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The advent of circular accelerators based on superconducting magnets has revolutionized the field of
beam dynamics, with particle motion turning from linear to nonlinear due to unavoidable high-order field
errors generated by the ring magnets. Nonlinear dynamics was already well mastered, e.g., in the close field
of celestial mechanics as similar problems had been considered and successfully tackled. Hence, several
results were available to aid comprehension of the behavior of charged particle beams under the influence
of nonlinear forces. Here, we discuss how concepts derived from the theory of dynamical systems, linked
with the fundamental Kolmogorov–Arnold–Moser theory and Nekhoroshev theorem, can be successfully
applied to the analysis of nonlinear motion of charged particles in a circular accelerator. Based on these
ideas, an innovative method to measure the extent of the phase-space region within which bounded motion
occurs is presented, which has been successfully tested for the first time at the CERN LHC.
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I. INTRODUCTION

Dynamic aperture (DA) is the amplitude of the phase
space region where stable motion occurs. It is one of the
key quantities for the design of modern colliders based on
superconducting magnets, such as Tevatron [1–3], HERA
[4–7], RHIC [8], the Superconducting Super Collider
(SSC) [9,10], and the CERN Large Hadron Collider
(LHC) (see e.g., Ref. [11] for a detailed overview).
In a mathematical sense, stable motion implies bounded

motion for arbitrary time. In a physical context, particle
stability can be linked to a maximum number of turns
Nmax for which bounded motion occurs, where Nmax is
set on the basis of the specific application under consid-
eration. If an ensemble of initial conditions defined on a
polar grid (x ¼ r cos θ; y ¼ r sin θ 0 ≤ θ ≤ π=2, where x, y
are expressed in units of σx, σy of the beam dimension) is
tracked for up toNmax turns to assess their stability, then the
DA can be defined as [12]:

DðNÞ ¼ 2

π

Z
π=2

0

rsðθ;NÞdθ≡ hrsðθ;NÞiθ; ð1Þ

where rsðθ;NÞ stands for the last stable amplitude
(disregarding any stable domain disconnected from the
origin) for up to N turns in the direction θ, for N < Nmax.
Given the choice of the coordinates, DðNÞ is expressed in
units of beam sigma. In this way, dynamic aperture can be
considered a function of time, with an asymptotic value
representing the region of stability for arbitrary time.
Whenever the border of the DA is inside the phase-space
region occupied by the beam, particles will be pushed
toward high amplitudes and lost. It is worth recalling that
more refined algorithms can be devised, where different
directions in phase space have different weights [12].
Moreover, it should be mentioned that the initial values
of the angular variables in each of the transverse directions
are set to zero, and no scan is performed over the angles.
Indeed, as shown in Ref. [12], the dynamics allows all
values of the phases, as well as negative values of x and y,
to be sampled, which explains why the polar grid is limited
to the first quadrant of the x − y space. In this respect, the
x − y space is to be considered like the space of linear
invariants. It is also important to stress that while Eq. (1)
should be extended to 6D by including the longitudinal
phase space to the scan procedure, a single value of the
initial momentum offset is used, corresponding to the 3σ
value of the momentum distribution.
The problem of determining the DA, either analytically

or numerically, has fostered knowledge transfer from other
scientific fields, in particular from the domain of nonlinear
dynamical systems, such as the successful introduction and
application of normal forms [13–18] in the 1980s.
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An accurate numerical computation of DA, as well as a
good estimate of the error associated with the protocol used
in the numerical simulations, is of paramount importance to
ensure the reliability of DA as a figure-of-merit for
assessing synchrotron performance. A general discussion
of the DA definition, its computation, and accuracy can be
found in Ref. [12]. Computation consists of simulating the
evolution of a large number of initial conditions, distributed
to provide good coverage of the phase space under study,
probing whether motion remains bounded over the time
interval selected for the simulations. An example of results
from such a simulation is shown in Fig. 1 (left), which
represents a set of initial conditions in the polar grid of
normalized physical space, for one configuration of the
LHCmachine at top-energy for the clockwise beam (the so-
called Beam 1). Red markers identify initial conditions
whose motion is bounded up to 105 turns, while blue
markers identify initial conditions giving rise to unbounded
motion, which eventually leads to a loss onto the mechani-
cal aperture of the LHC. The red region provides a direct
indication of the size of the DA.
Given the CPU-intense character of these simulations,

studies have explored techniques for finding easy-to-
compute dynamical quantities, such as Lyapunov expo-
nents [20–24] or so-called early indicators [24], that are
well correlated with the regular and bounded character of
the beam dynamics. In parallel, models to fit, and even-
tually extrapolate, the dependence of the DA on the number
of turns [25,26] have been looked for. The rationale is that
long-term behavior of the DA, a computationally heavy
task, can be extrapolated using knowledge from numerical
simulations performed over a smaller number of turns.
Potentially, a large number of initial conditions can be used
to improve the accuracy of numerical simulations.

