperture experiment at top energy

In this paper, we do not aim at discussing the agreement
between experimental measurements and numerical simu-
lations, rather we use realistic models, based on exper-
imental configurations used in the LHC, to study the

FIG. 1. Stability region for the modulated Hénon map for three values of ϵ, namely 0 (left), 32 (middle), 64 (right). The different
colors refer to different stability times Nmax. Note the increasing asymmetry between the horizontal and vertical planes for increasing
values of ϵ and Nmax.

FIG. 2. Evolution of the dynamic aperture as a function of turn
number (markers) for the three values of the ϵ parameter used in
Fig. 1. The error associated with the numerical estimate of the DA
are also shown, together with the results of the DAModel 1 and 2
(lines). The other two models are not shown here as they provide
results very similar to those of Model 2.
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performance and behavior of the proposed models of DA
variation with the number of turns.
DA measurements at the LHC (see Fig. 4, upper, for a

layout of the LHC ring) have been carried out at injection
energy [38–40] using different approaches, i.e., the stan-
dard kick method [38] or the novel approach [39,40].
Recently, DA measurements have been successfully

performed also at 6.5 TeV in the LHC [41]. The goals
of these measurements were many-fold: the use of
squeezed optics allows investigations of the impact on
beam dynamics of the nonlinear field errors stemming
from the quadrupoles in the high-luminosity insertions.
Thus, one could examine and quantify the influence on
beam loss and lifetime from changes in the strength of the
normal dodecapole correctors (see Fig. 4, bottom, for a
sketch of the high-luminosity insertions, whose magnets
were used during the experiment) in the ATLAS and CMS
interaction regions (IR) 1 and 5, respectively. This aspect is
particularly relevant in view of the future High Luminosity
LHC project [14], for which the operational strategy to
set the nonlinear correctors in the high-luminosity IRs is
being actively studied.
The detail regarding the experimental session and the

LHC setup can be found in [41]. Here, it is important to
mention that large dodecapole sources were introduced by
powering the IR-b6 correctors left and right of the inter-
action point (IP) 1 and 5, uniformly to their maximum
current. Finally, the IR nonlinear corrections for normal
and skew sextupole and normal and skew octupole errors,
which had been commissioned at the 2017 startup, were
collectively removed.
The ring model used for the numerical simulations of the

DA is the most accurate description of the LHC lattice,
including the measured field errors (see [42] for more

detail) together with the operational configuration of the
various correction circuits. The numerical protocol used
envisages the generation of sixty realizations of the
magnetic errors to take into account their measurement
uncertainties. Moreover, a polar grid of initial conditions in
x − y space is defined and their evolution is computed for
up to 106 turns. The polar grid of initial conditions is
obtained by dividing the first quadrant of the x − y space in
59 angles and along each direction 30 initial conditions are
uniformly distributed over intervals of 2σ. The DA has been
computed using the approaches described in [37].
The evolution of the initial conditions through the LHC

magnetic lattice is computed using the SixTrack code [43],
which implements a second-order symplectic integration
method. All configurations used in the DA experiment at
6.5 TeV have been simulated through 6D numerical
simulations and they are used in the following for assessing
the performance of the models describing the time variation
of the DA. Note that in the rest of the paper the
configuration in which all IR correctors are powered will
be indicated as Configuration A, while that with the
dodecapolar corrector only as Configuration B.

2. Results of numerical investigations

The comparison of the performance of the various DA
models is largely independent on the LHC configuration
used. Therefore, a selection has been applied and in the
following the outcome of the numerical simulations for
Configuration B for Beam 1 (i.e., the clockwise beam,
whereas Beam 2 is the counterclockwise beam) will be
presented and discussed in detail. Figure 5 shows both the
DA data as computed using SixTrack for the sixty realizations
(using different colors) of the LHC magnetic field errors up

FIG. 3. Dependence of the model parameters on ϵ for Model 1 (upper) and the other models (lower) in which λ and N0 are not free
parameters. The figure of merit of the model quality, R2

adj, is also reported (lower right).
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to 106 turns. These data have been modeled using both the
old model and the new ones and the corresponding curves
are also shown (using the same color palette as for the
numerical data). Moreover, extrapolation of the considered
models up to 108 turns have been computed and the results
reported, to provide quantitative information about the
predictive power of the various models.
The bars reported in the four plots are centered around the

