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Short dense electron bunches produced by modern photoinjectors are attractive from the viewpoint
of the realization of powerful and effective sources of subterahertz radiation based on the
spontaneous coherent mechanism of emission. This type of emission is realized if the effective phase
size of the bunch with respect to the radiated wave is small enough. Therefore, the repulsion of particles
caused by a strong Coulomb field inside the dense electron bunch strictly limits the duration of the radiation
process due to the increase in the bunch length. We show that this problem can be solved by using the
cyclotron mechanism of the spontaneous radiation due to the effect of compensation of the Coulomb
repulsion in the phase space.
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I. INTRODUCTION

Modern sources of dense electron beams (including
laser-driven photoinjectors) allow the formation of compact
and accessible sources of dense electron bunches with a
moderate energy of 3–6 MeV, picosecond pulse durations,
and charges of up to 1 nC and even greater [1–6]. These
bunches can be used for the realization of relatively simple
and compact terahertz (THz) sources operating in the
regime of spontaneous coherent radiation [7–14]. This
type of radiation is realized when the effective phase size
of the electron bunch with respect to the wave is small
enough so that the wave packets emitted by each of the
electrons add up basically in phase (Fig. 1). In other words,
in this paper, spontaneous emission means a situation
where the electronic bunch is so short that it is ideally
(or almost ideally) bunched with respect to the emitted
wave already at the entrance to the radiation region and
remains so during the whole process of radiation. In the
case of undulator radiation, this situation is provided when
the bunch stays significantly shorter than the wavelength
of the radiated wave [13,14]. In the case of cyclotron
radiation, the situation is more complicated due to the 2D
character of the electron phase with respect to the wave.
This paper is devoted to the peculiarities of providing and
maintaining the spontaneous nature of the cyclotron radi-
ation from a short electron bunch.

Sub-THz and THz sources based on spontaneous emis-
sion have a number of advantages as compared to the more
traditional electron masers based on the emission induced
due to the bunching of a long electron beam by the radiated
wave [Fig. 1(b)]. First of all, an evident advantage is a
relatively high efficiency of the energy extraction from
electrons, which can be achieved in a simple microwave
system based on the “ready-for-radiation” bunch. Actually,
such an oscillator does not require either a wave feedback
system or an input wave signal to provide the high-
efficiency stimulated character of the radiation process.
A high efficiency together with a narrow frequency band of
the radiated rf signal is provided in a relatively short and
simple system (namely, just an amplifierlike waveguide
system). One more important advantage is that the phase of
the radiated rf signal is fixed by the electron bunch phase.
A key problem in the realization of a sub-THz source

based on the spontaneous coherent emission from a short
electron bunch is a strong Coulomb repulsion in dense
bunches, which leads to the increase of the axial bunch
length [Fig. 1(a)]. If the “operating” radiation mechanism
of the sub-THz source is based on the longitudinal electron
bunching [15] (free-electron lasers and Cherenkov masers),
then axial expansion of the bunch leads automatically to an
increase in the bunch phase size with respect to the radiated
wave. This results in the saturation of the process of
spontaneous emission. Thus, in the case of undulator
and Cherenkov masers, special methods providing control
of the axial length of the bunch [13,14] (and, possibly, the
compression of the bunch [16–18]) are required.
This paper is devoted to studying possibilities for

organizing spontaneous coherent emission from a short
electron bunch in cyclotron masers. We develop the theory
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of these devices [19–24] to a special case of spontaneous
emission of a short wave packet from a short (shorter than
the radiation wavelength) and dense electron bunch.
Naturally, in this situation, the axial expansion of the
bunch due to a strong Coulomb repulsion is very important
for maintaining the spontaneous character of the emission.
We show that an advantage of the cyclotron character of the
spontaneous emission is that one can easily solve the
problem of the Coulomb repulsion. Namely, it is possible to
provide a situation where an increase in the axial length of
the bunch caused by the Coulomb repulsion does not lead
to an increase in the phase size of the bunch, so that the
cyclotron phases of particles with respect to the radiated
wave stay almost constant.
We show that this effect of compensation of the Coulomb

repulsion in the phase space is provided automatically in
the group resonance regime, where the group velocity of
the radiated wave is close to the axial electron velocity and
is useful also because the group resonance regime is very
attractive from the viewpoint of organizing the wave
emission process, as the maximal growth rate of the
cyclotron instability is achieved in this regime [21]. The
group resonance regime is especially important for short
electron bunches, as in this situation a superradiant regime
is realized [25,26]. In this regime, the radiated wave does
not “run away” from the electron bunch, as the group
velocity of the radiated wave packet coincides with the
translational velocity of the electron bunch. Therefore,
during the radiation process, the wave field is accumulated
in the region close to the bunch. This accumulation leads to
the formation of a powerful short wave pulse propagating
together with the bunch. It was shown [21,25,26] that this
superradiant regime provides the maximal growth rate of
the cyclotron instability in the case of the traditional
induced character of the emission (when the bunch is
much longer than the wavelength). In this paper, we use the

advantages of this regime for the case of spontaneous
emission from a short bunch.
This paper is organized as follows. The effect of

compensation of the Coulomb repulsion in the space of
cyclotron phases is described in Sec. II. In Sec. III, a set
of equations describing electron motion in the radiated
wave field and in the Coulomb field of the bunch is
obtained. In Sec. IV, we study possibilities for generating
short powerful wave pulses in an electron oscillator based
on spontaneous coherent cyclotron emission. In Sec. V, we
discuss some peculiarities of the regime of the spontaneous
coherent superradiant emission.

