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Measurements of transverse profiles using ionization profile monitors (IPMs) for high brightness beams
are affected by the electromagnetic field of the beam. This interaction may cause a distortion of the
measured profile shape despite strong external magnetic field applied to impose limits on the transverse
movement of electrons. The mechanisms leading to this distortion are discussed in detail. The distortion
itself is described by means of analytic calculations for simplified beam distributions and a full simulation
model for realistic distributions. Simple relation for minimum magnetic field scaling with beam parameters
for avoiding profile distortions is presented. Further, application of machine learning algorithms to the
problem of reconstructing the actual beam profile from distorted measured profile is presented. The
obtained results show good agreement for tests on simulation data. The performance of these algorithms
indicate that they could be very useful for operations of IPMs on high brightness beams or IPMs with weak
magnetic field.
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I. INTRODUCTION

The principle of beam profile measurement using ion-
ization profile monitors (IPMs) is seemingly very simple.
The beam particles ionize the residual gas. The products of
the ionization—electrons or ions—are extracted towards a
position-sensitive detector using the guiding electric field
(also referred to as “clearing” or “external” field) provided
by electrodes. The distribution of the particles on the
detector ideally corresponds to a projection of the trans-
verse distribution of the beam density. This simple and
straightforward principle, illustrated in Fig. 1, is nonde-
structive for the beam and thus an appealing application for
synchrotrons and storage rings. In this context IPMs are
installed in many hadron accelerators [1] and even inves-
tigated for usage on electron machines [2].
However already for medium-intensity beams the move-

ment of electrons or ions is easily affected by the transient
beam electric field. Because of their lower mass, electrons
are removed much faster from the influence of bunch fields,
however the effect of these fields on their trajectories is

proportionally larger. Usually ion-based devices are pre-
ferred due to simpler assembly (no need of ion-trapping
[4]), smaller impact of fringe fields of neighbouring
magnets and lack of background signal from electrons
generated from various other sources [5]. However the
influence of beam fields plays a major role for high-
brightness beams and thus electron-based IPMs are pre-
ferred over ion-based devices, mainly because the electron
movement can be easily confined to small gyroradius by
applying external magnetic field. Another argument in

FIG. 1. Sketch of an IPM together with read-out system. The
electric and magnetic guiding fields are aligned, perpendicular to
the beam direction as well as to the read-out system [3].
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favor of electron-based devices is the fact that they are
more suitable for time-resolved measurements because
the electrons have much smaller time-of-flights towards
the detector.
Distortions of the measured beam profile using ion-

based IPMs are either mitigated by increasing the electric
guiding field or corrected by empirical mathematical
models [6–9]. For operation of electron-based IPMs with
magnetic field it was first proposed to tune the magnetic
field strength such that the electrons perform exactly one
gyration between the beam and the detector [10]. However
this method does not work for high-brightness beams, in
which electrons get a significant momentum transfer not
only transverse to the detector plane but also in the
direction towards the detector. Therefore increasing the
magnetic field in order to reduce the magnitude of
gyroradius is the typical counteraction against the distortion
of the measured beam profiles. This is also because profile
correction methods, similar to the ones developed for ion-
based IPMs, do not exist for electron-based devices. One
reason for that is the more complex particle movement in
the presence of a combination of electric and magnetic
fields. This movement and therefore the profile distortion,
strongly depend on the beam fields and hence on bunch
charge, transverse, and longitudinal bunch shape as well as
bunch spacing.
The first beam space-charge induced effects in an

electron-based IPM operated with magnetic guiding field
were observed in the Large Hadron Collider (LHC) at beam
energies of 4 TeVand magnetic guiding field of 0.2 T [11].
Following studies have analyzed this phenomenon and
estimated a magnetic field strength of 1 T required to
suppress profile distortions [12–14]. However such large
field strengths pose a technological as well as financial
challenge, especially because of the relatively large gap
between the poles needed to fit the detector vacuum
chamber.
Besides beam space-charge induced profile distortion

there are various other phenomena which can have an
effect on measured profiles. These are briefly discussed
below however not addressed any further throughout this
study: (1) Ionization by bunch field. At extreme field
strengths the gas ionization cross section is modified due
to the Stark shift of energy levels and at even higher fields
the gas gets ionized by the collective bunch electric field
[15], rather than by interaction with single beam particles.
(2) Burnout of the rest gas. Under some conditions, the
ionization rate of the rest gas can be higher than the
replenishment of gas in the volume of the beam leading to
nonproportionality between beam density and amount of
ionization events. This can be counterbalanced by, for
instance, using gas jet [16]. (3) Guiding field nonuni-
formity. If the electric and magnetic guiding fields are
nonuniform, it will additionally impact the resulting
particle trajectories [17]. Also if the guiding fields are

not perfectly aligned with respect to each other this
introduces an additional disturbance. (4) Gas ionization
from synchrotron radiation and the influence of wake
fields on particle trajectories may constitute additional
sources of profile distortion. However these effects have
not been observed or studied up to now.
Some of the mentioned effects emerge from the influence

of the particle beam and depend mainly on the amplitude of
the beam electric field and the duration of the correspond-
ing pulse. An overview of various effects in dependence on
these two parameters is shown in Fig. 2 alongside the beam
parameters of several hadron accelerators, the most power-
ful laser system up-to-date (LFEX), 3rd generation light
source (ALBA) and advanced free electrons laser
(SwissXFEL). The peak fields in waist of LFEX laser
beam reaches 1 × 107 MVm−1, well beyond the limit of
gas ionization by bunch electric field. In comparison, the
highest field in an accelerator—a focused SwissXFEL
beam—will be reaching about 2 × 104 MVm−1. All
hadron machines are currently below 10 MVm−1 but the
bunch lengths are about 3 orders of magnitude larger than
those of LFEX and XFEL. Figure 2 also indicates two
effects related to beam space-charge interaction: electrons
being trapped by the beam fields exceeding the electric
guiding field and electron velocities reaching into the
relativistic regime.
Depending on the acquisition system in use, additional

distortion of the measured distributions may occur. The
electron or ion detection is usually based on amplification
of the signal using multichannel plate (MCP) and either
conversion of resulting electrons to light using a phosphor
screen followed by a camera or direct conversion to electric
signals using anode-strips. Such systems may suffer from

FIG. 2. Amplitude and duration of transient beam electric fields
generated in various scientific apparatus. Approximate bounda-
ries indicating appearance of phenomena like electron trapping or
relativistic regime are shown. The estimates were done for a
magnetic guiding field of 0.2 T. The dashed vertical line indicates
the gyroperiod for electrons moving in the 0.2 T magnetic field.
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nonuniformity of MCP gain, Phosphor deterioration or
point-spread function of the optical system positioned after
the Phosphor. Recent developments focus on use of hybrid
silicon pixel detector instead of MCP/Phosphor or MCP/
anode-strip combination and have shown to sidestep some
of these issues [18].
The present study focuses on application of electron-

based IPMs in high-brightness hadron machines such
as the Large Hadron Collider (LHC), the Super Proton
Synchrotron (SPS) at CERN or the SIS-100 under con-
struction at FAIR. For these machines the beam-space
induced profile distortion becomes a prominent factor that
potentially hinders the successful operation of electron-
based IPMs. This type of profile distortion as well as
possible mitigation strategies are the focus of the present
study.

II. PROFILE DISTORTION

In the following sections we will focus on profile
distortion effects related to the electron movement which
is governed by their interaction with the present electro-
magnetic fields. For the scope of this contribution, we
assume perfectly uniform and aligned guiding fields and do
not consider gas target and acquisition system related
effects which were mentioned in the previous section.
The coordinate system used throughout this study is x,
along the measured profile (horizontal), y, towards the
acquisition system (vertical) and z, along the beam
(longitudinal).
For illustration purposes we refer in this section to the

data obtained for an example case which has been studied
by means of simulations. The corresponding parameters are
given in Table I and correspond to a possible LHC flat top
configuration (nominal value of bunch charge is about
1.3 × 1011, but charges above 2 × 1011 are expected for
HL-LHC). The LHC beam case is well studied [12–14,
19–21]. As another example we will shortly discuss the
SIS-100 IPM system for proton beam at flat top.