weighted average of the DA for a given number of turns, i.e.,
N1 ¼ 106 (corresponding to the maximum number of turns
simulated with SixTrack), N2 ¼ 107 and N3 ¼ 108 (corre-
sponding to two extrapolation times). For N1, a comparison
between the DA obtained from numerical simulations and
that derived from the various models is carried out. The DA
data from SixTrack are averaged over the realizations and the
rms is used as associated error. For the DA values obtained
from the models, for each LHC lattice realization a model is
fitted, the errors on the corresponding model parameters are
used to evaluate the error associated with the DA estimate.
Finally, all sixty DA values are averaged using the corre-
sponding errors as weights and the rms is used as associated
error. The numerical values, including the relative errors
obtained by taking the minimum and maximum DA value
for the ensemble of sixty values are listed in Table III. It is
clear (both from Fig. 5 and Table III) that the error bars for
Model 1 are larger than those of the other models, thus
confirming a better precision of the extrapolated DA values
for Model 2, 3, and 4.
Another essential feature is that Model 1 provides

parameters that vary significantly between different real-
izations of the magnetic errors (called seeds), also changing
their signs. This is clearly shown in Fig. 6, where the three
parameters of Model 1 are shown as a function of the seed.
The average value of each parameter over the seeds is also
given, weighted by the corresponding error from the fitting
procedure, together with an estimate of the associated error.
As additional information, the relative spread around the
weighted average of each model parameter is shown using
the secondary vertical axis of each plot, and the wide range
covered can be clearly appreciated.

Q1 Q3Q2a Q2a D1C0 C1 C2 C3

b1/a1 b1/a1 b1/a1

b3/a3

b4/a4

b6

a2

IP

Q1, Q2, Q3: triplet quadrupoles
D1: separation dipole
C0, C1: combined hor./ver. dipole correctors
C2: skew quadrupole corrector
C3: combined hor./ver. dipole correctors and non-linear correctors

Arc

FIG. 4. Upper: Layout of the LHC (from Ref. [8]). The ring
eight-fold symmetry is visible, together with the arcs and the long
straight sections. Bottom: Sketch of the layout of the inner triplets
and the nonlinear correctors used in the experimental tests
reported in this paper. The field imperfections of LHC magnets
are represented as By þ iBx ¼ Bref

P
M
n¼1 ðbn þ ianÞðxþiy

Rr
Þn−1

where Rr ¼ 17 mm.

FIG. 5. DAvs time for Configuration B for Beam 1 for Model 1, 2, 3, and 4 (left to right, respectively). The various curves refer to the
sixty realizations used in the numerical simulations, which are differentiated by their color and stop at 106 turns. Extrapolated values up
to 108 turns are also given, based on the models that reproduce the numerical data. The black bar indicates the DA from numerical
simulations and the related uncertainty, whereas the green bars indicate the DA from the models and the related uncertainty (the
corresponding numerical values are listed in Table III.
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For the sake of comparison, the distributions of param-
eters for Model 2, 3, and 4 are reported in Fig. 7. The
situation is completely different, with only positive values
and a rather small spread between the different cases, hence
overcoming the limitations observed for the original
Model 1.
For some cases, even Model 1 provides positive values

of the parameters, as observed already in [18]. However,
whenever Model 1 provides negative nonphysical model
parameters, the new models provide positive values, with-
out meaningful impact on the accuracy in reproducing the
numerical data. Indeed, the main conclusion of our inves-
tigations is that the very form of the original model, with
the constant term D∞ added to the logarithmic one, is
responsible for the appearance of negative nonphysical
model parameters. Furthermore, it induces a larger vari-
ability of the model parameters, possibly indicating over-
fitting. All these aspects are absent in the newly proposed
models for the DA dependence on time, which is an
important step forward for reliable modeling of the time
dependence of DA.

V. PROBING THE PREDICTIVE POWER
OF THE DA MODELS

As it was presented and discussed in [18], the predicting
power of the proposed DA models has been verified by
varying the amount of data used to build the models and
then extrapolating the DA value to a fixed number of turns
to verify the agreement between the DA value obtained
by means of the models and the numerical simulations.