II. COMPENSATION OF THE COULOMB
REPULSION IN THE SPACE OF

CYCLOTRON PHASES

In this paper, we consider the spontaneous cyclotron
emission from a short dense electron bunch possessing
parameters typical for modern photoinjectors (energy at the
level of several MeV and charge at the nC level). A short
(few picoseconds) duration of this bunch makes it possible
to provide the spontaneous character of the emission in the
sub-THz frequency range.
We assume that the bunch moves along a helix in a

waveguide immersed in a uniform axial magnetic field
(Fig. 2) and radiates a waveguide mode with a fixed
transverse structure. In the simplest case, the transverse
mode selection can be provided by excitation of the lowest
mode in the regime of grazing of the dispersion character-
istic, when the axial electron velocity coincides with the
wave group velocity [Fig. 2(c)]. We show further that this
regime is optimal also from the viewpoints of both the
efficiency of the wave emission and compensation of the
Coulomb repulsion of electrons in the space of their
cyclotron phases.

FIG. 1. (a) Spontaneous emission from a short electron bunch, as well as the termination of this process due to the increase in the phase
size of the bunch caused by Coulomb repulsion. (b) Induced emission from a long electron beam of a traditional electron maser, which is
based on the bunching of the beam in the field of the radiated wave.
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We study the spontaneous coherent cyclotron emission
from the short bunch. Such a type of emission takes place
when the effective phase size of the bunch with respect to
the radiated wave is small enough (<2π), so that almost all
particles of the bunch radiate in phase. If electrons rotate
around the waveguide axis (Fig. 1) and radiate the lowest
circular-polarized wave TE1;1, then the electron phase with
respect to the wave is determined as follows:

ϑ ¼ ω0t − h0z − φ: ð1Þ

Here, ω0 and h0 are, respectively, the wave frequency
and the axial wave number corresponding to the exact
cyclotron resonance:

ω0 ¼ h0Vk þ
Ωc

γ
: ð2Þ

In Eq. (2), φ ¼ φ0 þ
R
Ωc=γdt is the phase of the

electron gyrorotation determined by the relativistic electron
cyclotron frequency Ωc=γ (here, frequency Ωc ¼ eB0

mc is the

nonrelativistic cyclotron frequency, and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
the relativistic Lorentz factor).
We consider the situation when electrons acquire gyro-

oscillations in a short kicker located at the entrance to the
radiation space. In the approximation of a sufficiently short
beam, we can assume that the initial gyrophases φ0 are the
same for all particles. Then, the initial electron phase with
respect to the radiated wave is determined by the time the
electron enters into the operating region:

ϑ0 ¼ ω0t0:

Therefore, at the beginning of the electron-wave inter-
action region, initial cyclotron phases of all electrons in the
bunch with respect to the radiated wave are distributed over
the interval

0 ≤ ϑ0 ≤ δϑ0;

where the initial phase size of the bunch is determined by
the initial bunch length l0:

δϑ0 ≈ kl0: ð3Þ

Here, k ¼ ω0

c ¼ 2π=λ. Thus, spontaneous emission is
possible (the bunch is ready for radiation) when the initial
bunch length is shorter than the wavelength. In terms of
Fig. 3, the ready-for-radiation bunch means that the phase
size of the bunch is small enough (δϑ0 < 2π), so that most
of the electrons in the bunch are in the decelerating phase of
the radiated wave and, therefore, pass their kinetic energy
to the wave. For instance, a dense electron bunch with a
duration of l0=c ∼ 1 ps (with the initial bunch length of
l0 ∼ 0.3 mm) can be used for spontaneous coherent emis-
sion of a wave at a frequency of approximately 1 THz or
lower.
A key problem in dense bunches is a strong Coulomb

repulsion, which leads to the increase of the axial bunch
length. If the “operating” radiation mechanism of the sub-
THz source is based on longitudinal electron bunching [15]
(either ubitron or Cherenkov radiation), then axial expansion
of the bunch leads automatically to an increase in the bunch
phase size with respect to the radiated wave [Fig. 3(a)].
In the case of the cyclotron maser, the Coulomb

repulsion also provides an increase in the length of the
bunch. However, the situation is more complicated due to
the 2D (azimuthal-longitudinal) character of the electron
bunching in the field of the wave. In this case, an effect of
phase compensation of the Coulomb expansion can be
provided. This effect is illustrated in Fig. 3(b). In contrast
to ubitron and Cherenkov masers, where the places of equal
phases of different electrons with respect to the wave
represent a set of points zn ≈ nλ [Fig. 2(a)], in the case of
the cyclotron radiation the points of equal electron
phases with respect to the wave ϑ ¼ const form a 2D curve
[Fig. 2(b)]. According to Eq. (2), this curve is a rotating helix
h0zþ φ ¼ const. We show that it is possible to provide the
situationwhen, as a result of Coulomb repulsion, the electron
bunch spreads along the helix of the constant phase. In this
case, an increase in the bunch length does not lead to an
increase of the phase size of the bunch.
Let us consider evolution of the bunch in the case when

the radiation fields are negligibly small, such that electrons

FIG. 2. (a) Cross section of the cavity. (b) Longitudinal section of the cavity. (c) Dispersion characteristic for the case when the
electron velocity is close to the group velocity of the radiated wave.
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move mainly only under the influence of the Coulomb field
existing inside the dense bunch. Our aim is to find the
dependence of the phase size of the bunch, δϑ, on the
normalized axial length kl. According to Eq. (3), the initial
values of these two sizes are the same. However, the
dynamics of their changes under the effect of the Coulomb
field of the bunch are different.
Let us consider electrons placed in the front and in the

tail of the bunch (particles 1 and 2 in Fig. 4, respectively).
Since particle 1 is accelerated by the Coulomb field and
particle 2 is decelerated, the axial length of the bunch,
l ¼ z1 − z2, increases in time due to the Coulomb repul-
sion. Having considered the axial electron motion in the
ultrarelativistic approximation,