A. Effects related to electron movement

The electron movement is initialized by the ionization
process and further influenced by the interaction with the
guiding fields and the electromagnetic field of the particle
beam (space-charge interaction). The relevant effects can
be summarized by the following three aspects:
(i) Ionization momenta—The initial momenta of elec-

trons, obtained during the ionization process, clearly
influence their further trajectories. Due to the interaction
with the magnetic guiding field an initial momentum
component along the beam axis results in a transverse
displacement of the subsequent gyromotion while a trans-
verse momentum component results in a longitudinal
displacement. This effect becomes more pronounced for
small guiding field strengths as well as for small beam sizes
where the magnitude of the gyromotion increases relative to
the beam dimensions. For relativistic beams the electrons
are mainly ejected transverse to the beam direction [22].
(ii) Space-charge interaction—The interaction of elec-

trons with the electric field of the particle beam may
significantly alter their trajectories, resulting in noticeable
distortions of measured profiles. This interaction cannot be
treated analytically without introducing significant approx-
imations and hence must be studied by the means of
numerical simulations. As this effect correlates with the
magnitude of the beam electric field, it becomes especially
significant for high intensity and high energy beams.
However also small magnetic guiding fields may not be
sufficient to counteract the beam field interaction and hence
provoke an increase in gyroradii.
(iii) Gyromotion—The electrons perform a spiral move-

ment under the influence of the external magnetic guiding
field. Depending on the magnitude of the gyroradius an
electron may experience a significant displacement with
respect to its center of gyration. This effect is especially
significant for small beam sizes since the magnitude of the
displacement increases relative to the beam size.
Often the magnetic guiding field is sufficient for sup-

pressing profile distortion. However in extreme cases the
space-charge interaction can become so strong, with
electric fields of up to a few MVm−1 (typical extraction
fields are around 50 kVm−1), that electrons are (a) trapped
inside the space-charge region since the beam electric field
outweighs the electric guiding field around the center of the
bunch, and (b) forced on significantly different trajectories,
resulting in a vast increase of gyroradii. Since the above
effects depend on the various parameters of the particle
beam it is often not obvious to determine an appropriate
strength for the magnetic guiding field which allows to
sufficiently suppress the gyroradius increase.
Having in mind the above-mentioned effects we may

subdivide the IPM volume into two regions:
(i) Space-charge region—This is the region in thevicinity

of the beam where the interaction with the beam’s electro-
magnetic field has a major influence. The gyrovelocity of

TABLE I. Beam and device parameters for the example case
which corresponds to a possible LHC flat top configuration.

Parameter Value

Beam particle type Protons
Energy/u 6.5 TeV
Bunch population 2.1 × 1011 ppb
Bunch length (4σz) 0.9 ns
Bunch width (1σx) 270 μm
Bunch height (1σy) 360 μm
Electrode distance 85 mm
Applied voltage 4 kV
Magnetic field 0.2 T
Number of sim. electrons 100 000
Time step size 0.3125 ps

SPACE-CHARGE DISTORTION OF TRANSVERSE … PHYS. REV. ACCEL. BEAMS 22, 052801 (2019)

052801-3



electrons are subject to a perpetual oscillation induced by the
E⃗ × B⃗ drift along the beam and the magnitude of this
oscillation is altered when the beam center approaches
and recedes from the positions of the electrons. Because
of the complex shape of the electromagnetic fields the
electronmotion exhibits other electromagnetic drifts aswell,
for example polarization drift due to the time dependence of
the beamelectric field [23]. For estimating the dimensions of
this region one can consider the E⃗ × B⃗ drift velocity as an
indicator for space-charge action. The region in which this
E⃗ × B⃗ drift velocity is more than 1% of the undisturbed
gyrovelocity, is of the order of a few millimeters.
(ii) Detector region—This is the region close to the

acquisition system where the beam fields diminish to a
negligible magnitude. This means the electron movement
are solely subject to the electric and magnetic guiding fields
and hence the electrons perform a pure gyromotion planar
to the detector while being accelerated toward it. The
characteristics of this gyromotion (gyroradius and gyro-
center position) depend on the previous beam space-charge
interaction.
Note that as the bunch recedes from the electrons’

positions the space-charge region will shrink in time.
While this region can be quite large during the bunch
center passing, the transverse electric field quickly dimin-
ishes according to the bunch’s line density. Therefore also
electrons that are ionized near the bunch’s center will
eventually end up performing a pure gyromotion as in the
detector region. Figure 3 shows the bunch electric field as it
decreases towards the detector (y) and along the beam
axis (z) and hence illustrates the separation in space-charge
and detector region. While the two dependencies are shown

separately, their collective effect results in a much stronger
decrease as the bunch recedes from the electrons’ positions
and hence the effective space-charge region is smaller than
indicated by the single dependencies. This is because the
beam velocity is significantly larger than the electrons’
velocities along the beam axis and hence the spatial
dependence (z) can be thought of as a time-dependence (t).
Considering an electron’s initial position during

ionization and final position during detection, x0 and xf
respectively, the overall displacement Δx ¼ xf − x0 can be
ascribed to three different effects: (1) Δx1—Displacement
of the electron’s gyrocenter xc0 with respect to the initial
position, due to its initial velocity along the beam:
Δx1 ¼ xc0 − x0. Electrons that are ejected transverse to
the longitudinal beam axis, in horizontal direction, merely
suffer from a displacement of their gyrocenter along that
axis, i.e., not affecting their horizontal position which
determines the transverse profile. If they are ejected along
the beam however there will be a corresponding displace-
ment transverse to it. This type of displacement is typically
around a few tens of microns and can be assessed with
differential ionization cross sections which usually depend
on the projectiles charge state and energy. In relativistic
cases, transverse ejection dominates and so the resulting
displacement is mainly along the beam [22]. (2) Δx2—
Displacement of the space-charge altered gyrocenter xcs
with respect to the initial gyrocenter: Δx2 ¼ xcs − xc0. This
shift is found to be induced by the magnetic field of the
beam. In addition the longitudinal electric field of the beam
induces an E⃗ × B⃗ drift in horizontal direction which adds
up as an additional displacement of the gyrocenter.
However for relativistic beams the exposure to the longi-
tudinal field is short and hence this drift tends to be
negligible. The net effect of this type of displacement is
around a few microns even for high beam currents.
(3) Δx3—Displacement of the final position with respect
to the stable gyrocenter due to the nature of the gyromotion:
Δx3 ¼ xf − xcs . The electrons perform a gyromotion in the
plane above the detector and in case this motion spans over
multiple elements of the detecting system, the electrons
might be detected on any of them. If the moment of
detection is not correlated to the phase of the gyromotion
then the resulting displacement is random. Since this type
of displacement is proportional to the resulting gyroradii it
depends on the magnitude of the preceding space-charge
interaction and can be around some hundreds of microns up
to a few millimeter.
Figure 4 shows an example trajectory which exhibits the

different electromagnetic drifts, the separation in space-
charge and detector region, as well as the different kind of
displacements Δxf1;2;3g mentioned above. The increase in
gyroradius is also clearly visible. The maximum polariza-
tion drift distance, corresponding to the parameters in
Table I, is estimated to be 852 μm as further discussed
in Appendix A.

FIG. 3. Evolution of the transverse bunch electric field Ex at
x ¼ σx in direction toward the detector (y) and during beam
passage (z, t), for the parameters in Table I. The x-position is
fixed to 1σx and y- and z-position are fixed to zero if not varied.
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These effects only consider displacements in horizontal
direction, along the measured profile. In fact the electrons
experience an additional significant displacement in longi-
tudinal direction, along the beam, due to the E⃗ × B⃗ drift
induced by the transverse electric field of the beam Ex.
However such drifts can be neglected in case the physical
situation is similar along the beam axis (i.e., uniform
guiding fields, similar gas pressure). In typical setups the
size of the readout system is much smaller than the
corresponding area of the surrounding IPM field box
and it is centered therein. Hence these conditions are
satisfied.
Figure 5 shows the velocity increase of electrons which is

induced by the space-charge interaction and consequentially
leads to a deformation of measured profiles as shown by
Fig. 6. The mean of initial velocities is 9.94 × 105 ms−1

which corresponds to a gyroradius of 28.3 μm. The total
displacement of an electron is compound of the three above-
mentioned stages: Δx ¼ Δx1 þ Δx2 þ Δx3. Regarding the
transverse E⃗ × B⃗ drift due to nonzero longitudinal field
component Ez one can consider the fact that the transverse
field is scaled with relativistic factor of γ ≈ 7000. Since the

FIG. 4. Example trajectory obtained for r0 ¼ ð1.5σx; 0; 0Þ, v0 ¼ 106 · ð−1; 0; 1Þ ms−1 and generated 2σz before the bunch center
(beam parameters corresponding Table I). The term “undisturbed trajectory” refers to the case if there were no space-charge interaction,
i.e., only pure gyromotion. Because the initial and final gyroradius is about 100 μm the corresponding part of the trajectory appears as a
flat ellipse due to large scale of the z-drift. The “shifted gyrocenter” is induced by the transverse electric field of the beam and acts as a
starting point for the polarization drift; this shift is described by equation Eq. (6). “Bunch center passing” indicates the moment when the
electron and the bunch center are aligned with respect to z-position. The “initial” and “final gyrocenter” are separated by a distance of
0.5 μm. The labels “Movement in detector/space-charge region” refer to the period that is spent in each of the regions, not the spatial
domain, as the vertical axis indicates movement along the beam axis. There is no transverse E⃗ × B⃗ drift because the simulation was
configured with Ez ¼ 0.