Indeed, in the previous section the extrapolation properties
up to 108 turns have been studied, but without comparing
against tracking data, which is nowadays still impossible
for such a large number of turns in the case of the LHC ring.
Therefore, in this section a different aspect is considered,
which consists of benchmarking the performance of
the extrapolation against numerical data by choosing a
suitable number of turns that can be simulated without too
many issues.
In Fig. 8, the results of the DA extrapolation obtained

from the proposed models built using different number of
turns for the Hénon map are shown. Model 2, 3, and 4 are
reported as a function of the parameter ϵ and the error bar
are obtained from the fit procedure. The numerical simu-
lations carried out at 107 turns are considered the reference
and are reported without any error bar as no fitting and
extrapolation are involved.
The first observation is that the overall behavior does not

depend on the DA model used. For ϵ ≤ 20, the extrapolated
DA values approximate the reference ones from below
and the agreement is very good and weakly depends on the
number of turns used to build the DA models. In several
cases the reference DA values are compatible with the
extrapolated ones within the error bars. Note that the
relative agreement between reference and extrapolated
DA is better than ≈5%. The conclusions change whenever
the range ϵ ≥ 20 is considered. In fact, a stronger depend-
ence on ϵ is observed and the extrapolated DA values
approach the reference ones from above. A larger discrep-
ancy between extrapolated values and reference ones is
observed, the maximum reaching ≈30% for the largest

TABLE III. DA values for Configuration B for Beam 1 as obtained from the numerical data or by using the four
models discussed in this paper, which provide also DA values extrapolated beyond the simulated number of turns.
The approach used to derive the errors reported in the table is described in the main text.

Comment Turn number Model 1 Model 2 Model 3 Model 4

Numerical data 106 7.52� 0.06þ1.50%
−1.53%

Models: interpolation 106 7.50� 0.05þ1.94%
−1.60% 7.57� 0.05þ2.11%

−1.72% 7.57� 0.05þ2.79%
−2.24% 7.57� 0.06þ3.43%

−2.89%

Models: extrapolation 107 7.03� 0.09þ3.51%
−2.78% 7.29� 0.05þ2.34%

−1.59% 7.29� 0.05þ3.02%
−2.12% 7.29� 0.06þ3.64%

−2.77%

108 6.6� 0.2þ5.77%
−6.37% 7.06� 0.05þ2.54%

−1.50% 7.05� 0.05þ3.21%
−2.02% 7.06� 0.06þ3.82%

−2.66%

FIG. 6. Distribution of the parameters of Model 1 for the sixty realizations corresponding to Configuration B for Beam 1. The
parameter value as well as its relative value (with respect to the average over the seed) is provided. The huge spread is clearly visible.
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values of ϵ. Therefore, depending on the strength of the on-
linear perturbation, extrapolation by two orders of magni-
tude can provide an accuracy for the DA estimate around
≈5%, while extrapolation by one order of magnitude never
differs by more than ≈15% from the reference in most
unfavourable cases. Overall, this can be considered as a
very encouraging result for the proposed approach.
Similar analyses have been carried out for the LHC

cases, applying a similar approach as that used for the
Hénon map. The results are summarized in Fig. 9 where the
proposed models (2, 3, and 4) are presented (top to bottom).
In the two columns the results obtained for different amount
of numerical data (104—left—105—right) are shown. The
outcome of the analyses for all the sixty realizations of the
LHC ring are reported and the behavior of the numerical

FIG. 7. Distribution of the parameters for Model 2, 3, and 4 for
the sixty realizations corresponding to Configuration B for
Beam 1. The distributions’ parameters (average μ and σ) are
also reported in the plots.

FIG. 8. Results of the DA extrapolation obtained from the
proposed models built using different number of turns (marked
on the upper part of the plot) for the Hénon map. The cases of
Model 2, 3, and 4 are shown here (top to bottom), all as a function
of the parameter ϵ. The error bars are obtained from the fit
procedure. The reference values are those obtained from numeri-
cal simulations performed with 108 turns, which are shown
without error bars.

FIG. 9. Results of the DA extrapolation obtained from
the proposed models built using different number of turns
(104—left—105—right) for the LHC case corresponding to
Beam 1 with Configuration B. The cases of Model 2, 3, and 4
are shown here (top to bottom). The results for all sixty
realizations of the LHC ring are plotted, with the numerical
data used to build the DA models shown together with the
extrapolated curves up to 108 turns.
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data used to build the DA models is shown together with
the extrapolated curves. The reference case is provided by
the results of numerical simulations up to 106 turns.
The results presented in both columns approximate the

reference data from above, showing that the extrapolated
DA is an optimistic estimate of the numerical one. As
expected, the larger is the number of turns used to build
the DA models the smaller is the discrepancy between
extrapolated and reference values. The quantitative data are
reported in Table IV.
The disagreement between extrapolated DA values and

the reference ones ranges from 2% to 4%, which is an
excellent result. No strong dependence of the extrapolated
DA value on the model used has been observed as for the
case of the Hénon map. As a consequence, extrapolation for
two orders of magnitude in turn number might be at hand
also for the LHC. Of course, it is not possible to ensure that
such a situation is typical for all possible configurations
of the LHC (similarly to what has been observed for the
Hénon map, where the degree of accuracy of the extrapo-
lation features a non-negligible dependence on the value of
the parameter ϵ.