dðkzÞ
dðω0tÞ

¼ βk ≈ βk0 þ
γ − γ0
βk0γ30

;

one obtains the following equations describing the evolu-
tion of the axial bunch length:

dðklÞ
dðω0tÞ

≈
γ1−γ2
βk0γ30

: ð4Þ

Here, βk ¼ Vk=c is the normalized axial electron veloc-
ity and ðγ − γ0Þ describes the change in electron energy
caused by the Coulomb repulsion.
The evolution in time of the phase of the two particles

given by Eq. (2) is described by the following equation:

dϑ
dðω0tÞ

¼ 1 − βgrβk − Ωc

ω0γ
: ð5Þ

Here, βgr ¼ ch0=ω0 ¼ Vgr=c is the normalized group
velocity of the wave. In the right-hand part of Eq. (5), the

axial coordinate, z

l0 l

0

Coulomb
repulsion

0

z1z2 z2 z1

kl0

k(z1 - zc)

kl
ϑ1

ϑ2

δϑ

(a)

(b)

α<<1

zc

k(z2 - zc)

zc

axial coordinate, z

FIG. 4. (a) Enhancement of the axial length of the electron
bunch in the process of its motion due to the Coulomb repulsion.
(b) Characteristic evolution of axial coordinates of the electrons
placed in the front and in the tail of the bunch (particles 1 and 2,
respectively), as well as the evolution of phases of these two
particles in the case of a small factor α. Here, zc denotes the axial
coordinate of the bunch center.

FIG. 3. (a) In the case of either ubitron or Cherenkov masers, axial expansion of the bunch leads to an increase in the bunch phase size
with respect to the radiated wave. (b) In the cyclotron maser, the bunch is stretched along the 2D helix of the constant electron phase with
respect to the wave.
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term ϑ0k ¼ βgrβk describes the change in the axial com-
ponent of the electron cyclotron phase with respect to the
wave h0z, whereas the term ϑ0⊥ ¼ Ωc

ω0γ
corresponds to the

variation of the azimuthal component φ in formula (1).
Evidently, a change in the electron energy caused by the
Coulomb repulsion results in opposite changes in ϑ0k and

ϑ0⊥; namely, an increase (decrease) in the energy leads to
an increase (decrease) in ϑ0k but to a decrease (increase)

in ϑ0⊥.
This fact can be used to provide compensation of the

effect of Coulomb repulsion on the electron cyclotron
phase with respect to the wave. Let us find when this
compensation is achieved. In this consideration, we neglect
the effect of the radiated wave on the electron motion. We
assume that the magnetic field corresponds to the exact
cyclotron resonance:

Ωc;res

γ0ω0

¼ 1 − βgrβk;0: ð6Þ

Then, the change in the resonant cyclotron phase caused
by the Coulomb interaction is described as follows:

dϑ
dðω0tÞ

≈ μðγ0Þ × ðγ − γ0Þ; ð7Þ

where

μ ¼ − d
dγ

�
βgrβk þ

Ωc

ω0γ

�
: ð8Þ

We introduce axial and transverse components of the
normalized relativistic electron momentum pk;⊥ ¼ γβk;⊥
and transform Eq. (7) to the following form:

μ ¼ − d
dγ

�
βgrβk þ

Ωc

ω0γ

�
:

We assume that the Coulomb repulsion has basically
axial character. In this situation, the general relativistic
formula

γ2 ¼ 1þ pk2 þ p⊥2

leads to

dpk
dγ

¼ γ=pk ¼
1

βk
: ð9Þ

Then, formula (8) together with Eqs. (6) and (9) leads to
the following relation:

μðγ0Þ ¼
1

γ0

�
βgr
βk;0

− 1

�
:

This factor determines the evolution of the phase size of
the bunch, δϑ ¼ ϑ1 − ϑ2, in time:

dðδϑÞ
dðω0tÞ

≈ μðγ0Þ × ðγ1 − γ2Þ:

Having compared this equation and Eq. (4), one obtains
the following relations between changes in the phase size
and in the axial bunch length:

dðδϑÞ
dðklÞ ≈ α ¼ γ20

βk;0

�
βgr
βk;0

− 1

�
: ð10Þ

This formula is illustrated in Fig. 4. Though the initial
values of the phase size and of the normalized axial length
are the same, the rates of increase of these two sizes in time
due to the Coulomb repulsion are different, namely,

δϑ ¼ kl0 þ α × kðl − l0Þ:
In the case of the group resonance,

βgr ¼ βk;0; ð11Þ
The factor α is small, so that the Coulomb repulsion leads
to a very slow change of the phase size of the bunch. Let us
emphasize that, naturally, in this situation the increase in
the length of the electron bunch due to the Coulomb
repulsion is not avoided. However, this Coulomb expansion
does not lead to a significant increase in the phase size of
the bunch [Fig. 4(b)], as electrons expand along the curve
(helix) of the constant phase with respect to the radiated
wave [Fig. 3(b)].
Note that, when we obtain this equation, we do not use

any particular model describing the Coulomb field inside
the electron bunch. In other words, it does not matter how
the difference in the energies ðγ1 − γ2Þ of the extreme
particles of the bunch grows in time due to the Coulomb
repulsion. Therefore, Eq. (10) describing the compensation
of the effect of the Coulomb field on different (transverse
and axial) components of the electron cyclotron phase has a
very general character. Note also that the effect of the total
compensation in the case of the group resonance is weakly
sensitive to the spread in initial electron energy, dγ0.
Actually, if Eq. (11) is fulfilled for the central energy
fraction, then the initial energy spread dγ0 leads to the
following spread in the parameter α:

dα ≈
dγ0
γ0

:

For modern photoinjectors, this value is as small as
approximately 1% [1].
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A principal point is that the group resonance regime
described by condition (11) is optimal also from the
viewpoint of organizing the wave emission process. In this
regime, quanta emitted in different moments of time do
not run away from the electron bunch, which leads to the
accumulation of radiation in the region close to the bunch
and, as a result, to the formation of a powerful short
wave pulse propagating together with the bunch (Fig. 5).
A rapid increase of the wave amplitude in the region of the
short electron bunch provides the maximal growth rate of
the cyclotron instability [21]. This is analogous to the
superradiant radiation effects, studied both theoretically
and experimentally for various types of electron masers
[25,26] operating in the traditional regime of the induced
emission from relatively long electron bunches. In the case
of the spontaneous emission from a short bunch studied in
this paper, this advantage of the superradiant regime
is naturally combined with the solution of the problem
of the axial expansion of the bunch due to the Coulomb
repulsion.
We would like to note here the analogy between the

above effect of compensation of the influence of Coulomb
forces on the phase of a particle relative to the radiated
wave and the autoresonance effect known in the theory of
electron cyclotron masers and that is the basis of the so-
called cyclotron autoresonance masers [22–24]. The latter
represents the compensation of the influence of the field
of the radiated wave on the electron phase. It can be
described by the same formalism as above, but with one
amendment. Namely, one should change Eq. (9) that
relates changes in the energy of a particle and its
longitudinal momentum, taking into account that in the
case of the electron motion in the field of the radiated
wave

dpk
dγ

¼ 1

βph
¼ βgr:

Here, βph ¼ ω0=ch0 ¼ Vph=c is the normalized phase
velocity of the wave. Correspondingly, one should sub-
stitute 1

βjj;0
with βgr in Eqs. (10) and (11), so that α∼ ðβ2gr−1Þ

and the autoresonance effect takes place when the
group velocity of the wave coincides with the speed of light,
βgr ¼ 1 (more precisely and more generally, this condition
should be satisfied for the phase velocity, βph ¼ 1).
The effect described in this paper has the same nature,

namely, the mutual compensation of changes in the
longitudinal and transverse components of the electron
phases relative to the radiated wave. It turns out, however,
that if these changes are caused not by the fields of the
radiated wave but by quasistatic Coulomb fields of repul-
sion in a dense short electron bunch, then the compensation
effect occurs if the group velocity of the wave coincides not
with the speed of light but with the speed of translational
motion of electrons.

III. EQUATIONS OF ELECTRON MOTION
IN RADIATED AND COULOMB FIELDS

We start from the equation for the change in the electron
relativistic gamma factor,

mc2
dγ
dt

¼ −eðV · EÞ;

where V is the electron velocity and E is the total electric
field acting on the particle. Let us represent the right-hand
part of this equation as a sum of two terms:

FIG. 5. (a) The radiated wave pulse in the case of the superradiant emission in the group resonance regime. (b) The radiated pulse
“slips” with respect to the electron bunch in the case when the electron velocity differs from the wave group velocity.
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dγ
dðω0tÞ

¼ −Fc − Fw: ð12Þ

Here,

Fc ¼
e

ω0mc2
Ek;cVk and Fw ¼ e

ω0mc2
E⊥;w · V⊥

describe the interaction of the particle with the axial
Coulomb electric field Ek;c and with the transverse electric
field E⊥;w of the radiated wave, respectively. From the very
beginning, we normalize the time to the base frequency of
the radiated wave packet ω0.

A. Coulomb interaction

In our model, we take into account only the axial
interaction of electrons with the Coulomb field. This
restriction is due to the relativistic compensation of con-
tributions from electron andmagnetic fields in the transverse
component of the Lorentz force, as well as due to the quasi-
1D character of the electron bunch. The latter is true in the
situation when the transverse component of the electron
velocityV⊥ is small as compared to the axial componentVk,
and when the bunch radius is small enough as compared to
the bunch length in the copropagated reference system. In
this approximation, the axial Coulomb electric field inside
the bunch can be easily calculated by using the bunchmodel
described in detail in Ref. [18].
We represent the bunch as a discrete set of n fractions

(thin “pancakes”, Fig. 6). Each pancake has the electric
charge q=n, where q is the total charge of the bunch. In the
reference system related with the electron bunch, the axial
electric field of the jth pancake at the axis of the symmetry
is determined by the following formula:

E0
k;j ¼

2πq
nS

0
B@1 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2

Δz0i;j2
þ 1

q
1
CA: ð13Þ

Here, S ¼ πR2, R is the radius of the electron bunch,
Δz0i;j ¼ z0i − z0j, and z0i and z0j are the coordinates of the ith
and jth pancakes, respectively, in the correlated system.
The distance between two disks in a correlated system is
connectedwith the same in the laboratory coordinate system
by the Lorentz relation Δz0i;j ¼ γk;iΔzi;j, where Δzi;j is the
distance between the ith and jth disks in the laboratory

coordinate system and γk ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βk2

q
is the longitudinal

Lorentz factor of the ith pancake. The total electric field
acting on the jth pancake is found as a sumover all pancakes.
Therefore, the Coulomb field contribution in Eq. (12), Fc;j,
for an electron placed in the jth pancake is determined by the
formula

Fc;j ¼ χc;jΞj: ð14Þ
Here

χc;j ¼
ILe;0λβk;j

IaS
;