FIG. 5. Velocity increase, given as the ratio of velocity at
detection and velocity at ionization, plotted against the initial
horizontal position of electrons. Dots denote average values while
vertical bars indicate 1 standard deviation. The transverse electric
field in x-direction, measured at y ¼ z ¼ 0 at the center of the
bunch, is overlaid. Beam parameters corresponding to Table I.
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E⃗ × B⃗ drift velocity is proportional to the electric field
strength and the longitudinal drifts typically are of the order
of a few millimeter the expected E⃗ × B⃗ drift distance
transverse to the beam axis is expected to be at least γ−1

times smaller, resulting in transverse E⃗ × B⃗ drift distances in
the submicrometer regime.

B. Description for uniform beam distributions

Electron trajectories are mainly influenced by the trans-
verse electric field of the beam and the magnetic guiding
field. This interaction alters the trajectories in a complex
way which cannot be predicted analytically for any realistic
beam distribution without further assumptions.
In order to get an analytic estimate of the interaction we

assume a simplified case in which the longitudinal electric
field is zero and the transverse electric field is approximated
by a linearly increasing field ExðxÞ ¼ E · x where E < 0
(this corresponds to the electric field inside a uniformly
charged cylinder bunch of positive ions). For a Gaussian
bunch shape this approximation is also well applicable at
the center of the bunch as can be seen from Fig. 5
(neglecting the y- and z-dependence of the field). We
also consider no bunch magnetic field since it is small
compared to the magnetic guiding field B which is acting
in y-direction. The electric guiding field Eg is acting in
y-direction as well and hence has no influence on the
motion in the xz-plane. In this simplified scenario the
particle motion in the xz-plane is obtained as:

xðtÞ ¼ vx0
Ω

sinðΩtÞ þ q̄
Ω2

ðBvz0 − Ex0Þ cosðΩtÞ

þ
�
1þ q̄E

Ω2

�
x0 −

q̄B
Ω2

vz0; ð1Þ

zðtÞ ¼ −
q̄B
Ω2

vx0 cosðΩtÞ þ
q̄2B
Ω3

ðBvz0 − Ex0Þ sinðΩtÞ

þ
��

E
B
þ q̄E2

Ω2B

�
x0 −

q̄E
Ω2

vz0

�
tþ z0 þ

q̄B
Ω2

vx0; ð2Þ

_xðtÞ ¼ vx0 cosðΩtÞ −
q̄
Ω
ðBvz0 − Ex0Þ sinðΩtÞ; ð3Þ

_zðtÞ ¼ q̄B
Ω

vx0 sinðΩtÞ þ
q̄2B
Ω2

ðBvz0 − Ex0Þ cosðΩtÞ

þ
�
E
B
þ q̄E2

Ω2B

�
x0 −

q̄E
Ω2

vz0; ð4Þ

where we have used the following abbreviations (q is the
elementary charge and m is the electron mass):

q̄≡ q
m

ð5aÞ

Ω2 ≡ q̄2B2 − q̄E > 0; Ω ¼
ffiffiffiffiffiffi
Ω2

p
: ð5bÞ

Equation (1) shows that the particle performs an oscil-
lating movement in x-direction while Eq. (2) shows a
similar oscillation as well as an E⃗ × B⃗ drift in z-direction.
The absolute value of the gyrovelocity is given by
jvxzðtÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xðtÞ2 þ _zðtÞ2

p
. From Eq. (3) and Eq. (4) we

can see that this velocity expression contains terms
sin2ðΩtÞ, cos2ðΩtÞ, and sinðΩtÞ · cosðΩtÞ which are
π-periodic as well as terms sinðΩtÞ and cosðΩtÞ which
are 2π-periodic. Figure 7 shows the gyrovelocity evolution
for three example particles subject to the realistic electric
field of a Gaussian bunch. The expected twofold perio-
dicity is clearly visible while an additional damping effect
occurs due to the longitudinal field dependence when the
beam recedes from the particles’ positions. The minima and
maxima of the velocities become apparent when consid-
ering the two-dimensional trajectories ðxðtÞ; zðtÞÞ. At one
turn-around point the velocities from E⃗ × B⃗ drift and the
oscillating movement are aligned and add up, resulting in a
large velocity while at the other turn-around point they are
opposite resulting in a smaller velocity (or even a backward
drift). Such behavior can as well be observed from
simulations as described below. Figure 7 shows the
velocities of various particles for different starting points
x0 subject to the realistic field of a Gaussian charge
distribution. One can observe a variation of the amplitude
modulation as well as different periods of the oscillation
depending on the starting point. This is due to the nonlinear
shape of the Gaussian-bunch electric field for positions
farther away from the bunch center (compare the electric
field plot in Fig. 5).
Analyzing Eq. (1) to Eq. (4) we can infer various

parameters of the resulting electron motion.

FIG. 6. Simulated example profiles for beam parameters
corresponding to Table I using magnetic guiding field strengths
of 100 mTand 200 mT, respectively. The beam standard deviation
is 270 μm and the resulting standard deviations of the simulated
profiles are 366 μm and 305 μm, respectively.
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1. Shift of gyration center

From Eq. (1) one can read the center of oscillation

xc ¼
�
1þ q̄E

Ω2

�
x0 −

q̄B
Ω2

vz0 ð6Þ

which contains an additional term corresponding to the
transverse bunch electric field. This shift however is
compensated due to the time-dependence of the electric
field and the corresponding polarization drift as shown in
Appendix B. The same effect can be observed from
simulations as well. This results in the initial and final
gyrocenter to be aligned with respect to each other as
shown in Fig. 4. Note that a displacement of the gyro-
center with respect to the initial position x0 however
occurs due to a nonzero initial velocity component along
the beam vz0. This shift is not compensated for by any
other effects.

2. Displacement due to gyromotion

In the detector region, without the influence of the beam
electric field, the electrons perform a pure gyromotion with
gyroradius proportional to the planar velocity. Because of
the velocity oscillations in the space-charge region,
described by Eq. (3) and Eq. (4) as well as Fig. 7, the
electrons are likely to end up with an increased velocity in
the detector region and consequentially with an increased
gyroradius. Figure 8 shows the distribution of gyrovelocity
change. Around 90% of electrons end up with an increased
gyrovelocity due to space-charge interaction and hence end
up with increased gyroradii.
The resulting gyromotion implies possible displace-

ments to positions different from the center of the gyro-
motion. This effect is discussed in detail in [13,14].

3. Time-of-flight

In order to obtain an estimate for the final gyroradius of
electrons we need to derive an estimate for their time-of-
flight until they reach away from the influence of disturbing
beam fields. Since the above analytic considerations are
valid only inside the bunch, we set the space-charge region
as the region inside the bunch and the detector region as the
region outside the bunch. This assumption neglects mod-
ifications of the particles’ velocities outside the bunch while
in reality they may remain affected by the bunch electric
field at these positions as the space-charge region may
extend farther out. A more complex description would be to
treat the decreasing part of the field outside the bunch by
another linear field model, similarly to the one inside, and
to reuse the above derived equations for that case by
applying appropriate coordinate transformations. However
since this approach is significantly more complex we stick

FIG. 7. Left: Gyrovelocity evolution for different starting positions r0 ¼ ðx0; 0; 0Þ. Initial velocity is v0 ¼ 106
ffiffiffi
2

p −1 · ð1; 1;−1Þ ms−1

and electrons are generated σz=2 before the bunch center (beam parameters corresponding Table I). Right: The corresponding x-position
evolution which turns into pure gyromotion for t⪆1 ns.

FIG. 8. Distribution of gyrovelocity ratios, final over initial
velocity, due to space-charge interaction (parameters correspond-
ing to Table I).

SPACE-CHARGE DISTORTION OF TRANSVERSE … PHYS. REV. ACCEL. BEAMS 22, 052801 (2019)

052801-7



with the former approach as it turns out to be sufficient as
indicated by the following simulation results.
For estimating the time-of-flights one cannot simply rely

on the time the bunch needs to recede from the electron but
one needs to consider the electron leaving the bunch
volume (i.e., the space-charge region) in the transverse
direction as well. In order to obtain a more accurate
estimate for this time-of-flight in the vertical direction
we need to take the bunch electric field and the electric
guiding field into account. We do so by simplifying the
longitudinal time dependence by an exponential depend-
ency instead of the Gaussian dependency, in order to relax
the explicit time dependence. The spatial dependence is
linear as before. The corresponding equation of motion is

ÿðtÞ ¼ q̄Eg − q̄Ey exp

�
−
jtj
σz

�
ð7Þ

where Eg is the electric guiding field strength.
For a detailed derivation of the resulting motion

ðyðtÞ; _yðtÞÞ consider Appendix C.
In order to estimate the time-of-flights we need to find

the roots of the functions f1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ2 þ yðtÞ2

p
− R

where R is the radius of the cylinder bunch and xðtÞ is
given by Eq. (1) and f2ðtÞ ¼ zðtÞ − ðt − 4σzÞβc where
β ¼ v=c, with c the speed of light; whatever value of t is
smaller determines the moment when the electron leaves
the bunch. The final parameters are then obtained by
plugging this value back into the analytic velocity equa-
tions Eq. (3) and Eq. (4). For more details on the
computation consider Appendix D.
Figure 9 shows the gyroradius distributions computed

the analytic estimation for different magnetic field
strengths, compared with the results obtained from com-
plete simulations including all effects by using realistic
Gaussian bunch fields. The beam and device parameters
correspond to Table I. The simulations were performed
using the Virtual-IPM simulation tool [24]. The estimated
distributions show agreement in the shape as well as the
mean and variance. The additional tails of the calculated
distributions emerge as a result of the electric field strength
being independent of time in Eq. (1) through Eq. (4). Hence
for electrons which are ionized before the bunch center the
electric field is underestimated and it is overestimated for
electrons which are ionized after the bunch center, leading
to a corresponding under- and overestimation of the

FIG. 9. Comparison of gyroradius distributions calculated from analytic equations with distributions obtained from complete
simulations with realistic Gaussian bunch fields. Simulation parameters corresponding to Table I and the magnetic guiding field is
varied.
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resulting gyroradii which manifests itself in form of the
tails of the distribution. The overall agreement of analytic
prediction and simulation suggests the applicability of the
derived equations. These equations, even though obtained
for simplified bunch shape, can be used to further study the
phenomenon of profile distortion as shown in the following
section.