Increasing the number of initial conditions has no draw-
backs in terms of CPU-time needed, as parallelization over
the initial conditions can be easily performed [27].
Additionally, a more efficient estimate of the long-term
behavior of the DA would make easier to analyze several
configurations of the circular accelerator, which is some-
times a must to gain insight in the deeper nature of the beam
dynamics.
The plan of the paper is the following: in Sec. II the link

between DA and losses in circular accelerators is reviewed,
while in Sec. III the approaches used to measure DA are
presented and discussed. In Sec. IV the new approach is
presented and discussed in detail, including the results of
the experimental campaign and the comparison with
numerical simulations. Finally, conclusions are drawn
in Sec. V.

II. DYNAMIC APERTURE AND BEAM LOSSES

The capability of computing the DA and its boundary is
essential for modern accelerator physics. More than that, a
deeper understanding of the phenomena generating the
boundary between stable and unstable motion potentially
opens the route to controlling DA (see, e.g., Refs. [28,29]),
which may in turn provide the means to improve synchro-
tron performance, and well-defined criteria to specify
quantitative bounds to the magnets’ field quality. Such
understanding and control of DA remains elusive, and is an
active area of research in the domain of single-particle
beam dynamics.
The answer to the quest for amodel for the time-evolution

ofDAwas provided by two fundamental results of the theory
of dynamical systems, namely the Kolmogorov-Arnold-
Moser (KAM) [30] and the Nekhoroshev [31] theorems.
According to the results of Refs. [25,26], the following
scaling law holds

DðNÞ ¼ D∞ þ b
ðlogNÞκ ; ð2Þ

where D∞ represents the asymptotic value of the ampli-
tude of the stability domain. b and κ are additional
parameters. In Fig. 1 (right) the behavior of DðNÞ is
shown. Dots represent the numerically-computed values of
DðNÞ according to Eq. (1), while the continuous line
represents the fitted function based on Eq. (2), showing an
excellent agreement with the numerical data. The dotted
line represents D∞.
The model (2) is compatible with the hypothesis that the

phase space is partitioned into two regions: a central core,
with r < D∞, where KAM [30] surfaces bound the motion,
thus producing a stable behavior apart from a set of small
measure where Arnold diffusion can take place; an outer
part, with r > D∞, where the escape rate to infinity is given
by a Nekhoroshev-like estimate [31–33]
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FIG. 1. Left: Dynamic aperture of a model of the LHC ring in
normalized physical space. The red points represent initial
conditions stable up to the maximum number of turns (105).
The blue points represent unstable conditions and the marker’s
size is proportional to the number of turns for which the motion is
still bounded. Right: Time evolution of DA. The markers
represent the numerical results, while the continuous line shows
the fitted inverse logarithmic law, and the vertical dashed line
represents D∞ (the fit parameters are D∞ ¼ 23.74� 0.01; b ¼
0.439� 0.005; κ ¼ 1.40� 0.05 [19]).
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NðrÞ ¼ N0 exp

��
r�
r

�
1=κ

�
ð3Þ

where NðrÞ is the number of turns that are estimated to be
stable for particles with initial amplitude smaller than r.
Experience with the analysis of data from numerical
simulations of various configurations of the LHC [26]
and from experimental data from the Tevatron [19] showed
that the fit parameters b; κ; D∞ can assume signs that go
beyond what is predicted by strictly applying the model
based on Nekhoroshev theorem. At this point, the scaling
law for DA has been used to propose a model for the
evolution of beam intensity in a hadron synchrotron [19],
which is the basis of the new experimental method
proposed in this article to measure DA. If the beam
distribution is Gaussian in x and y