Ξj ¼
Xn
i≠j

sgnðzj − ziÞ

0
B@1 − jΔzi;jγk;ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ ðΔzi;jγk;iÞ2
q

1
CAfqðzi;0Þ;

where I ¼ qc=Le;0 is the electron current, Le;0 is the initial
length of the bunch, λ is the wavelength, Ia ¼ mc3=e, and
fqðzi;0Þ is the function of the charge distribution in the
bunch (in simulations, the Gaussian distribution function
is used).
For the normalized electron axial momentum pk ¼ γβk,

coming from the results for the Lorentz-factor changes
(14), taking into account the relation between the axial
moment and energy, caused by Coulomb interaction,

dpk;j
dðω0tÞ

¼ −Fc;j

βk;j
: ð15Þ

B. Electron-wave interaction

In order to describe the electron-wave interaction, we use
a traditional approach of the cyclotron resonance maser
theory [22]. We consider the motion of a particle along a
helical trajectory in a circular waveguide immersed in the
uniform magnetic field B0 (Fig. 2). If the particle rotates
around the waveguide axis, then the complex transverse
electron coordinate and the complex transverse of the
velocity are described as follows:

rþ ¼ xþ iy ¼ rceiφ;

Vþ ¼ Vx þ iVy ¼ iV⊥eiφ; φ ¼
Z

Ωс=γdt: ð16Þ

Here, (φ; r; z) are the cylindrical coordinates, rc is the
Larmor radius, and V⊥ ¼ rcΩс is the oscillatory velocity.

FIG. 6. Calculation of the Coulomb field in the electron bunch:
the model of a set of charged pancakes.
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We assume that the particle interacts with the lowest
TE11 circular-polarized transverse mode of the waveguide.
The field of this wave is described by the following vector
potential:

A ¼ Re

�
k⊥

mec2

e
J1ðk⊥rÞaðt; zÞ expðiωt − ihzÞ

�
; ð17Þ

where aðt; zÞ is the normalized (slow) amplitude of the
wave; k⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 − h02

p
¼ μ11=Rw is the transverse wave

number, k0 is the free-space wave number, μ11 is the root of
the equation J01ðμ11Þ ¼ 0, and Rw is the waveguide radius.
Consequently, transverse complex electric and magnetic

wave fields Eþ ¼ Ex þ iEy; Bþ ¼ Bx þ iBy are deter-
mined as follows:

Eþ ¼ −i � k⊥mec2

e
� expðiφÞ

� ∂
∂rþ

i
r
∂
∂φ

�

× Re½aðt; zÞ expðiωt − ihzÞ�J1ðk⊥rÞ;
Bþ ¼ ih0=k0Eþ; ð18Þ

and in the center of the waveguide (the bunch place)
transverse complex electric and magnetic wave fields are
fields of a plane wave:

Eþ ¼ − i
2

mc2

e
aðt; zÞ expðiφ − iωtþ ihzÞ:

The equation for the electron energy change,

mc2
dγ
dt

¼ −eReðE�þVþÞ;

leads to the following equation:

dγ
dðω0tÞ

¼ −Fw: ð19Þ

Here, Fw ¼ e
ω0mc2 ReðE�þVþÞ ¼ Re½χwa expðiϑÞ�, χw ¼

β⊥=2 is the electron-wave coupling factor, and β⊥ ¼ V⊥=c
is the normalized transverse velocity.
Electron-wave interaction leads to a change in the

normalized axial momentum pk ¼ γβk:

dpk
dt

¼ e
mc2

ImðB�þVþÞ:

Having compared this equation and Eq. (19) and taking
into account the ratio between wave electric and magnetic
fields in Eq. (18), one obtains

dpk
dðω0tÞ

¼ −βgrFw: ð20Þ

C. Equations of the electron motion

The equation for the total electron energy change (12) is
transformed by relations (14) and (19) to the following
equation:

dγj
dðω0tÞ

¼ −Re½χwja × expðiϑÞ� − Fc;j: ð21Þ

For the normalized electron axial momentum in the jth
disk, coming from the results (15) and (20), taking into
account the ratio between wave electric and magnetic
fields (17):

dpk;j
dðω0tÞ

¼ −βgrRe½χw;ja × expðiϑÞ� − Fc;j

βk;j
: ð22Þ

The change in the complex transverse momentum,
pþ ¼ p⊥eiφ, is determined by the following equation:

dpþ
dðω0tÞ

¼ − 1

ω0

×
e

mc2

�
Eþ þ βkBþ þ pþ

γ
B0

�
: ð23Þ

The equation for the electron cyclotron phase change is

dφ
dðω0tÞ

¼ − 1

ω0p⊥
×

e
mc2

× Im

�
Eþ expðiφÞ þ βk;0Bþ expðiφÞ − p⊥

γ
B0

�

¼ b
γ
− ð1 − βk;0βgrÞIm

�
a
p⊥

expðiϑÞ
�
: ð24Þ

Here, b ¼ Ωc=ω0. The electron resonance phase is the
difference of the electron phase with respect to the wave
and the electron cyclotron phase: ϑ ¼ ωt − hz − φ. The
equation for the change in the resonance phase is

dϑ
dðω0tÞ

¼ −βgrðβk − βk;0Þ − b

�
1

γ
− 1

γ0

�

þ ð1 − βk;0βgrÞIm
�

a
p⊥

expðiϑÞ
�
þ Δ: ð25Þ

Here, Δ ¼ 1 − βgrβk;0 − b=γ0 is the mismatch of the
electron-cyclotron resonance.