C. Magnetic field tuning and scaling for realistic beams

Since IPMs find application in different circumstances
including a variety of beam parameters it is useful to
establish a relation between the beam parameters and the
magnetic field required to suppress profile distortion. Such
a relation allows for simple checks when designing new
devices. Different criteria for a sufficient field strength are
possible such as absolute thresholds ensuring that most of
the electrons’ gyroradii are below an acceptable threshold
(e.g., requiring a certain fraction to be below some
percentage of the bunch width or to be smaller than the
detector resolution) or relative thresholds that ensure that
the increase of measured profile standard deviation remains
below some percent threshold. A previous study considered
the gyroradius increase as a criterion [12] but since the
relation between a particular gyroradius distribution and the
resulting measured beam profile is not obvious we will
focus on the standard deviation increase as a more direct
measure for the further investigations. Note that due to the
nature of profile distortion, which results in enlarged tails
but also a heavier peak, already small values of standard
deviation increase correspond to strongly non-Gaussian
profile shapes as depicted in Fig. 6. We establish a fit of the

three most significant beam parameters relevant for profile
distortion, the transverse and longitudinal bunch size and
the bunch charge:

Bmin;1% ¼ Na

σbzσ
c
t
· dþ f

σet
ð8Þ

where a, b, c, d, e, f are fit parameters, σt is the standard
deviation of the (symmetric) transverse beam distribution to
be measured in units of millimeter, σz is the standard
deviation of the bunch line density in units of nanosecond
and N is the number of charges per bunch in units of
1 × 1012. Bmin;1% is the minimummagnetic field required to
obtain σmeasured

t with at least 1% accuracy with respect to
σbeamt . The first term in Eq. (8) corresponds to the space-
charge interaction while the second term is attributed to the
effect of the initial velocity distribution which, as a constant
effect, has a relatively increasing effect on smaller beam
profiles; hence the dependence on σt. The accuracy thresh-
old was chosen to be a rather challenging 1% because this
would be useful in investigation of emittance blow-up in
modern colliders [25]. In a subsequent fit this threshold is
converted to a parameter.
For verifying the relationship and to infer the parameters

we use the analytic considerations from the previous
section as well as simulations with three different bunch
shapes: Gaussian, uniform and parabolic ellipsoid. For
simplicity the bunch shapes are considered to be rotational
symmetric around the beam axis (σt ≡ σx ¼ σy). The
charge density distributions of these shapes are given by:

Gaussian ∝ exp

�
−
x2 þ y2

2σ2t
−

z2

2σ2z

�

Uniform

�∝ exp ð− z2

2σ2z
Þ ; if x2 þ y2 ≤ σ2t ;with radius σt

≡0 ; otherwise

Parabolic Ellipsoid

�
∝ 1 − x2þy2

σ2t
− z2

σ2z
; if x2þy2

σ2t
þ z2

σ2z
≤ 1;with semiaxes σz; σt

≡0 ; otherwise
ð9Þ

We only consider relativistic beams since for low energy
beams the ionization cross sections take on substantially
different shapes [26], the generated electrons are exposed to
the beam electric field for a longer period due to the
reduced beam velocity and thus also effects from the
longitudinal electric field start to play a role. We used
relativistic β ≥ 0.99 when generating the fit data.
The relationship Eq. (8) is fitted with simulation data

obtained with the Virtual-IPM simulation tool, for the
parameters given in Table II. These parameters correspond
to the Gaussian bunch shape. For the other bunch shapes
the parameters are scaled where appropriate in order to

minimize the squared difference between initial beam
distributions; for more details consider Appendix E. The
resulting scaling factors are given in Table II as well.
Table III shows the fit parameters obtained for the various
bunch shapes as well as the quality of fit. They show
agreement among each other and also with the results
obtained for the analytic derivations. Applying the formula
to the example case in Table I we obtain a minimum
required field of 536 mT for suppressing the increase in
standard deviation below 1%. A previous study, supported
by a different simulation tool, estimated the minimum
magnetic field required for distortionfree measurements to
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be 1 T [13]. Using these two magnetic field strengths in our
simulations we obtain an increase in standard deviation of
0.6 % and 0.08 % respectively which is in conformity with
Eq. (8) and the results of the previous study. Applying the
same formula to a set of beam parameters corresponding to
the planned IPM on SIS-100 proton beam (29.9 GeV
energy, 2 × 1013 charges, σt ¼ 2.17 mm, σz ¼ 15 ns), the
minimum required field is estimated to 76 mT while the
current design foresees a field of 84 mT [27].
A previous derivation of minimum required magnetic

field strength that was done for related circumstances,
however considering the gyroradius increase as an inter-
mediate quantity instead of the final profile standard
deviation, shows a similar dependence on the beam
parameters [12].
In order to assess the effect of a chosen threshold for

standard deviation increase τ ¼ σmσ
−1
t − 1, with measured

(simulated) standard deviation σm, on the minimum
required magnetic field we include this parameter as well
in a subsequent fit of the form:

Bmin ¼
Na

σbzσ
c
t τ

g · dþ f
σet τ

h ð10Þ

The results are similar to the ones obtained before and
are shown in Table IV.
Another way to include the threshold in the formula is to

model the remaining fit parameters as dependent on the
threshold:

Bmin ¼
NaðτÞ

σbðτÞz σcðτÞt

· dðτÞ þ fðτÞ
σeðτÞt

: ð11Þ

This formulation captures potential variations in the
beam parameter dependence for varying thresholds τ.
The results however, as shown in Table V, confirm that
the effect of varying threshold is mainly a scaling factor.
These results are in agreement with the τf scaling shown
from Eq. (10) and Table IV.

III. PROFILE CORRECTION

The first remedy against the space-charge profile
distortion is to increase the applied magnetic guiding
field, such that the gyroradii are bounded by user defined
limits as shown by Eq. (8), Eq. (10), and Eq. (11) with
corresponding parameters given by, respectively, Table III,
Table IV, and Table V. These relations are fit for the broad
parameter range in Table II. Most magnetic IPM designs
fall into this category and further analysis is not required.
However for some extreme scenarios very large magnetic
fields are required [13], which are both expensive to obtain
and occupy significant space in already cramped synchro-
trons. As technology advances more applications for
high energy and high brightness beams are to be expe-
cted, putting current magnetic IPM designs to test. For
these scenarios, correction mechanisms to obtain a measure
of actual profile from the distorted profile, have been
studied.

TABLE II. Beam parameter ranges for simulation of the
different bunch shapes. Scaling factors for minimizing the
squared difference between the initial one-dimensional profiles
of the different shapes are indicated as well. Each parameter
follows a logarithmic distribution over 20 points resulting in a
total of 8000 data points.

Bunch -width σt -length σz -charge N

Gaussian 0.2 mm to 20 mm 0.3 ns to 300 ns 1 × 109 to 1 × 1013

Uniform ×1.76 ×1 ×1
Parabolic
Ellipsoid

×2.44 ×2.44 ×1

TABLE III. Fit parameters for Eq. (8) for different bunch
shapes as well as for the analytic considerations of Sec. II B.
The quality of fit in form of mean squared error (MSE) is given as
well.

a b c d e f MSE [T2]

Analytic 0.555 0.555 0.998 0.163 1.007 0.032 3.65 × 10−4

Uniform 0.609 0.605 1.013 0.110 0.986 0.049 8.57 × 10−4

Gaussian 0.613 0.590 1.082 0.105 0.967 0.038 6.35 × 10−4

Parabolic 0.623 0.595 1.027 0.103 0.974 0.046 8.76 × 10−4

TABLE IV. Fit parameters for equation Eq. (10) for the
Gaussian bunch shape. The quality of fit in form of mean
squared error (MSE) is given as well.

a b c d e f g h MSE [T2]

0.592 0.559 1.052 0.020 0.938 0.005 0.384 0.479 3.79 × 10−4

TABLE V. Fit parameters for equation Eq. (11) for the Gaussian
bunch shape. The quality of fit in form of mean squared error
(MSE) is given as well. For τ ¼ 1% the results slightly deviate
from the ones in Table III because the underlying simulation data
was regenerated.