ρGðx; yÞ ¼
1

2πσxσy
e
−
�

x2

2σ2x
þ y2

2σ2y

�
ð4Þ

then after transforming to polar coordinates and applying
(1), i.e., assuming that particles with amplitude beyond
DðNÞ at turn N are lost, then evolution of beam intensity
IðNÞ can be found as [19]

IðNÞ
Ið1Þ ¼ 1 −

Z þ∞

DðNÞ
e−

r2
2 rdr ¼ 1 − e−

D2ðNÞ
2 ; ð5Þ

whereDðNÞ⟶
N→1

þ∞ (asN ¼ 1 is assumed to be the initial
turn number), andDðNÞ is assumed to be expressed in units
of sigma. Equation (5) establishes a direct link between DA
and beam lifetime in a hadron synchrotron. Although
Eqs. (1) and (5) have been derived for the case of equal
emittances, which is the most common case for hadron
rings and represent the experimental conditions of the
measurements reported here, they can be generalized to the
case of unequal emittances.

III. OVERVIEW OF DA MEASUREMENT
TECHNIQUES

Measuring DA is yet another challenge. It is an important
goal in itself since it a allows examination of nonlinear
single-particle motion. Further, in modern synchrotrons DA
is an essential parameter in the design stage. Measuring DA
provides a means to confirm the design choices, and allows
benchmarking of the analysis and simulations tools used.
This is essential in view of the next generation of circular
machines. The main results achieved in the past are
reported in Refs. [7,34–36], for HERA, Tevatron, and
SPS. The comparison between measurements and simu-
lations is reviewed in Ref. [37].
More recently, with the LHC becoming operational,

DA measurement has regained much attention. The first
result is reported in Ref. [38], where the DA for the

counterclockwise beam (the so-called Beam 2) has been
measured using the standard method, i.e., by deflecting the
beam and observing beam losses as a function of the
displacement (see Fig. 2, where the good agreement
between measurements and simulations is visible).
However, the standard method has some drawbacks.

First, it requires deflecting the beam by an amount that is a
sizeable fraction of the DA: this prevents its application
at top energy in theLHCdue to the strength required. Second,
non-negligible, fast beam losses are intrinsic to this method:
the risk of beam-induced quenches makes this feature not
particularly suitable for a superconducting machine.
In the DA measurement method derived from Eq. (5) the

beam is gradually and slowly blown-up simultaneously in
both transverse directions by means of an appropriate
excitation, typically a dipolar excitation, until some beam
losses appear. Measurement of intensity decay with time
then provides the needed information on DA, which is
obtained by performing a fit to beam losses as a function of
time. The gentle excitation does not generate large or fast
losses, and no beam displacement is required as the
measurement relies only on the growth of transverse beam
size, avoiding the drawbacks of the standard method.
Equation (5) assumes the beam has a Gaussian distri-

bution in both transverse directions. It is clear that the
functional form of the relationship between losses and DA
as expressed in Eq. (5) depends critically on the actual
transverse beam distribution. Alternative expressions can
be derived assuming different beam distributions, such as
done in [19], where the case of quasiparabolic or Lévy-
Student distributions have been studied to consider the case
of beam without tails or with heavy tails, respectively.
Furthermore, a superposition of two or more Gaussians is
often a suitable model and Eq. (5) provides a closed-form
expression for the losses as a function of DA. Therefore, in
a large variety of practical situations, our approach can
provide a description of the measured beam losses.

Physical apertureParticle loss (by turn N)

Unstable motion

Stable motion

KICK [σ]

z [σ]

z′ [σ]

(not yet lost)

D(N)

D

FIG. 2. Left: Sketch of the principle of the standard method to
measure DA. Right: Measured and simulated losses (from
Ref. [38]).
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IV. THE INNOVATIVE MEASUREMENT
TECHNIQUE

