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In more than four decades, particle acceleration by plasma wakefield has demonstrated its feasibility and
efficiency. This acceleration technique is now starting to be planned for providing high-quality beams
to well-defined user communities. High beam energy is also considered by piling successive plasma
acceleration stages. In this context, avoiding beam degradation, on top of all emittance degradation, is the
main concern when transferring the accelerated beam to the users or to the following acceleration stage.
After examining the behavior of the trace and the phase emittances when crossing through a conventional
transfer line, we are able to determine the criteria to be achieved in the plasma ramps so as to minimize
emittance growth. Then the optimal density profile is studied for these ramps at the entrance and exit of a
plasma stage accelerating electrons from the energy of 150 MeV to 5 GeV. Finally, the design of an optimal
transfer line allows showing that the emittance growth can be contained to less than 10% in realistic
conditions when transferring a beam to a free-electron laser.
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I. INTRODUCTION

From the suggestion to use a plasma wakefield to
accelerate charged particles [1], the proof of this principle
is now well established theoretically and experimentally
[2,3]. Induced by either a particle beam delivered by a
conventional accelerator [4] or a photon beam provided by a
laser [5], huge wakefields in plasma columns have been
observed, accelerating electron beams to the multi-GeV
energy range. This acceleration technique has reached
nowadays its maturity. Its feasibility and its efficiency are
no more to be proven. Laser-plasma facilities are being used
as x-ray photon sources [6,7], and plasmawakefield projects
aiming at providing routinely a high-quality beam to well-
defined user communities have started to be planned [8–10].
For the free-electron laser community, the beam quality in
terms of emittance and energy spread is primordial. For the
high-energy physics community, the increase to higher and
higher energy is essential, which is possible by stacking
successive acceleration stages [11,12]. In all cases, beam
extraction from the plasma stage for transferring either to the
users or to the next plasma stage is a key point.
This extraction and transfer, if done without carefully

matching the beam, can dramatically damage its quality

characterized by its emittance. As pointed out in Ref. [13], a
mismatched beam will induce envelope oscillations leading
to significant emittance growth after betatron decoherence.
The electric wakefield being huge, its longitudinal compo-
nent is very efficient for particle acceleration, and the same
goes for its transverse gradient with respect to particle
focusing. Compared to focusing elements in a conventional
transfer line, quadrupoles or solenoids, the focusing gradient
Kðm−2Þ of the wakefield can be 2 or 3 orders of magnitude
stronger. When passing abruptly from a given focusing
region to another completely different, an important mis-
match is induced, causing a big jump in emittance. In
Ref. [14], an adiabatic ramp of K has been derived for the
transition zone between the two different focusing regimes
in order to avoid emittance growth, and in Ref. [15] it is
shown that a linear variationof the laser beamsize allowsone
to achieve the indicated adiabatic profile. Almost no emit-
tance growth can be obtained in this way for a weak charge,
in the absence of beam loading effects and at the condition
to adjust a parameter governing the ramp length.
A facility aiming at delivering a beam routinely to a user

community often requires, in addition to high beam quality,
a high beam charge and a high reliability. It is therefore
important to study the behavior of beam emittance in the
presence of a beam loading effect and to check the
efficiency of plasma ramps for mitigating emittance growth
that can be achieved easily like a simple density ramp.
Besides, the issue of emittance growth is very often

analyzed only for the phase emittance in a free drift. Yet
transfer lines also include focusing elements, and the trace
emittance is more meaningful, as all rms beam parameters
can be deduced from it. It is therefore useful to clarify the
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three following points: (a) Which emittance, phase or trace
emittance, should be preserved? (b) In which context, free
drift or focusing element, does emittance growth occur?
(c) Which parameters govern the emittance growth?
Answering thoroughly and consistently those three ques-
tions allows one to know how to mitigate emittance growth.
In this paper, we will start to derive the expressions