VI. DIGRESSION: SOME INTRIGUING
PROPERTIES OF THE DA MODELS

The DA models provide values of the parameters ρ� or b
[see Eqs. (20) and (21)] and κ. It is of interest to verify
whether the assumed relationship (4b) is confirmed by
the data. To this aim, the dependence of b on κ has been
studied. The results for Model 2 are shown in Fig. 10,
where the Hénon map and LHC models are reported in the
upper and lower part of the plot, respectively.
The striking observation is that, in spite of the essential

differences in the four LHC rings’ configurations, all data
seem to lie on a single smooth curve. The same holds also
for the Hénon map case, where the differences in the value
of ϵ do not prevent the data points to lie on a single smooth
curve. Furthermore, the functional form of the curve is the
same for the Hénon and LHC cases, showing a sort of
universal behavior. Note also that these features are model
independent, as they hold also for Model 3 and 4.
It is worthwhile to make two additional remarks. First,

the difference between Beam 1 and 2 in terms of the

parameters b and κ is not unexpected. In fact, it was already
observed in earlier work [42] that the DA for 105 turns was
not the same for the two rings. This is linked to the fact that
the magnetic field errors are rather correlated between the
two ring, but they are not exactly the same. Second, the
parameter κ varies although the phase space dimension is
not changing: this is yet another indication that further
theoretical work is needed to understand the dependence
of κ on the features of the system.

TABLE IV. DA values for Configuration B for Beam 1 as obtained from the numerical data or by using the three
new models discussed in this paper, which provide DAvalues extrapolated to 106 turns, but starting from a different
number of turns used to build the models. The approach used to derive the errors reported in the table is described in
the main text.

Comment Turn number Model 2 Model 3 Model 4

Numerical data 106 7.52� 0.06þ1.50%
−1.53%

Models: extrapolation from 104 7.69� 0.08þ2.94%
−2.50% 7.83� 0.08þ3.16%

−3.18% 7.83� 0.08þ4.13%
−3.63%

105 7.69� 0.07þ2.94%
−2.50% 7.68� 0.07þ3.37%

−3.02% 7.69� 0.08þ3.80%
−3.55%

FIG. 10. Dependence of b vs κ for the Hénon map (upper) and
the four LHC cases (lower) considered earlier. The error bars
associated with the fit procedure used to determine b and κ are
also shown. The data shown refer to Model 2, but similar results
hold also for Model 3 and 4. The dashed curves represent the fit
function (30a).
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Several functions have been considered to describe the
observed dependence, namely

bðκÞ ¼ α expfβκg ð30aÞ

bðκÞ ¼ α expfβ ffiffiffi
κ

p g ð30bÞ

bðκÞ ¼ α expfβκγg ð30cÞ

bðκÞ ¼ αðβκÞγκ ð30dÞ

with R2
adj as a figure of merit.

All listed functions provide reasonably good fit results,
with model (30c) generally giving the best fit and model
(30a) being a close second. However, for model (30c) we
always obtain γ ≈ 1, hinting that model (30a) might be the
correct underlying relation. The most important observa-
tion, however, is that the function (30d) always provided
the worst fit, despite it being expected to be the correct
underlying relation [see Eq. (21)]. This led us to conjecture
that the function (30a) represents the correct underlying
relation between b and κ.
It is worth noting that tests adding constant terms to the

listed fit functions were carried out. Once more, it was
found that although the constant term helps in improving
the fit quality, it makes the values of the other fit parameters
entering in the κ-dependent term more variable when
applied to the several systems under consideration. For
this reason, it has been considered that such a constant term
introduces nonphysical features and it has been dropped.
The resulting fit parameters for model (30a) for the various
configurations studied are listed in Table V.
The error bars on the fit parameters for the four LHC

cases are in general larger than those for the Hénon map,
which is a consequence of the presence of the sixty
realizations for each LHC configuration. It is also clear
that the parameters for each beam are relatively close
together, in spite of the differences in magnetic configu-
rations. In general, the fit parameters for Model 3 and 4 are
very similar between them, while those for Model 2 are

more different. This is a possible indication that the
observed scaling of b with κ is better detected by means
of the more accurate models. Another observation is that
the fit parameters of the combined data for all four LHC
configurations do not depend strongly on the model used to
describe the DA data.
We can now use Eq. (30a) to redefine the proposed DA

models such that the different fit parameters are supposed
to be independent of each other. For convenience, we
rename the fit parameters from model (30a) as follows:

r̃� ¼ b̃ ¼ α; B ¼ expf−βg; ð31Þ

such that we can rewrite (30a) as

r̃� ¼ r�Bκ; or equivalently b̃ ¼ bBκ: ð32Þ

Note that, due to the dependency of r� on κ, both r̃� and B
are independent on it. Furthermore, we define