A. Experimental results

The proposed technique has been used in two exper-
imental sessions at the LHC to probe the DA of Beam 1 at
injection energy [39,40]. The best estimate of the DA for
the as-built LHC ring is known to be of the order of 11σ
(σ is given for the nominal LHC beam emittance, i.e.,
ϵn ¼ βγϵ ¼ 3.75 μm, where β, γ are the relativistic quan-
tities) [41], hence, special circuits powering octupolar
magnets (in total eight per ring) intended to compensate
for the corresponding field error of the LHC main dipoles
[11] (see also Fig. 3), have been used to shrink the DA.
Clearly, this has no impact on the validity of the

experimental technique and has several advantages: first,
it provides the opportunity to probe several ring configu-
rations, corresponding to different powering level of the
octupole circuits; second, the strongly powered octupole
circuits dominate the beam dynamics, generating a con-
figuration in which a few strong and well-controlled
nonlinearities are at work, rather than many weak, uncon-
trolled sources. This simplifies the task of benchmarking
the experimental results against numerical simulations.
Two types of configurations have been considered: one

with the same sign for the eight octupole circuits in Ring 1,
in which the common absolute value has been varied; and
one with alternating signs strength (þþ − −þþ −−
starting from the arc between ATLAS and ALICE experi-
ments). Note that the circuit in the first arc could not be
used and had to be set to zero, thus breaking the symmetry
of the original scheme.
During the measurements, the collimation system is

retracted to avoid any interference, and a single bunch
of low intensity, typically ∼1010 protons, is injected, gently
blown up transversely, and the intensity decay recorded.
The bunch intensity is a factor of ten lower than the
nominal value, which allows neglecting all intensity-
dependent effects, thus ensuring that the dynamics is
essentially that of a single particle. Furthermore, under
these well-controlled conditions the transverse distributions
are to a very high degree of accuracy represented by a
Gaussian, which fulfils the assumption at the heart of the
new method. Moreover, the lifetime due to beam inter-
action with the residual gas is about 100 h, much longer
than the measurement time of the intensity decay, which is
of the order of minutes. Furthermore, while the beam-gas
interaction generates a slow and amplitude-independent
transport of charged particles towards higher amplitudes,
the nonlinear effects become stronger as particle’s ampli-
tude grows until they become the dominant source of
amplitude growth. This approach is repeated for different
values of the strength of the octupole circuits, which are
called MCO (for magnet corrector octupole) according
to the official LHC nomenclature. Each configuration
probed during the experiment is labeled with

P
KMCO ¼

NMCO e=pð∂3By=∂x3Þ, p=e being the beam magnetic
rigidity, By the vertical magnetic field component, and
NMCO the total number of MCO magnets in Ring 1.
The whole sequence of measurements is shown in Fig. 4,

where the evolution of beam intensity and MCO magnetic
strength is plotted against time. Once a sizeable intensity
change is obtained the octupoles’ strength is varied and this
is repeated for several magnetic configurations of the LHC
lattice. It is worth noting that occasionally a new bunch had
to be injected, which required new excitation to increase the
transverse beam size. Transverse distributions of the bunch
were recorded to provide information about the beam size,
needed to normalize the beam losses. The configurations
considered in the analysis presented in this paper are those

FIG. 3. Upper: Layout of the LHC (from Ref. [11]). The ring
eight-fold symmetry is visible, together with the arcs and the long
straight sections. Bottom: Layout of the LHC regular cell (from
Ref. [11]). Six dipoles and two quadrupoles with the dipole,
quadrupole, sextupole, and octupole magnets (for closed orbit,
tune, chromaticity correction and beam stabilization, respec-
tively) are shown. The spool pieces used to compensate the
systematic b3 component (MCS), b4 and b5 components (MCDO
nested magnets) are also shown. The field imperfections of LHC
magnets are given as By þ iBx ¼ Bref

P
M
n¼1 ðbn þ ianÞðxþiy

Rr
Þn−1

where Rr ¼ 17 mm.
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for which measurable beam losses have been recorded, and
the intensity data have been considered only for the time
intervals corresponding to constant strength of the MCO
magnets.
A summary of the measurements of the intensity decay

over time is shown in Fig. 5, where the evolution of the
relative beam intensity is plotted for the different configu-
rations of MCOs strength. The value of DðNÞ is estimated
by applying Eq. (5) to the experimental data.