Threshold
[%] a b c d e f MSE [T2]

1 0.626 0.584 1.065 0.103 0.974 0.044 7.85 × 10−4

2 0.605 0.571 1.064 0.093 0.942 0.031 3.46 × 10−4

3 0.596 0.553 1.073 0.082 0.927 0.025 3.64 × 10−4

4 0.572 0.536 1.061 0.077 0.903 0.021 3.06 × 10−4

5 0.571 0.538 1.039 0.071 0.927 0.019 2.13 × 10−4

6 0.574 0.538 1.047 0.064 0.898 0.018 2.13 × 10−4

7 0.571 0.554 1.051 0.059 0.878 0.017 1.76 × 10−4

8 0.565 0.545 1.029 0.056 0.884 0.016 1.47 × 10−4

9 0.551 0.544 0.990 0.055 0.907 0.014 1.03 × 10−4

10 0.547 0.553 1.000 0.051 0.891 0.014 1.05 × 10−4
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Foremost of them was the study of a hardware electron
“sieve,” which aims to filter electrons based on their
gyroradius before they reach the acquisition system, and
a numerical reconstruction on the resulting sieved profiles
can be performed [14]. Though the study with simulations
gave promising results, the sieve was found to be rather
complex and thick structure difficult to integrate in machine
vacuum. Another approach was parametric curve fitting of
the distorted profile with analytic functions and correlation
of the beam width with those parameters [13]. The fit result
however suffered from too few available data points and
hence a general relationship between the fit parameters and
the beam profile could not be established.
Lately, approaches to record the inverse mapping

between distorted profile to the original profile or the
second moment of the original profile as a function of space
charge parameters has been introduced either in form of
look-up tables (LUT) [28] and supervised learning [20]. All
the aforementioned correction methods rely on well under-
stood and benchmarked IPM simulations. In this section,
the problem of profile correction is generally introduced.
Following that, several subapproaches in the supervised
learning scheme are mentioned and an extension to a full
profile reconstruction from distorted profiles with arbitrary
initial profile shapes is shown.

A. Problem description

In case of negligible space-charge interaction the dis-
tortion can be described via convolution of beam profile
Pbeam with a point-spread function (PSF) to obtain the
measured profile Pmeasured [13]. This PSF depends on the
initial velocities of electrons and can be assessed by means
of differential ionization cross sections. The PSF itself
describes the electron transport in the IPM. It corresponds
to the probability that an electron is detected on a certain
position displaced from its ionization position and can be
obtained from considering the time that an electron spends
above the various bins of the detector [14]. This PSF is
independent of the position along the initial profile and
hence the beam profile can be obtained by deconvolution.
If the PSF depends on the position along the profile—

as in the case of space-charge influence on electron
movement—a convolution cannot be used to describe
the profile deformation anymore. As a more general
transformation a matrix multiplication can be used instead:

Pmeasured;i ¼ Mij · Pbeam;j ð12Þ

where Mij is the probability that an electron which was
generated at position j is collected at position i. Comparing
with convolution for the space-charge free case, the matrix
M contains the PSF as columns, shifted across the rows
with the PSF center at the diagonal (Mij ¼ PSF½i − j�).
The transformation matrix depends on the beam param-

eters Mij ¼ MijðNp; σx; σzÞ and for a given set of

parameters it can be obtained by simulations. Performing
simulations over a grid of space-charge distortion param-
eters one can establish a look-up table of matrices M and
their inverses M−1. A fast iterative procedure to correct
measured profiles using the simulated M−1 matrices is
discussed in [28]. A newer approach of supervised machine
learning is to deduce a set of rules for mapping measured
profiles to their original counterparts. The idea is to infer a
corresponding set of rules by providing distorted profiles
alongside other relevant beam parameters and to map these
to the original distribution of the beam. Figure 10 shows a
schema of profile correction with the aid of simulation data.

B. Data generation by IPM simulations

A recent joint effort between laboratories led to the
development of a generic simulation tool called “Virtual-
IPM” [24]. The Virtual-IPM tool has been used for
simulating the movement of electrons inside the IPM, in
presence of transient beam fields. Table VI shows the

FIG. 10. The physical process is modeled by a simulation tool
and the inverse process is approximated by the chosen machine
learning algorithm or stored parameter dependent inverse map-
ping matrix.

TABLE VI. Parameters for the simulation. The bunch popula-
tion, length, width, and height are varied, resulting in a total of
21 021 data samples. The parameter ranges roughly correspond to
the LHC flat top.

Parameter Values

Beam particle type Protons
Energy/u 6.5 TeV
Bunch population 1.1 × 1011 ppb to 2.1 × 1011 ppb
Bunch length (4σz) 0.9 ns to 1.2 ns
Bunch width (1σx) 270 μm to 370 μm
Bunch height (1σy) 360 μm to 600 μm
Electrode distance 85 mm
Applied voltage 4 kV
Magnetic field 0.2 T
Number of sim. electrons 1 000 000
Time step size 0.3125 ps

SPACE-CHARGE DISTORTION OF TRANSVERSE … PHYS. REV. ACCEL. BEAMS 22, 052801 (2019)

052801-11



parameter ranges that are used for the simulations in order
to span the relevant parameter space. The single bunches
are modeled by three-dimensional Gaussian charge distri-
butions. The electric field of bunches is computed via an
analytic formula for a two-dimensional Gaussian charge
distribution in the transverse plane [29] while the longi-
tudinal dependency is taken into account by rescaling the
field with the beam’s line density. The longitudinal field
component is neglected. This approximation is justified
because the beam is highly relativistic and the longitudinal
dimension of bunches is significantly larger than their
transverse dimensions and therefore the electric field is
mainly acting in the transverse plane. The advantage of the
analytic formula, as compared to a numerical Poisson
solver, is that it is much faster in computing the electric
field and it does not suffer from discretization effects. Both
the electric and the magnetic field of the beam are taken
into account. The external electric and magnetic guiding
fields are modeled to be uniform within the field cage. The
initial velocities of electrons are generated according to a
double differential cross section for a hydrogen target [22].
The passage of only a single bunch is simulated because the
extraction times for electrons are only a few nanoseconds
for the given electric guiding field while the bunch spacing
is 25 ns.
The output of the simulations is summarized by histo-

grams with 9.9 mm range and 55 μm bin size, representing
the electrons’ positions at the moment of ionization, in the
following referred to as initial, and at the moment of
detection, in the following referred to as final. 55 μm
resolution corresponds to a hybrid-pixel detector type
which has been successfully operated in the PS IPMs [18].

C. Reconstruction of beam profile standard deviation

Equation (10) has the interesting property that for a given
measured standard deviation of σm and a given magnetic
field B the formula encodes the corresponding beam profile
standard deviation σt which gives rise to the distortion via
the threshold parameter τ ¼ σmσ

−1
t − 1. By rearranging

Eq. (10) and inserting the definition of τ the beam profile
standard deviation emerges as the root of the function

fðσtÞ¼
d ·Na

σbzσ
c
t ðσ−1t σm−1Þgþ

f
σet ðσ−1t σm−1Þh−B¼0 ð13Þ

on the interval ð0; σmÞ, which can be computed by means of
numerical methods.
We test this method on the simulation data prepared

according to Table VI by using bisection method [30] with
0.1 μm tolerance. The resulting residuals have an overall
mean and standard deviation of, respectively, 0.357 μm and
3.21 μm. The residuals plot Fig. 11 shows that the quality
varies with beam profile standard deviation. Nevertheless
most results are within 2% accuracy.

Previous attempts of reconstructing the initial beam
profile standard deviation value from measured profiles
using Machine Learning methods have shown a better
performance while being fitted on a much smaller param-
eter range [20]. Equation (10) on the other hand has been
fitted on a range which spans multiple orders of magnitude.