Ñ0 ¼ N0Bλκ; ð33Þ

which can be computed, using Eq. (4c), to be

Ñ0 ¼
7
ffiffiffi
6

p

48
b̃λ: ð34Þ

Finally, this gives the following reformulation for our new
DA models:

Model 2 ⇒ DðNÞ ¼ b̃
ðB ln N

Ñ0
Þκ ; ð35aÞ

Model 3 ⇒ DðNÞ

¼ b̃ ×
1

½B ln N
Ñ0

þ κB
2
ln ðB ln N

Ñ0
þ κB

2
ln κB

2
Þ�κ ;

ð35bÞ

TABLE V. Parameters of the fit function (30a) describing the relationship between b and κ, for the Hénon map and
the various LHC configurations, for Model 2. The errors are the standard errors associated with the fit procedure.
Moreover, the errors associated with the determination of b and κ have been used as weights for determining the fit
function (30a).

Model 2

Configuration α β R2
adj

Hénon map 0.524� 0.001 2.225� 0.004 99.999

LHC Beam 1 Configuration A 7.5� 0.2 3.1� 0.1 99.996
Configuration B 7.3� 0.1 2.80� 0.07 99.996

LHC Beam 2 Configuration A 11.4� 0.6 2.0� 0.1 99.989
Configuration B 9.5� 0.3 2.35� 0.08 99.992
All LHC configs. 7.18� 0.06 3.07� 0.02 99.996
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Model4⇒DðNÞ¼ b̃×
1

½−κB
2
W−1ð− 2

κBð NÑ0
Þ−2

κÞ�κ ; ð35cÞ

where Ñ0 can either be left as a free model parameter, or
can be fixed to the value given in Eq. (34) for Models 3
and 4, or to an arbitrary constant for Model 2.
Note that these new formulations of the DA models

introduce an extra fitting parameter, namely B, but are
supposed to be even more stable from a physical viewpoint.
In other words, the parameters b̃, B, and κ are expected to
be totally independent of each other, hence true constants of
the scaling law. Of course, this is so far merely an empirical
observation. Some efforts should be devoted to the analysis
of the form of the estimate of the stability time provided by
Nekhoroshev theorem to determine whether the numeri-
cally obtained scaling law can be justified with theoretical
arguments. In other words, an interesting open question is
whether a theoretical motivation can be found to rewrite the
Nekhoroshev estimate in Eq. (3) as

NðrÞ
Ñ0

¼
�
r
r̃�

�
λ

exp

�
1

B

�
r̃�
r

�1
κ

�
; ð36Þ

where r̃�, B, and κ are independent constants, and Ñ0 is
given by Eq. (34). Another interesting question is whether
an analytical estimate can be found for B, as our data
suggests it to be constant for all different systems we
investigated. Indeed, Table V seems to hint that

0.05 ≤ B ≤ 0.14: ð37Þ

As a last remark, we note that it is straightforward to
retrieve the original DA model formulations from Eqs. (35)
by simply making the following substitutions:

b̃ → b; Ñ0 → N0; B → 1: ð38Þ

VII. CONCLUSIONS

In this paper, recent progress in defining reliable models
for the time dependence of the DA has been presented and
discussed in detail. The essence of the novel approaches
relies on the analytic estimates used in the proof of the
Nekhoroshev theorem [26,27] and on the use of the
Lambert function. Such a function is applied to invert
the estimate of the stability time with an exact and closed-
form expression. Three new models for the DA evolution
with time have been proposed: Model 2 resembles the
original Model 1 [17,18] for the inverse logarithmic term,
but does not include the constant term representing the
dynamic aperture for infinite time, which was introduced
to take into account the region filled by KAM tori. Model 4
represents the exact model for DA evolution with time