D. Equation of the superradiant radiation of the
resonant wave

In order to describe the spatiotemporal evolution of
the slow rf wave amplitude aðz; tÞ, we follow the way
described in detail in Ref. [27]. We consider the wave
equation for the vector potential:
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1

c2
∂2A
∂t2 − ∂2A

∂z2 − Δ⊥A ¼ 4π

c
J:

This equation leads to the following equation for the
slow rf wave amplitude:

1

c2
∂2a
∂t2 þ 2iω0

c2
∂a
∂t −

∂2a
∂z2 þ 2ih0

∂a
∂z ¼ igρnZðzÞ; ð26Þ

where g¼2Ið1−βgr
2Þ=IaNβgr is the excitation factor, N ¼

0.4 is the norm of the operating TE11 transverse mode, and
the function ZðzÞ describes the bunch axial position,
namely, ZðzÞ ¼ 1 if z − Vkt ∈ ½0; Le� and ZðzÞ ¼ 0 if
z − Vkt ∉ ½0; Le�. The source in Eq. (26) is proportional
to the factor of the electron bunching with respect to the
radiated wave:

ρn ¼ hχw expð−iϑÞi;

where h� � �i denotes averaging over the whole electron
ensemble. This equation represents the first harmonic of the
Fourier transformation of the electron current density
over the cyclotron phases of electrons with respect to
the operating wave and is analogous to the form factor of a
short bunch in the FEL theory.
If we use the following normalized variables:

ζ ¼ k0ðz − Vk;0tÞ; τ ¼ ω0ðt − Vk;0z=c2Þ; ð27Þ

then d
dðω0tÞ →

1
γk;02

∂
∂τ, and the wave equation (26) is trans-

formed as follows:

∂2a
∂τ2 −

∂2a
∂ζ2 þ 2is

∂a
∂τ − 2iε

∂a
∂ζ ¼ iGρn

ZðζÞ
Le

: ð28Þ

Here, s ¼ ð1 − βgrβkÞ=ð1 − βk2Þ is a factor, which is
close to unit in the case when βgr ≈ βk, ε ≈ ðβk − βgrÞγk;02
is the factor describing “slippage” of the radiated
wave pulse with respect to electrons, and G ¼
2k0LeIð1 − βgr

2Þγk;02=IaNβgr is the factor of the wave
excitation.
We consider emission from a very short electron

bunch,Le ≪ λγk;02. In this case, we can use the approxi-
mation ZðζÞ ≈ LeδðζÞ, so that Eq. (28) is reduced as
follows:

2i
∂a
∂τ − 2iε

∂a
∂ζ −

∂2a
∂ζ2 ¼ iGρnδðζÞ: ð29Þ

At the zero initial conditions, this equation can be solved
analytically [27,28]:

a¼G
2

ffiffiffi
i
π

r Zτ

0

ρnffiffiffiffiffiffiffiffiffiffi
τ−τ0

p

×exp½− ffiffiffiffi
2i

p
ζ2=ðτ−τ0Þ− iε2ðτ−τ0Þ=2− iεζ�dτ0: ð30Þ

In the case of the exact group resonance regime,
βgr ¼ βk, the rf-wave amplitude in the location of the
bunch ζ ¼ 0 is found as follows:

aðζ ¼ 0; τÞ ¼ G
2

ffiffiffi
i
π

r Zτ

0

ρnffiffiffiffiffiffiffiffiffiffiffi
τ − τ0

p dτ0: ð31Þ

Note that in this case the wave excitation factor is
described by the following simplified formula:

G ¼ 2k0LeI
IaNβgr

:

IV. SIMULATIONS OF THE CYCLOTRON
SUPERRADIANT RADIATION FROM

SHORT DENSE BUNCHES

In simulations, we describe electron motion by the
equation for the electron energy (21), the equation for
the electron axial momentum (22), and the equation for
the electron cyclotron phase with respect to the wave
(25). In these equations, the rf wave amplitude a is
determined by Eq. (31), and this is the same for all
electrons of the short bunch. As for the normalized
Coulomb field acting on the jth particle,Fc;j, this is
determined by Eq. (14). Naturally, this model includes a
number of approximations; namely, a very simple pan-
cake model is used for description of the Coulomb field,
a pointlike electron bunch model is used to describe the
wave excitation by means of Eq. (31), and no initial
energy spread is taken into account. However, such a
simple approach can give predictions which are in very
good agreement with result simulations on the basis of a
“full” particle-in-cell code based on the “direct” model-
ing of Maxwell equations [17]. As for the initial energy
spread, it is mentioned above that a spread of 1% typical
for modern photoinjectors is not too important for effects
studied in this paper. More importantly, such a spread is
significantly smaller than the dynamic spread that occurs
quickly enough in the short dense bunch due to the
Coulomb repulsion.
We consider electron bunches with the total charge of

0.1–1.0 nC, 1 mm diameter, and the electron energy is
6 MeV (which corresponds to the relativistic Lorentz factor
of electrons γ ¼ 13). These parameters are quite typical for
modern photoinjectors [1]; in particular, they are close to
the expected parameters of the photoinjector the Israeli THz
radiation source being constructed at Ariel University [29].
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The initial transverse velocity β⊥0 ¼ V⊥;0=c ≈ 1=γ0 is
chosen from the viewpoint of maximization of the electron
efficiency predicted by the cyclotron maser theory [22].
This transverse velocity together with the group resonance
condition (11) results in the following formula describing
the Doppler up-conversion of the nonrelativistic cyclotron
frequency:

ω0 ≈
γΩc

2

for the cyclotron radiation at a wave frequency of
0.5 THz, which corresponds to the operating magnetic
field B0 ≈ 2.7 T.
Figure 7 illustrates simulations of spontaneous emission

from short (the initial length is Le;0 ¼ λ=4) bunches with

different charges (0.1 and 1.0 nC). It shows the electron
efficiency [the change in electron energy averaged over
all particles in the bunch normalized to the initial kinetic
electron energy, η ¼ hγ0 − γi=ðγ0 − 1Þ], the efficiency of
electron bunching (which is described by formula
ρ ¼ he−iϑi), and the relative increase in the bunch length
Le=Le;0. In these simulations, the waveguide radius is
chosen to provide the exact group resonance, so that the
group velocity of the radiated wave coincides with the
initial value of the axial component of the electron
velocity.
The initial bunch length Le;0 ¼ λ=4 corresponds to a

relatively small initial phase size of the bunch δϑ ¼ π=4.
This size corresponds to a quite high efficiency of the
electron bunching at the input of the radiation region,
ρð0Þ ∼ 1. In the process of motion of the bunch along the
operating waveguide, the bunch length increases basi-
cally due to the Coulomb field. Even in the case of a
relatively small charge (0.1 nC), the bunch length
increases by a factor of approximately 5 in the process
of the motion of the bunch through the 50 cm radiation
region [Fig. 7(c)]. However, as is predicted in Sec. II,
such a dramatic increase in the bunch length does lead
to a significant increase in the bunch phase size, so that
the bunching efficiency remains at a level ρðzÞ ∼ 0.5
throughout the whole electron-wave interaction region.
Since the wave amplification is determined by the
stability of the bunch phase size [∂a=∂τ ∝ ρ; see
Eq. (31)], this results in a stable increase in the electron
efficiency with the axial coordinate of the moving bunch
[Fig. 5(a)]. According to Eq. (31), while the electron
bunching factor ρðzÞ remains approximately constant, the
superradiative radiation process leads to the growth of the
wave amplitude in time as aðτÞ ∝ ffiffiffi

τ
p

. In accordance with
Eq. (21), this growth leads to the fast growth of the
electron efficiency

ηðτÞ ∝ τ3=2: ð32Þ

The saturation is achieved at relatively short lengths
(50 cm at 0.1 nC and 15 cm at 1 nC), and the saturated
values of the electron efficiency are relatively high
(7%–10%) almost independently of the bunch charge.
In contrast to Figs. 7 and 8 illustrates the situation

when the initial bunch length is close to the wavelength,
length Le;0 ≈ λ. This corresponds to the initial phase size
of the bunch δϑ ≈ 2π and, correspondingly, to a close-to-
zero initial bunching factor ρð0Þ. In fact, this case
illustrates the transition from the spontaneous radiation
of a short-length electron bunch to the induced radiation
of an electron ensemble which is not prebunched with
respect to the radiated wave. In this case of induced
radiation, the bunching efficiency ρðzÞ increases with the
axial coordinate due to bunching of electrons in the field
of the radiated wave [Fig. 8(b)]. Similar to the previous

FIG. 7. Spontaneous emission from short (Le;0 ¼ λ=4) bunches
with two different bunch charges 0.1 (solid curves) and 1 nC
(dashed curves). Efficiency of the electron-wave interaction (a),
electron bunching efficiency ρ (b), and the effective bunch axial
length normalized to the initial length Le=Le;0 (c) versus the axial
coordinate.
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case, the bunch length increases due to the Coulomb
repulsion [Fig. 8(c)]. However, due to the effect of the
compensation of the Coulomb repulsion in the phase
space, this repulsion does not prevent the phase bunch-
ing of the electron ensemble [Fig. 8(b)]. Because of this
fact, the saturated efficiency in this case of induced
radiation [Fig. 8(a)] is close to that in the previous case
of spontaneous radiation [Fig. 7(a)]. However, in contrast
to the fast growth of the electron efficiency in the case of
spontaneous emission described by Eq. (32), the induced
process provides a slow exponential growth of the
efficiency [Fig. 8(a)]. This growth is very similar to
the small-signal growth of the instability in FELs.
Therefore, the saturation length of the induced process
is significantly longer, which is naturally due to the need
for additional time for the electron bunching process.
The group resonance regime is optimal from the view-

point of radiation. The results of numerical simulation show
(see Fig. 9) that a wave “slippage” leads to a significant
decrease in efficiency: For the bunch charge 0.1 nC,
efficiency decreases by a factor of approximately 6
[Fig. 9(a)]; for 1 nC, the efficiency decrease is slightly
smaller than in the case of 0.1 nC [see Fig. 9(b)]. Thus, in
the case of a group resonance regime, we have an
opportunity to produce rf pulses with the megawatt level
of power and a duration of approximately 100 ps by using
spontaneous coherent radiation (see Fig. 10).
We have marked above that the efficiency of sponta-

neous radiation is close to the induced radiation efficiency,
but the saturation length of the induced process is
significantly longer and depends on the initial signal
formed by bunch edges. The additional advantage of
spontaneous radiation is revealed in the cases of suffi-
ciently great bunch charges. The results of numerical
simulations shown in Fig. 11 illustrate that a bunch charge
increase leads to a decrease in the induced radiation
efficiency and to the constant efficiency of the sponta-
neous radiation.

FIG. 9. Spontaneous emission from short (Le;0 ¼ λ=4) bunches with two different bunch charges 0.1 (a) and 1 nC (b). Efficiency of the
electron-wave interaction versus the axial coordinate. Solid curves describe the regime of the exact group resonance, and dashed curves
illustrate a case when the group wave velocity is smaller than the bunch velocity.