D. Reconstruction of complete profiles with
machine learning

Relevant for the presented problem are methods to
perform supervised regression for predicting continuous
variables [31]. In general a supervised machine learning
(ML) model represents an algorithm f, a mapping from
input x to output yp, called decision function, that is
specified by a set of parameters θ≡ fθig. The inputs
and outputs are exactly opposite to the data preparation
stage as shown in Fig. 8. While the structure of such an
algorithm (e.g., the number of parameters jθj) depends on
its hyperparameters and is fixed, the goal is to tune θi such
that the corresponding function fðx∣θÞ describes the output
best. The quality of this description is typically assessed by
a so-called loss function Lðx; y∣θÞ → Rþ which measures
the deviation of the predictions yp from the target output
values y. Minimizing this loss function is used as a criterion
for optimization of the model parameters θ. In order to find
a suitable ML algorithm for a given problem their perfor-
mances are compared. For doing so the data set is split in
three subsets corresponding to training, validation and
testing. The training set is used to fit the particular ML
algorithms in order to determine the optimal parameters θ.
The validation set is used for assessing the performance of
an algorithm once it is fitted. Validating on a distinct data
set prevents effects of over-fitting the algorithm to that
particular training set and hence ensures generalization of
the algorithm. The test similarly aims to prevent a tuning

FIG. 11. Residuals for the beam profile standard deviation
reconstruction based on Eq. (13) and tested with simulations
corresponding to Table VI.
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bias toward the validation set, resulting from the multiple
iterations corresponding to hyperparameter tuning. The test
set is used to assess the final performance that is to be
expected once a ML algorithm with a specific configuration
has been chosen.

1. Full profile reconstruction

Previous works have studied the usage of machine
learning models for establishing a relationship between
measured profile and original beam profile standard
deviation [19,20]. A very recent approach investigated
reconstruction of the complete profile shape from measured
profiles [21]. This approach used an additional global data
transformation that is derived from the training data in
order to converge during the fitting procedure. Here we
present a novel approach that works only with per-profile
normalization, providing a more consistent way of data
preparation.

Model architecture.—In order to establish a mapping
between measured profiles together with bunch length
and bunch intensity data to the original beam profiles
we recall Eq. (12). This equations states that the process of
profile distortion can be described by a matrix multiplica-
tion M of the beam profile Pbeam. In general this matrix is
dependent on the beam parameters and hence the beam
profile itself: M → Mðσz; Np; PbeamÞ. We make the
assumption that the matrix is invertible and that the inverse
matrix M−1 similarly depends on the measured profile:
M−1 → M−1ðσz; Np; PmeasuredÞ. Because the distortion
arises from a symmetric process, the gyration of electrons,
and the shift of final with respect to initial gyration center is
negligible, as illustrated by Fig. 4 and discussed in
Appendix B and Ref. [14], the columns of M are linearly
independent and hence the invertibility criterion is fulfilled.
The second assumption ofM−1 being fully characterized by
Pmeasured and σz; Np is less obvious but it is vital for the
following algorithm. In that sense the algorithm will only
be successful if that condition is fulfilled. In the following
we use simulation data to verify the validity of this
assumption. Given M−1ðσz; Np; PmeasuredÞ the original pro-
file can be obtained by means of a matrix multiplication
M−1 with the measured profile Pmeasured. Here we identify
the task of the neural network as the generation of the
inverse matrix in dependence of the measured profile as
well as the additional beam parameters bunch length and
bunch intensity. Figure 12 sketches the procedure and
shows the involvement of the machine learning model.
Since the final prediction is obtained via a matrix multi-
plication (linear transformation) the neural network can be
regarded as a generator model which produces linear
models.
The architecture of the machine learning model and the

neural network is depicted in Fig. 12. The neural network

uses two dense layers, that is layers which connect all nodes
from the previous layer with their own nodes. The layers
use ELU and ReLU activation function respectively. ELU
stands for exponential linear unit and is defined by
ELUðxÞ ¼ fx if x ≥ 0 else ex − 1g. ReLU stands for rec-
tified linear unit and is defined by ReLUðxÞ ¼ maxð0; xÞ.
Hence, up to this stage, the used architecture resembles a
feed-forward network with a single hidden layer, as
depicted in Fig. 13, where the output layer represents
the flat transformation matrix. ReLU activation is used on
that output layer because the physical interpretation of
matrix elements being fractions of transferred electrons
allows only entries greater than or equal to zero. The flat
output is then reshaped to a square matrix and each of its
columns is normalized to unity due to the preservation of

FIG. 12. Left: Sketch of the machine learning model which is
used to perform the full profile reconstruction. The measured
(distorted) profiles are used in two places, first to generate the
transformation matrix and second for the subsequent dot product
leading to the reconstructed beam profile. Right: Neural network
architecture used for the matrix generation.

FIG. 13. Schematic of the architecture of a feed-forward
multilayer perceptron.
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the electron signal. We performed hyper-parameter search
over the batch size, learning rate and the number of nodes in
the first dense layer. The corresponding values are shown in
Table VII. For identifying optimal configurations we
monitored the final validation loss as well the ratio of
initial to final validation loss in order to account for
different starting losses. In a first step consensus about
the batch size was found. With this optimal value fixed
during a second and third iteration the optimal number of
nodes and learning rate was identified respectively. The
number of nodes however was found to have no significant
influence on performance, if large enough, as shown in
Fig. 14. The final configuration was batch size 236 (evenly
divides the training set of 13 452 samples), learning rate
8.882 × 10−3 and number of nodes in the first dense layer
equal to 42. We used He-uniform initializer [32] and mean
squared error (MSE) as the loss function.

Data preparation.—Data preparation is an important aspect
of any machine learning analysis and helps the fitting
procedure to converge. Also it needs to be ensured that the
way of data preparation is compatible with real appli-
cation requirements. The previous study on full profile
reconstruction [21] used per-profile normalization followed

by a per-feature normalization which was computed
over the full training set. In the current study we focus
on a more intuitive approach that only uses per-profile
normalization. For data preparation we use the following
steps: (1) Measured profiles are cropped to the range
½−3.90 mm; 3.90 mm�. (2) Measured bunch length and
number of charges per bunch are divided by, respectively,
1.2 ns and 2.1 × 1011. (3) Measured profiles are normalized
to unit integral. (4) Measured profile bins are set to zero for
values smaller than 5% of the peak value.
The previous approach on the other hand computed a

global valid range by considering a 5% peak-threshold
region of the largest profile in the training set which was
½−0.93 mm; 0.93 mm�. All profile bins outside that region
were dropped and not used for the analysis. Hence, for
comparison with the previous approach, we also apply this
transformation in addition, by dropping data and predic-
tions outside that valid range. However during training we
use the full range available.

Results.—We used mean squared error (MSE) as a loss
function and monitored the mean absolute error (MAE) as
an additional metric. For Gaussian profiles we also com-
pare the deviation of standard deviation of the target
beam profiles and predicted profiles. Fitting converged
after 25 epochs, yielding mean and standard deviation of
MSE ¼ 5.12 × 10−7 � 2.49 × 10−7, MAE¼ 6.44× 10−4�
1.70× 10−4 on the test data set. The deviation of resulting
profile standard deviation was Δσx=σx ¼ 2.01%� 1.00%
which is about one order of magnitude larger than what has
been obtained from previous attempts with machine learn-
ing models directly targeting the profile standard deviation
[20]. Table VIII shows the performance on the test set
compared to the previously developed algorithm, the latter
of which clearly performs better.
The neural network has been trained on Gaussian

profiles only. However in real world applications the actual
beam shapes might deviate from this ideal scenario. Hence
an important requirement is that the reconstruction algo-
rithm still works even if applied to different beam shapes.
In order to verify this generalization we tested the perfor-
mance on various non-Gaussian shapes, sampled from
generalized Gaussian distributions and Q-Gaussian distri-
butions. The charge distributions are given by the following
equations.

TABLE VII. Hyperparameters that have been searched over
and their values. Each hyperparameter set is randomly sampled
from the given distribution. Batch size is log-sampled with base 2
and learning rate and number of nodes are log-sampled with
base 10. A total of 1000 samples were scanned over.

Hyperparameter Range

Batch size 1 to 2048
Learning rate 1 × 10−2 to 1 × 10−6

Number of nodes 10 to 2288

FIG. 14. Comparison of neural network performance for diffe-
rent widths of the first dense (hidden) layer. Other hyperpara-
meters were fixed to initializer¼He-uniform, batchsize ¼ 236,
learning rate ¼ 8.882 × 10−3.

TABLE VIII. Performance of old and new approach on the test
data set, containing 4205 samples.

Loss MSE [10−7] MAE [10−4] Δσ=σ [%]

Method Meas. Rec. Rec. Rec.