B. Comparison with numerical simulations

Numerical simulations are performed for the configura-
tion probed during the experiment using the SixTrack code
[42], which implements a second-order symplectic inte-
gration of the equations of motion in the 6D phase space.
The LHC model is based on the linear ring lattice to which
the measured field quality of the various classes of magnets
are added as thin-lens multipoles, from order sextupole to
twenty-two-pole [41]. The uncertainties affecting the field
quality measurements are taken into account by generating
sixty realizations of the complete set of magnetic field

errors for the LHC, such that a single DA simulation
consists, in fact, of sixty cases corresponding to the
different realizations. The model is further improved by
including ad hoc errors computed to reproduce the mea-
sured closed orbit (dipole errors), the linear coupling (skew
quadrupole errors), and the variation of frequency in phase
space with amplitude (octupole errors). A detailed analysis
showed that the DA is almost independent on the presence
of realistic closed-orbit effects, while it is much more
sensitive to linear coupling [43].
Initial conditions for x and y are distributed in phase

space on a polar grid made of 59 angles, and a uniform
radial distribution with 30 pairs of initial conditions every
2σ in amplitude, while the angular variables are set to zero
[12]. The initial momentum offset is set to 3 × 10−4, equal
to 3σ of the momentum distribution.
A massive campaign of numerical simulations aimed at

studying all experimental machine configurations has been
carried out using the volunteer-based computing platform
LHC@home (see Ref. [44] and references therein). As a
result, DðNÞ is shown in Fig. 6 comparing experimental
and numerical results for three configurations of MCO
strength. The curves correspond to the numerical results for
the sixty realizations, which generate an uncertainly on the
DA value of about �0.5σ. This is larger than the absolute
accuracy due to the grid of initial conditions that is on the
order of 0.1 − 0.2σ. It is worth stressing that DðNÞ is
always expressed in terms of nominal σ, which is the value
obtained by using the nominal value of the normalized
beam emittance, i.e., 3.75 μm, and this value is different
with respect to that measured during the experimental
session.
The agreement between numerical and experimental

results is apparent, the experimental data always being
within the range of DA values provided by the sixty

-200

-100

  0

100

200

01:40 02:00 02:20 02:40

ΣK
M

C
O

 [m
-4

]

Time   [ 25/06/2012 ]

Octupole strength Beam intensity

04:00 04:20

 1.4

 1.5

 1.6

 1.7

In
te

ns
ity

   
[ 1

010
 p

 ]

FIG. 4. Sequence of measurements performed during the
experimental session. The evolution of the beam intensity and
of the MCO magnets’ strength is shown. The color is used to
indicate the data selected for the analysis presented in the rest of
the paper.

0.94

0.96

0.98

1.00

 0  2  4  6  8 10

S
ur

vi
vi

ng
 fr

ac
tio

na
l i

nt
en

si
ty

      106 Turn

ΣKMCO =    -50.3 m-4

ΣKMCO =    -95.9 m-4

ΣKMCO =  -141.5 m-4

ΣKMCO =  -205.6 m-4

ΣKMCO = +204.8 m-4

ΣKMCO = -16.2 m-4, alternating signs

FIG. 5. Relative beam intensity vs turns plotted for all octupolar
configurations probed in the LHC DA experiment with Beam 1.
The different intensity decay rate is visible.

 6

 8

 10

 12

104 105 106 107

D
(N

) 
 [σ

]

N

ΣKMCO =    -50.3 m-4

ΣKMCO =    -95.9 m-4

ΣKMCO = +204.8 m-4

FIG. 6. DA estimates from simulations (lines) and measure-
ments (lines with full markers) for three selected cases. The
excellent agreement is visible, even if some difference in slope
between measured and simulation results is visible for the case
ΣKMCO ¼ −50.3 m−4. The DA is not given in units of beam σ,
but rather in units of the nominal σ obtained with the nominal
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realizations. Some difference in the slope ofDðNÞ is visible
only for the case with ΣKMCO ¼ −50.3 m−4. Figure 7
shows the comparison between the measured DA and the
extrapolation of the results of numerical simulations based
on the scaling law (2). The results of numerical simulations
have been fitted using the scaling law (1) using the data for
N ≤ 105 and the fitted functions for the sixty realizations
have been used to extrapolate the DA up to N ¼ 108. In
addition to the three configurations shown in Fig. 6, a
fourth one with alternating sign strengths of MCOs is
plotted: a very good agreement between measurements and
extrapolations is visible. The standard protocol for the
computation of the DA for LHC is based on the evaluation
of the boundedness of the particle’s motion over 105 or 106

turns, the latter value being used in the presence of beam-
beam interactions [11]. It is worth stressing that the scaling
law (2) allows useful extrapolation of the DA over a time
interval that is one or two orders of magnitude longer than
that used to perform the numerical computations.
A summary plot comparing all beam measurements and