based on Nekhoroshev theorem, only, and using the
Lambert function. Model 3 is derived from Model 4 by
means of a series development of the Lambert function,
which can provide an easier computational tool as it avoids
the use of the exotic Lambert function. Moreover, it shows
explicitly the resemblance and the new features of Model 3
with respect to Model 2. Of course, the validity of Model 3
relies on the validity of the expansion of the Lambert
function, which remains a topic deserving further theoreti-
cal investigations.
In earlier work it had been observed that in some cases

the parameters of the original Model 1, based on KAM
theory and Nekhoroshev theorem, become negative
[17,18]. This represents a violation of the conditions of
validity of the Nekhoroshev theorem, which then makes
Model 1 only a phenomenological description of the
special cases with negative parameters. The three new
models proposed in this paper overcome this difficulty as
they provide positive physical parameters values in sit-
uations in which Model 1 is failing to do so. Further, only
a small reduction of fit quality is obtained, despite the
reduction of the number of model parameters from three to
two, which suggests a more fundamental scaling law has
been found.
The observed dependencies between the parameters

of Model 1 have been reduced in the new models.
Furthermore, the behavior of the models parameters has
been studied as a function of the modulation amplitude ϵ,
for the case of the 4D Hénon map, and of the realizations of
the magnetic field errors, for the case of the LHC, and a
very smooth and regular behavior has been observed.
This feature opens the possibility to study the underlying
mechanisms and how b and κ depend on the physical
parameters of the system, rather than just considering the
dynamic aperture. This could provide a more fundamental
insight into the beam dynamics and aid effective collider
design based on b and κ rather than on DA computation at a
fixed number of turns.
A by-product of the detailed analysis carried out

has been the observation that the b parameter features a
clear exponential dependence on the κ parameter. This
implies that the functional form of the stability-time
estimate as given in [26] could be reviewed. Additional
theoretical efforts shall be devoted to this intriguing result.
Furthermore, the relationship between κ and the phase
space dimension or other dynamical features of the system
should be studied in more detail to clarify the results
presented and discussed in this paper.
The main issue of the original model has been identified

in the functional form proposed, namely with a constant
term added to a logarithmic one that depends on two model
parameters: this combination provides a flexible functional
form that can match a large variety of DA data, however,
compensations between the model parameters is possible
and affects the stability and predictivity of the DA model.
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As far as the possibility to use the models to interpolate
numerical data and then to make predictions beyond the
maximum number of simulated turns, Models 2, 3, and 4
proved to be very reliable and more precise than Model 1
for the cases presented in this paper. More quantitatively,
the predictive power has been probed for the dynamical
systems considered in this study and it has been found out
that extrapolations by two orders of magnitude in number
of turns can be done with inaccuracy in the DA estimate not
larger than 4% for the LHC case. This is certainly a very
positive result that suggests that the use of these models for
extrapolating DA beyond what is currently possible to
compute by means of numerical simulations is indeed a
viable option.
Finally, it is worth stressing that these recent and very

encouraging results will be used to refine the approaches
proposed in earlier work to estimate beam losses [19]
and more recently to model the evolution of the collider’s
luminosity in the presence of burn off and losses due to
dynamic aperture [28,29].

APPENDIX A: GENERAL PROPERTIES
OF THE W FUNCTION

If we want to invert Eq. (3) in order to interpret r as the
dynamic aperture and express its evolution as a function of
the number of turns, we are undoubtedly left with a result
involving the Lambert W function, see, e.g., [33] and
references therein for an overview on this function and its
application in physics as well as [44] for a recent appli-
cation to accelerator physics, so we devote this section to
the investigation of this rather exotic, but nevertheless
ubiquitous, function.
The Lambert W function, also called the Ω function or

product logarithm, is in fact a set of functions defined as
the branches of the inverse of the product exponential
function, namely

y ¼ x expfxg ⇔ x ¼ WðyÞ: ðA1Þ

By analytic continuation, WðzÞ is well-defined, but multi-
valued on the full complex plane, with a branch cut along
the negative axis at � −∞;− 1

e�. Its defining equation for any
z ∈ C is

z ¼ WðzÞ expfWðzÞg: ðA2Þ

By using the very definition (A2) it is possible to show
that

expf�nWðzÞg ¼
�

zn

WnðzÞ
��1

ðA3aÞ

expf�WnðzÞg ¼
�

z
WðzÞ

��Wn−1ðzÞ
: ðA3bÞ

Its derivative and primitive are the same for all branches
and are given by

dWðzÞ
dz

¼ 1

zþ expfWðzÞg ; for z ≠ −
1

e
ðA4aÞ

Z
dxWðxÞ ¼ xWðxÞ − xþ eWðxÞ þ c: ðA4bÞ

Restricting ourselves to the real domain, there are only two
branches of W, namely

domðW0Þ ¼
�
−
1

e
;þ∞

�
with − 1 ≤ W0 < þ∞;