Old
370� 253

0.32� 0.11 1.28� 0.21 0.15� 0.11
New 5.12� 2.49 6.44� 1.70 2.01� 1.00
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Generalized Gaussian, used for instance in linac beam
profile description [28]:

β

2αΓð1=βÞ exp
�
−
�jx − μj

α

�
β
�

ð14Þ

with shape parameters α, β, μ; β ¼ 2, α ¼ ffiffiffi
2

p
σx corre-

sponds to a normal distribution. Γ denotes the gamma
function [33].
Q-Gaussian, used in studies of tails of hadron

beams [34]: ffiffiffi
β

p
Cq

½1 − ð1 − qÞβx2� 1
1−q ð15Þ

with shape parameters β, q; q ¼ 1, β ¼ σ−2x =2 corresponds
to a normal distribution. Cq is a normalization factor to
provide unit integral.
The parameters of the non-Gaussian shapes correspond

to the ranges shown in Table VI but are rescaled in order to
match the Gaussian distribution in their limits. For the

generalized Gaussian αx;y;z ¼ σx;y;z and for the Q-Gaussian
βx;y;z ¼ σ−2x;y;z=2. Figure 15 shows an example profile
for each profile shape together with the predicted
reconstruction. Note that the Q-Gaussian profiles for
q ¼ 2 are significantly wider than the training profiles
and as a result show only very little distortion.
The overall performance, as shown in Table IX and

Fig. 16, decreases about one order of magnitude as

FIG. 15. Example profiles for non-Gaussian beam shapes together with reconstruction. “Measured” refers to the profile recorded by
the detector (simulated in this case), “Target” refers to the initial beam distribution (the target of the reconstruction procedure), and
“Reconstructed” refers to the result of the reconstruction procedure (which ideally should match the target). These examples are the ones
with largest MSE error after reconstruction for each set. The Q-Gaussian profiles with q ¼ 2 (bottom right corner) are significantly
wider than the training profiles.

TABLE IX. Test performance on various non-Gaussian beam
shapes shown in Eq. (14) and Eq. (15), measured by mean square
error (MSE) in units of 10−6. The mean and standard deviation of
MSE performance is given.

Beam shape Parameters MSEmeas MSEold
rec MSEnew

rec

Gen. Gaussian β ¼ 1.5 8.09� 6.92 7.76� 1.43 6.57� 1.20
β ¼ 3 48.2� 28.6 14.5� 1.27 10.9� 1.96

Q-Gaussian q ¼ 0.6 59.8� 30.4 11.9� 8.54 6.30� 1.47
q ¼ 2 0.28� 0.09 105� 28.9 8.71� 1.89
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compared to the Gaussian profiles. The new approach
however shows improved performance when compared to
the results of the previous approach. Because the wide q ¼
2 Q-Gaussian profiles significantly exceed the input range
of the algorithm the corresponding profile tail information
is dropped and hence the performance degrades. This is
however not an issue as one can always validate the range
of measured profiles before feeding them into the algo-
rithm. The obtained results on different profile shapes
imply that the neural network identifies the underlying
distortion mechanism rather than memorizing the specific
profile shape which it has been trained on.
The results were obtained using various scientific

PYTHON packages, including KERAS [35], MATPLOTLIB

[36], NUMPY [37], PANDAS [38], SCIPY [39], TENSORFLOW
[40], and VIRTUAL-IPM [24].

IV. SUMMARY

Distortions of measured beam profiles by electron-based
magnetic ionization profile monitors is a relatively new
issue affecting the successful operation of these devices at
some present and future accelerators operated for high-
brightness beams. We discussed the underlying effects and

their magnitude for this type of distortion in detail at the
example of a possible LHC flat top configuration, sup-
ported by both analytic calculations as well as complete
numerical simulations. Analytic descriptions for the sim-
plified case of a uniform bunch shape are derived and
benchmarking of these results with complete simulations
was performed by using a well-established simulation tool.
Simple formulas for computing the minimum magnetic
field strength required to avoid space-charge induced
profile distortion from relevant beam parameters are pre-
sented. They are validated against the derived analytic
results for uniform beam as well as for complete simu-
lations of various realistic beam shapes, including uniform,
Gaussian, and parabolic shapes. Following that we
addressed the problem of reconstruction of the real beam
profile from distorted measurement. First an approach
based on the previously developed formulas for minimum
magnetic field is presented which allows us to infer the
beam profile standard deviation from measured profile
standard deviation on a broad range of beam parameters.
The second approach addressed the problem of complete
profile shape reconstruction and was realized by using a
dedicated machine learning model involving neural net-
work. The performance of this method was tested on

FIG. 16. Performance on non-Gaussian beam shapes. The Q-Gaussian profiles with q ¼ 2 (bottom right corner) are significantly
wider than the training profiles.
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various realistic profile shapes, including Gaussian,
Q-Gaussian and generalized Gaussian shapes. By fitting
the model only with Gaussian profiles we showed that the
approach generalizes as well to beam shapes significantly
different than normal distributions.

APPENDIX A: ESTIMATION OF MAXIMUM
POLARIZATION DRIFT DISTANCE

The polarization drift velocity is described by the
formula [23]

vðtÞ ¼ 1

ω

d
dt

�
E⊥
B

�
ðA1Þ

where ω is the gyrofrequency of electrons and E⊥ is the
electric field component perpendicular to the magnetic
field B.
The maximum drift distance can be computed by

δ ¼
Z

∞

0

vðtÞ dt ðA2Þ

where t ¼ 0 describes the time when the electron is
longitudinally aligned with the bunch center, since for
t < 0 the electron drifts in the opposite direction. For
estimating the bunch electric field we use the formula
for the transverse electric field of a two-dimensional
Gaussian bunch scaled with the longitudinal charge line
density:

Erðx; y; tÞ ¼
Ne
ϵ0

1ffiffiffiffiffiffi
2π

p
3σz

�
1 − exp

�
−
x2 þ y2

2σ2r

��
exp

�
−
β2c2t2

2σ2z

�
ðA3Þ

where N is the number of charges σr is the standard
deviation of the transverse charge distribution and σz is the
standard deviation of the longitudinal charge line density
(in dimension of length); β is the relativistic beta factor of
the particle beam.
We further neglect the time dependence of x and y

because we consider β ≈ 1 together with nonrelativistic
electrons and hence the change in beam electric field will
be driven by the beam movement which is expressed
through the explicit time dependence in Eq. (A3). The
beam magnetic field is neglected as well since it is much
smaller than the magnetic guiding field. Hence the electric
field component E⊥ is determined to be perpendicular to
the magnetic guiding field and is thus given by Eq. (A3).
It follows that the time derivative in Eq. (A1) is given by

the partial time derivative of Eq. (A3). Integrating the
resulting expression according to Eq. (A2) one obtains
(dropping the sign):

δðx; yÞ ¼ 1

ωB
Ne
ϵ0

1ffiffiffiffiffiffi
2π

p
3σz

�
1 − exp

�
−
x2 þ y2

2σ2r

��
ðA4Þ

The maximum of the resulting function δðxÞ is given by:

δmax ¼
1

ωB
N

σrσz

e

ϵ0
ffiffiffiffiffiffi
2π

p
3

1ffiffiffiffiffiffiffi
−w̄

p
�
1 − exp

�
w̄
2

��

≈
1

ωB
N

σrσz
5.18 × 10−10 ðA5Þ

where w̄ ¼ 2w−1½−0.5 expð−0.5Þ� þ 1 and w−1 is the prod-
uct log function [33].

Inserting the beam parameters from Table I and
using σr ¼ σx we obtain a maximum drift distance of
δmax ¼ 852 μm.

APPENDIX B: COMPENSATION OF GYRATION
CENTER SHIFT

Equation (6) indicates the shift of the gyration center
with respect to the undisturbed case (for which E ¼ 0).
Using Eq. (5) this becomes:

xc ¼
ω2

Ω2

�
x0 −

vz0
ω

�
ðB1Þ

with ω ¼ q̄B the gyrofrequency for the undisturbed case
E ¼ 0.
For the derivation of Eq. (1)–Eq. (4) the bunch electric

field was assumed constant, i.e., E ¼ const. In order to
incorporate the time-dependence due to bunch movement
we can consider a series of partial solutions ðxnðtÞ; znðtÞÞ
each of which is valid on an interval ½tn; tnþ1� for which the
time dependence remains approximately constant. These
partial solutions are of the form:

xnðtÞ ¼
an
Ωn

sinðΩntÞ −
bn
Ωn

cosðΩntÞ þ cn

_xnðtÞ ¼ an cosðΩntÞ þ bn sinðΩntÞ

znðtÞ ¼ −an
ω

Ω2
n
cosðΩntÞ − bn

ω

Ω2
n
sinðΩntÞ þ

En

B
cntþ dn

_znðtÞ ¼ an
ω

Ωn
sinðΩntÞ − bn

ω

Ωn
cosðΩntÞ þ

En

B
cn ðB2Þ
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where En ≡ EðtnÞ and

a0 ¼ vx0

b0 ¼ −
ω

Ω0

�
vz0 −

E0

B
x0

�

c0 ¼
ω2

Ω2
0

�
x0 −

vz0
ω

�

d0 ¼ z0 þ
ω

Ω2
0

vx0: ðB3Þ

Note that c0 represents the (shifted) gyration center.