FIG. 8. Induced emission from relatively long (Le;0 ¼ λ)
bunches with two different bunch charges 0.1 (solid curves)
and 1 nC (dashed curves). Efficiency of the electron-wave
interaction (a), electron bunching efficiency ρ (b), and the
effective bunch axial length normalized to the initial length
Le=Le;0 (c) versus the axial coordinate.
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V. DISCUSSION AND CONCLUSION

In this paper, we have developed the theory of electron
cyclotron masers to the situation when a short dense
electron bunch produces spontaneous radiation of a short
wave packet. This type of emission is an attractive way to
realize a relatively short, simple, and efficient source of
sub-THz radiation. The key problem here is that the
spontaneous character of emission is maintained, while
the phase size of the bunch with respect to the radiated
wave is small enough (smaller than <2π). However, even if
the initial bunch is short enough, strong Coulomb fields
inside the short dense bunch lead to a fast increase of the
axial size of the bunch due to the Coulomb repulsion. In
devices with axial character of the electron bunching in the
field of the radiated wave (FELs and Cherenkov devices),
this problem should be solved by means of providing either
a mechanism of compensation of the Coulomb repulsion
(for instance, using the negative-mass mechanism [13]) or a
mechanism of axial compression of the bunch inside the
radiation region. In contrast, in the case of a cyclotron
maser, this problem can be solved “automatically.” We
show that, at definite conditions (namely, when the group
wave velocity is equal to the axial electron velocity), the
increase in the axial length of the bunch does not lead to an
increase in the phase size of the bunch with respect to the

radiated wave. In some sense, this effect (arising as a result
of mutual compensation of changes in the axial and
azimuthal components of the electron cyclotron phase)
can be considered as an analogue of the negative-mass
effect proposed in Ref. [13] for the control of the phase size
of the bunch in the case of undulator radiation. However, in
the case of the undulator source, the negative-mass effect
decreases the phase size of the bunch just due to a decrease
in the bunch length, as the Coulomb repulsion is replaced
by the “Coulomb attraction.” In the case of the cyclotron
source, the Coulomb fields lead to repulsion of electrons,
and the bunch length increases in the process of motion of
the bunch through the radiation region. However, the
Coulomb elongation of the bunch does not lead to an
increase in its phase size.
Thus, the use of the cyclotron resonance mechanism of

the emission is an attractive way for the realization of a
source of powerful sub-THz pulses based on the sponta-
neous emission from short dense bunches. We show that a
key point is the use of the regime of the group synchronism.
In this situation, along with the solution of the problem of
Coulomb repulsion, one more important advantage takes
place; namely, the wave is emitted in the so-called super-
radiant regime. Since the short radiated wave packet
propagates together with the electron bunch, the elec-
tron-wave interaction process is very effective and leads
to the formation of a short powerful wave pulse.
Both these factors (stabilization of the phase bunch size

and superradiant radiation) together provide a high effi-
ciency achieved in the regime of spontaneous coherent
radiation. The saturated efficiency in this regime is close to
the efficiency achieved in the “traditional” regime of
induced radiation (when the initial phase size of the bunch
is not small). However, naturally, the saturation length of
the induced process is significantly longer and depends on
the initial signal formed by bunch edges. The additional
advantage of spontaneous radiation is revealed in the cases
of very great bunch charges. The results of numerical
simulations shown in Fig. 11 show that an increase in the
bunch charge leads to reducing the efficiency in the regime

FIG. 11. The saturated efficiency versus the bunch charge at
difference initial lengths of the electron bunch.

FIG. 10. Spontaneous emission from short (Le;0 ¼ λ=4) bunches with two different bunch charges 0.1 (a) and 1 nC (b). The wave
pulse (power versus time) radiated in the group resonance regime.
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of induced radiation. At the same time, if the initial phase
size of the bunch is small enough to provide spontaneous
radiation, the efficiency is almost independent on the bunch
charge even at huge values of charges.
We have mentioned above that the Coulomb repulsion

does not lead to an increase in the bunch phase size.

However, in reality, the phase size of the bunch increases;
however, this is not the Coulomb fields but due to the
strong interaction of electrons with the radiated wave.
Figure 12 illustrate dynamics of phases of different
electrons in the process of spontaneous coherent radiation
in the situation when the initial effective phase size of the

FIG. 12. (a) The efficiency of electron-wave interaction for the 0.1 nC bunch with the initial effective length λ=4 (the full length is
λ=2). (b) Distribution of electrons over their phases with respect to the wave versus the averaged axial coordinate of the bunch.
(c) Schematic illustration of the dynamics of the bunch with respect to the wave phase.
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bunch is as small as π=2. A peculiarity of the superradiant
process is that in the beginning of this process the phase of
the radiated wave with respect to the bunch center is π=4
[17]. Therefore, the initial phase of the bunch front is close
to zero, whereas the initial phase of the tail is close to π=2
[Fig. 12(c)]. Since the front is placed at the maximum of the
decelerating phase of the radiated rf wave, its phase
decreases due to the loss of the electron energy down
the nearest steady-state equilibrium (the steady-state “wave
zero,” −5π=4). As for the tail, initially this is close to the
“nonstable” zero of the wave field (π=2). Therefore, in the
process of the electron-wave interaction, the phases of
particles from the bunch tail go to the other steady-state
wave zero, −5π=4þ 2π ¼ 3π=4. Thus, the phase size of
the bunch increases due to the electron-wave interaction. In
fact, the saturation of the superradiant process corresponds
to the situation when the initial bunch is divided into two
bunches placed in two different steady-state “zeros” of the
wave field, so that the phase distance between these
bunches is close to 2π [Fig. 12(c), z ¼ z2].
Note that such behavior of the bunch is typical only for

the regime of the exact group resonance. In fact, the initial
phase of the bunch with respect to the radiated wave
depends on the mismatch between the wave group velocity
and the axial electron velocity. In principle, it is possible to
provide the situation when at the beginning of the electron-
wave interaction process the bunch is placed at the “proper”
phase with respect to the radiated wave, such that the
radiation fields provide a decrease in the phase size of the
bunch. This case is not interesting from the viewpoint of
the radiation process, as the efficiency in this case is
relatively low. However, this case can be way to provide
self-compression of the bunch by the radiated field (similar
to the undulator radiation self-compression considered in
Ref. [17]). We do not address this issue in this paper,
hoping that it will become a subject of future papers.
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