ðA5aÞ

domðW−1Þ ¼
�
−
1

e
; 0

�
with −∞ ≤ W−1 ≤ −1;

ðA5bÞ

with particular values

W0ð0Þ ¼ 0; W−1ð0−Þ ¼ −∞; ðA6aÞ

W0

�
−
1

e

�
¼ −1; W−1

�
−
1

e

�
¼ −1: ðA6bÞ

These two branches are shown in Fig. 11. A few other
interesting identities, valid on the real axis, are

FIG. 11. Plot of the product exponential function (full line) and
the two real branches of its inverse, the Lambert W0 and W1

functions (dashed and dotted lines, respectively).
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W0ðx expfxgÞ ¼ x ðx ≥ −1Þ; ðA7aÞ

W−1ðx expfxgÞ ¼ x ðx ≤ −1Þ; ðA7bÞ

WðxÞ ¼ ln
x

WðxÞ
�
x ≥ −

1

e

�
; ðA7cÞ

Wðx ln xÞ ¼ ln x ðx > 0Þ; ðA7dÞ

¼ WðxÞ þ lnWðxÞ ðx > 0Þ: ðA7eÞ

APPENDIX B: PARAMETERS’ CONSTRAINTS

We investigate what constraints can be imposed on the
parameters of our model. We have two general constraints:
first we demand that the dynamic aperture is real and
positive, and second we have to remain in the region where
the Nekhoroshev estimate is valid, as in Eq. (2).

1. Reality condition

For the first demand we have to investigate the argument
of the Lambert W function, and the base of the power −κ.
Indeed, if κ is a noninteger the result will be real only if
the base of the power is positive. First of all, r� is a
positive quantity, which ensures that r > 0 as well as N0.
Furthermore if λκ < 0, the argument of W is positive and
hence we use the upper branchW0, which is positive itself,
thus ensuring the reality of the power, namely

λκ < 0 ⇒ r ¼ r�

"
jλκjW0

 
1

jλκj

ffiffiffiffiffiffi
N
N0

jλκj

s !#−κ
> 0: ðB1Þ

On the other hand, if λκ > 0, the argument of W is
negative and hence we can use both branches, as both
return a negative value for a negative argument, again
ensuring the reality of the power. However, we have to
make sure that the argument lies in the region ½− 1

e ; 0½ to
avoid entering a complex branch. In other words:

λκ > 0 ⇒ r ¼ r�

"
−λκW

 
−

1

λκ

ffiffiffiffiffiffi
N0

N
λκ

r !#−κ
> 0

if
1

λκ

ffiffiffiffiffiffi
N0

N
λκ

r
≤
1

e
: ðB2Þ

2. Region constraint

Next we have to satisfy Eq. (2). In other words,
we have: �

−λκW
�
−

1

λκ

ffiffiffiffiffiffi
N0

N
λκ

r ��−κ
≤
�
2

3κ

�
κ

: ðB3Þ

To get rid of the power, we raise each side to 1
κ. The result

will hence depend on the sign of κ. Note that we already
deduced that the base of the left-hand side (l.h.s.) is
positive. If κ > 0 the base of the right-hand side (r.h.s.)
is positive as well and we can cancel the two powers
without changing the ordering

W

 
−

1

λκ

ffiffiffiffiffiffi
N0

N
λκ

r !
≤ −

3

2λ
λ > 0 κ > 0: ðB4Þ

In order to continue our investigation of the restrictions
on the parameters, we would like to apply the inverse of the
Lambert W function, namely the product exponential. It is
however not trivial if and how this function preserves a
given ordering. If we have a look at Fig. 11, we see that
x expfxg rises monotonously toward þ∞ for x ≥ −1, and
falls monotonously from 0 for x ≤ −1. From this informa-
tion we can derive the following properties:

−1 ≤ x ≤ y ⇒ x expfxg ≤ y expfyg; ðB5aÞ

x ≤ y ≤ −1 ⇒ x expfxg ≥ y expfyg; ðB5bÞ

x ≤ −1 and 0 ≤ y ⇒ x expfxg ≤ y expfyg; ðB5cÞ

x ≤ −1 and − 1 ≤ y ≤ 0 ⇒ information on ordering

is lost: ðB5dÞ

If λ > 0 and κ > 0 then both Eqs. (B2) and (B4) have to
be satisfied. From the former we deduce that the argument
of the Lambert W function is negative and hence the
function itself is negative. To see which one of Eqs. (B5)
applies, we investigate two positive regions of λ, namely

−
3

2λ
≤ −1 ⇒ 0 < λ ≤

3

2
; ðB6aÞ

−
3

2λ
> −1 ⇒ λ >

3

2
: ðB6bÞ

Note that the combination of (B6) and (B4) implies
automatically that we have to choose the branch W−1,
as this is the only (real) branch that has values smaller
than −1. Let us again investigate the two cases separately.