In order to link the solutions and their coefficients
together we require continuity at the boundary of time
intervals:

½xnðtnÞ; _xnðtnÞ;znðtnÞ; _znðtnÞ�
¼! ½xn−1ðtnÞ; _xn−1ðtnÞ;zn−1ðtnÞ; _zn−1ðtnÞ�: ðB4Þ

Using Eq. (B2) we can write Eq. (B4) in matrix
representation with respect to the coefficients:

0
BBBBB@

sinðΩntnÞ
Ωn

− cosðΩntnÞ
Ωn

1 0

cosðΩntnÞ sinðΩntnÞ 0 0

− ω
Ω2

n
cosðΩntnÞ − ω

Ω2
n
sinðΩntnÞ En

B tn 1

ω
Ωn
sinðΩntnÞ − ω

Ωn
cosðΩntnÞ En

B 0

1
CCCCCA

0
BBB@

an
bn
cn
dn

1
CCCA ¼

0
BBB@

xn−1ðtnÞ
_xn−1ðtnÞ
zn−1ðtnÞ
_zn−1ðtnÞ

1
CCCA ðB5Þ

The matrix on the left-hand side has determinant
−Ωω−1 ≠ 0 and hence a unique solution for the coefficients
ðan; bn; cn; dnÞ exists. Inverting the matrix we obtain:

0
BBBBBB@

Ω2
n−ω2

Ωn
sinðΩntnÞ cosðΩntnÞ 0 ω

Ωn
sinðΩntnÞ

ω2−Ω2
n

Ωn
cosðΩntnÞ sinðΩntnÞ 0 − ω

Ωn
cosðΩntnÞ

ω2

Ω2
n

0 0 − ω
Ωn

ωΩ2
n−ω3

Ω2
n

tn ω
Ω2

n
1 ω2−Ω2

n
Ω2

n
tn

1
CCCCCCA
:

ðB6Þ

The parameter cn encodes the gyration center shift and is
given by the third line of the inverse matrix:

cn ¼
ω2

Ω2
n
xn−1ðtnÞ −

ω

Ω2
n
_zn−1ðtnÞ: ðB7Þ

Inserting Eq. (B2) into Eq. (B7) we obtain:

cn ¼
Ω2

n−1
Ω2

n
cn−1 ¼ c0

Yn−1
i¼0

Ω2
i

Ω2
iþ1

¼ Ω2
0

Ω2
n
c0 ¼

ω2

Ω2
n

�
x0 −

vz0
ω

�
:

ðB8Þ

Since for n → ∞ we have Ωn → ω it follows that cn →
x0 − vz0ω−1 which is the undisturbed gyration center.
Hence the initial shift, encoded in c0, is compensated
for t → ∞. Actually this limit is already reached for E → 0
which is the case once the bunch has receded from the
electron’s position.

APPENDIX C: DERIVATION OF
TIME-OF-FLIGHT FOR UNIFORM

CHARGE DISTRIBUTION

We define a≡ qEg

m , b≡ qjEj
m and thus obtain:

ÿðtÞ ¼ a − by exp

�
−
jtj
σz

�
: ðC1Þ

We solve the differential equation for t ≥ 0 (denoted as
y>) since for t ≤ 0 (denoted as y<) we can then reuse this
solution together with the transformation t ↦ −t.
For t ≥ 0 the solution is:

yðtÞ ¼ ησzJ0½uðtÞ�G3;0
2;4

�
uðtÞ
2

�

− ησzY0½uðtÞ�G1;3
2;0

�
uðtÞ2
4

�
þ k1J0½uðtÞ� þ k2Y0½uðtÞ� ðC2Þ

where η≡ aσzπ, uðtÞ≡ 2σz
ffiffiffi
b

p
expð −t

2σz
Þ, Jn, Yn denote the

Bessel functions of first and second kind respectively and

G3;0
2;4fxg≡G3;0

2;4fx; 12 j −1
2
;1

0;0;0;−1
2
g and G1;3

2;0fxg≡G1;3
2;0fxj 1

0;0;0g
denote Meijer G-functions [33].
By using the relations

d
dx

G3;0
2;4fxg ¼ −

J0ð2
ffiffiffi
x

p Þ
x

d
dx

G1;3
2;0fxg ¼ −

2Y0ð2xÞ
x

ðC3Þ
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we confirm that the terms which contain the derivatives of the Meijer G-function cancel each other. We then obtain for _yðtÞ:

_yðtÞ ¼ − _uðtÞ
�
ησzJ1½uðtÞ�G3;0

2;4

�
uðtÞ
2

�
− ησzY1½uðtÞ�G1;3

2;0

�
uðtÞ2
4

�
þ k1J1½uðtÞ� þ k2Y1½uðtÞ�

�
ðC4Þ

Using the initial conditions yð0Þ¼! y0 and _yð0Þ¼! v0 we can derive the values for k1; k2 (setting u0 ≡ uðt0Þ):

�
J0ðu0Þ Y0ðu0Þ
J1ðu0Þ Y1ðu0Þ

��
k1
k2

�
¼

0
BB@ y0 − ηJ0ðu0ÞG3;0

2;4

n
u0
2

o
þ ηY0ðu0ÞG1;3

2;0

n
u2
0

4

o
−vy0
_uð0Þ − ηJ1ðu0ÞG3;0

2;4

n
u0
2

o
þ ηY1ðu0ÞG1;3

2;0

n
u2
0

4

o
1
CCA ðC5Þ

For the t ≤ 0 case we apply t ↦ −t and reuse the
above solution. Note that the derivative _uðtÞ changes its
sign due to the transformation. For t0 < 0 we obtain k>1 ; k

>
2

from the continuity condition at t ¼ 0: y<ð0Þ¼! y>ð0Þ and
_y<ð0Þ¼! _y>ð0Þ.

APPENDIX D: METHODS FOR MINIMUM
MAGNETIC FIELD COMPUTATION

For the computation of minimum magnetic field strength
from analytic formulae we used the following methods. For
each configuration (beam parameters + IPM parameters
including magnetic field) 1000 particles were sampled from
the initial beam distribution (sampling x- and y-position as
well as the ionization time at z ¼ 0 since the guiding fields
are assumed to be uniform and the resulting profile is
integrated along z). The initial momenta are sampled from
double differential cross sections [22]. For each particle its
time-of-flight (TOF) until leaving the bunch region,
described by xðtÞ2 þ yðtÞ2 ≤ R2 and zðtÞ ≤ ðt − 4σzÞβc,
was computed as the minimum between the TOF in
transverse direction, considering Eq. (1) and Eq. (C2), as
well as in z-direction, using the bunch velocity and the
electron velocity in z-direction via Eq. (2) and Eq. (4). We
then use Eq. (3) and Eq. (4) in order to compute the final
transverse velocity jvxzðtofÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vxðtofÞ2 þ vzðtofÞ2

p
from

which we calculate the gyroradius given the magnetic
guiding field. We then consider gyration around the central
point indicated by Eq. (1) and a random position of
detection within the gyromotion range with probabilities
proportional to the corresponding point-spread function
(PSF) [14]. In order to increase the statistics, for each
particle 100 final positions were sampled according to the
corresponding PSF, all corresponding to the same initial
position. This results in a total of 100 000 data points for
computing the standard deviation of the beam profile and
the measured profile respectively. Each configuration was
scored according to the relative deviation of measured
standard deviation with respect to standard deviation of the
beam profile λ ¼ ðσm − σbÞσ−1b , where λ denotes the score
and σm; σb denote the measured and beam profile standard

deviation respectively. A particular magnetic field strength
is considered sufficient if λ ≤ 0.01. The magnetic field
strength B is computed by finding the root of the function
λðBÞ − 0.01 using the bisection method [30] with a
tolerance of 1 mT.

APPENDIX E: SCALING FACTORS FOR
DIFFERENT BUNCH SHAPES

Different bunch shapes are compared to a Gaussian
distribution and their free parameters are adjusted such that
the resulting distribution has a minimal least square differ-
ence to the corresponding Gaussian distribution:

arg min
η

Z þ∞

−∞
ðρðxjηÞ −N ð0; σÞÞpdx ðE1Þ

where ρðxjηÞ represents a particular bunch shape para-
metrized by η. Least squares difference (p ¼ 2) is used for
the uniform bunch shape and p ¼ 4 is used for the
parabolic ellipsoid shape for numerical stability. The
L-BFGS-B solver from the scipy.optimize package [39]
is used for minimizing Eq. (E1).

1. Gaussian

The reference beam profile is a Gaussian distribution
given by:

ρGðxÞ ∝ exp

�
−
x2

σ2t

�
: ðE2Þ

2. Uniform

We consider a charge distribution that is uniform in the
transverse shape and has a Gaussian dependency in the
longitudinal direction:

ρUðx; y; zÞ ∝
(
exp

	
− z2

2σ2z



; for x2 þ y2 ≤ R2

0 ; otherwise:
ðE3Þ
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Integration over z and y yields:

ρUðxjRÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2

p
: ðE4Þ

3. Parabolic ellipsoid

We consider a rotational symmetric ellipsoid with para-
bolic charge distribution:

ρPðx; y; zÞ ∝
�
1 − x2þy2

b − z2

a2 ; for x2þy2

b2 þ z2

a2 ≤ 1

0 ; otherwise:
ðE5Þ

Integration over z and y yields:

ρPðxjfa; bgÞ ∝
a
b3

ðb2 − x2Þ2: ðE6Þ
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