the results of numerical simulations is shown in Fig. 8,
where the DA values correspond to Dð1 × 106Þ turns.
The error bars associated with the results of numerical

simulations are obtained from the DA distribution of the
sixty realizations, while those for the experimental results
are given by the spread of the measured DðNÞ close to
N ¼ 106 (see Fig. 6). Globally a very good agreement is
found, with most of the configurations featuring measure-
ments and numerical simulations compatible within the
estimated error bars. The configuration corresponding to
the smallest MCO strength shows the largest disagreement
between measurement and simulations. However, it should
be noted that the difference is at most at the level of 20%.
All these results indicate a very good agreement between

the measurements, based on the new method, and the
numerical simulations, thus suggesting to move forward
and probe new configurations.
The LHC at top energy is an additional test case of

particular interest, not only for the sake of improving our
general understanding of nonlinear beam dynamics, but also
for a direct measurement of the impact on DA of the high-
order, nonlinear correctors installed in the triplet quadru-
poles of the LHC experimental insertions. These special
magnets have the function to mitigate the harmful effects of
nonlinear field errors stemming from the strong quadru-
poles, located close to the interaction point. In the LHC, the
combined effect of magnets’ misalignments and measured
triplets’ field quality is such that it is not possible to provide
reliable information to compute the correctors’ optimal
strength. Beam-based measurements are therefore manda-
tory, yet extremely difficult and time-consuming to perform
[45]. Moreover, the physical observables probed in these
experiments are only indirectly linked with DA, the ultimate
figure-of-merit. The demonstrated method provides a
straightforward means to assess the size of DA, impossible
using conventional techniques, including its dependence on
the nonlinear corrector magnets. Computing the optimal
strength of these high-order, nonlinear correctors is antici-
pated to be vital for the planned high-luminosity upgrade of
the LHC [46], for which the performance goal means
accurate control of nonlinear effects is even more essential
than for the LHC. This method has the potential to provide
the needed performance.

V. CONCLUSIONS

In this paper, ideas from the theory of dynamical systems
have been used to analyze the problem of nonlinear motion
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of protons in circular accelerators such as the LHC. The
understanding of such motion is crucial to the design and
performance optimization of current and future accelera-
tors, and accurate computation of dynamics aperture is of
central importance for ensuring synchrotron performance.
A solid framework based on fundamental theorems has

been built in recent years and the experimental observations
presented in this paper represent a serious test of such a
framework. Several configurations of the LHC ring have
been probed in a dedicated experimental session and their
detailed analysis, together with a massive campaign of
numerical simulations, allows the conclusion that the
proposed framework works very well in reproducing the
behaviour of measured beam losses. Furthermore, the good
agreement between measurements and simulations means
the proposed method to measure the DA is indeed feasible
and very valuable. Note that the new method overcomes a
number of serious limitations of the standard one, which are
affecting particularly high-energy, superconducting rings.
It is worth stressing that the good agreement between

measurements and simulation results reported in this paper
is an essential outcome our studies, as it provides a serious
benchmark of concepts and tools. Indeed, it is useful to
recall that for past superconducting rings, the agreement
between measurements and simulations was at the level of a
factor of two, whereas we show that such a discrepancy can
be reduced to about 20%. The relevance of benchmarking
tools and concepts should not be underestimated, as this is
an essential point when undertaking studies for future
machine, where only numerical simulations can be used
to optimize their performance.
As a next step, it is planned to pursue the experimental

efforts in the direction of exploring more LHC ring con-
figurations, such as top energy with squeezed optics, as well
as performing loss measurements over longer timescales.
The first point allows probing more configurations, thus
providing even more confidence in the proposed approach.
Assessing the beambehavior over longer timescales allows a
detailed study of the predictiveness of our approach, which
is ultimately the key aspect of our proposal. In fact, the
essence of our method relies on the evaluation of the scaling
law of the DA, rather than considering a single value
corresponding to a fixed and given number of turns.
The predictiveness analysis might lead to a revision of

the maximum number of turns, which are currently
assumed as 105 (without beam-beam effects) or 106 (with
beam-beam effects), used in the DA tracking studies.
Eventually, optimization of performance of future colliders
should be based on the analysis of expected beam losses
over time rather than on plain DA computed for a given and
fixed number of turns.
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