0 < λ ≤ 3=2

This implies that now both the l.h.s. and the r.h.s. of (B4)
are smaller than −1, and hence ordering (B5b) applies:

−
1

λκ

ffiffiffiffiffiffi
N0

N
λκ

r
≥ −

3

2λ
exp

�
−

3

2λ

�
0 < λ ≤

3

2
; κ > 0:

ðB7Þ
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Multiplying both sides with a factor −λκ flips the
ordering, while raising both sides to the power λκ does
not and finally one finds

N
N0

≥
�
2

3κ

�
λκ

exp

�
3

2
κ

�
0 < λ ≤

3

2
; κ > 0: ðB8Þ

Additionally we should satisfy the reality constraint
in (B2), namely:

N
N0

≥
�
1

λκ

�
λκ

expfλκg: ðB9Þ

We notice that for λ ¼ 3
2
, Eq. (B9) reduces to Eq. (B8),

while it is easy to verify that ∀ κ > 0:

�
e
λκ

�
λκ

≤
�
2

3κ

�
λκ

exp

�
3

2
κ

�
; ðB10Þ

hence we can safely assume that the reality constraint is
automatically satisfied if we impose Eq. (B8).

λ > 3=2

This implies that the r.h.s. of (B4) is larger than −1,
which does not set any constraint on the l.h.s. If we choose
the real branch W−1, the l.h.s. will be smaller than −1 and
hence ordering (B5d) applies, and we do not need to
simplify (B4) any further as it is automatically satisfied. In
this case the reality constraint in Eq. (B9) is the only one
that remains.
On the other hand, if we choose the real branch W0,

the l.h.s. will be larger than −1 and hence ordering (B5)
applies, and we can simplify (B4) into

−
1

λκ

ffiffiffiffiffiffi
N0

N
λκ

r
≤ −

3

2λ
exp

�
−

3

2λ

�
λ >

3

2
; κ > 0: ðB11Þ

Multiplying both sides with −λκ changes the ordering,
while raising both sides to the power λκ does not and finally
one finds

N
N0

≤
�
2

3κ

�
λκ

exp

�
3

2
κ

�
λ >

3

2
; κ > 0: ðB12Þ

However, we also have to satisfy the reality condition,
which combined with the previous constraint, provides
bounds from below and from above to N, namely

�
e
λκ

�
λκ

≤
N
N0

≤
�
2

3κ

�
λκ

exp
�
3

2
κ

�
λ >

3

2
; κ > 0:

ðB13Þ

It is clear that we do not want an upper bound for N=N0

as this would limit the validity of the Nekhoroshev

stability-time estimate. Therefore we conclude that only
the branch W−1 should be used in our application and the
summary of all possible parameters’ values is listed in
Table I.
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Schulte, Advance on dynamic aperture at injection for
FCC-hh, in Proceedings of 8th International Particle
Accelerator Conference, edited by V. R.W. Schaa,

A. BAZZANI et al. PHYS. REV. ACCEL. BEAMS 22, 104003 (2019)

104003-16



G. Arduini, M. Lindroos, and J. Pranke (JACoW, Geneva,
2017), p. 2027.

[13] E. Cruz-Alaniz, A. Seryi, E. H. Maclean, R. Martin,
and R. Tomás, Nonlinear field correction effects on the
dynamic aperture of the FCC-hh, in Proceedings of 8th
International Particle Accelerator Conference, edited by
V. R.W. Schaa, G. Arduini, M. Lindroos, and J. Pranke
(JACoW, Geneva, 2017), p. 2143.

[14] High-Luminosity Large Hadron Collider (HL-LHC). Tech-
nical Design Report V.0.1 edited by G. Apollinari, I. Bejar
Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L.
Tavian, CERN Yellow Reports: Monographs, Vol. 4/2017,
CERN-2017-007-M (CERN, Geneva, 2017), https://doi
.org/10.23731/CYRM-2017-004.

[15] B. Dalena, D. Boutin, A. Chancé, B. Holzer, S. Izquierdo
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