governing the evolution of trace emittance and phase
emittance in the transfer line downstream from the plasma
exit, for both free drifts and focusing elements. From that,
the exact relation between the two emittances can be
deduced, and all the parameters involved in their evolution
can be precisely identified. This allows us to highlight the
criteria minimizing emittance growth and the role of
different components that should contribute to this mini-
mization. Those analytical expressions are thereafter con-
firmed by particle tracking simulations. Then we examine
the case of a plasma stage accelerating a 30 pC electron
beam at 150 MeV, ending up at 5 GeV with a small energy
spread of 1% and a small normalized emittance of 1 mm
mrad. Linear and exponential density down ramps are
simulated and their length adjusted so as to minimize
emittance growth. The results are compared to those
obtained with the cited adiabatic ramp of K. Density up
ramps at the plasma entrance are also studied to check their
ability to ease beam injection as well. Finally, a transfer line
including permanent and electromagnetic quadrupoles is
designed and optimized, driving the beam from the plasma
down ramp to a free-electron laser (FEL). Thanks to that,
the beam emittance delivered at the user door can be
mitigated and estimated in more realistic conditions.

II. EMITTANCE EVOLUTION

A particle distribution being given, the motion of each
particle in the (x, z) space, with x and z its transverse and
longitudinal positions, respectively, can be fully described
with the additional knowledge of the corresponding
momenta (px, pz), the conjugate variables in Hamiltonian
dynamics. Instead of themomentumpx, the slope x0 can also
be considered. It is defined by

x0 ¼ px

pz
: ð1Þ

The emittance is the measure of the surface of the ellipse
representing (in the rms meaning) the distribution of
particles in the transverse space, which is either (x, x0) or
(x, px). From these two possible coordinate sets, two kinds
of emittance can be defined, the trace emittance and the
phase emittance, with the corresponding normalized emit-
tances so as to get rid of their variations with beam energy.

A. Trace emittance and phase emittance

The 2D emittance is the square root of the deter-
minant of the covariance matrix. The trace emittance

and the normalized trace emittance are thus defined,
respectively, as

εtr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihx02i − hxx0i2

q
ð2Þ

and

εtr;n ¼ βrγrεtr; ð3Þ
where βr and γr are the relativistic coefficients (not to be
confused with the Twiss parameters below).
The rms beam size, beam divergence, and correlation are

given, respectively, by

σ2x ¼ hx2i ¼ βεtr; ð4Þ
σ2x0 ¼ hx02i ¼ γεtr; ð5Þ

and

σxx0 ¼ hxx0i ¼ −αεtr; ð6Þ
where α, β, γ are the Twiss parameters. According to
Eq. (2), they are linked by the relation

βγ − α2 ¼ 1: ð7Þ
On the other side, the phase emittance and the normal-

ized phase emittance are defined, respectively, as

εph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihp2

xi − hxpxi2
q

ð8Þ

and

εph;n ¼
ϵph
m0c

ð9Þ

with m0 the electron rest mass and c the speed of light.
Assuming that the transverse distributions are centered

and that longitudinal and transverse distributions are
independent, which is generally the case, the detailed
calculations in the Appendix A lead to the relation between
the two emittances:

ε2ph;n ¼ ε2tr;n

�
p2
z

p2
0

þ α2
σ2p
p2
0

�
; ð10Þ

calling p0 the average of the pz distribution, which is
given by

p0 ¼ m0cβrγr: ð11Þ
This implies that, when α ¼ 0, i.e., at a beam

waist, where the beam changes from divergent to con-
vergent and vice versa, the two normalized emittances
are equal:

εph;n ¼ εtr;n when α ¼ 0: ð12Þ
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This is often the case at a focusing element, and it is
recommended to perform the emittance measurement
immediately after those locations [14] in order to get
relevant results. In the general case, ε2ph;n and ε2tr;n differ
by the term α2σ2p, meaning that the two emittances are even
more different from each other for a higher energy spread
and when the beam is more divergent or else convergent.
Asdiscussed in theAppendixA,Eq. (10) is no longervalid

in the presence of strong focusing elements which introduce
significant dependences between x0 and pz, but the property
given by Eq. (12) remains always true. More generally,
Eqs. (10) and (12) show that phase and trace emittances are
linked, and thus the growth of both should be mitigated.
Let us study now the evolution of the two emittances in

a transfer line. The latter being a combination of drifts
and focusing elements, their behavior can be completely
described when examining the transfer through a free drift
where there is no slope change and that through a thin lens
where there is no position change. This will be done in the
following, and the derivation of emittance change through a
general transfer line is given afterwards.

B. Emittance evolution through a free drift

Detailed calculations in the Appendix B demonstrate
that, when transverse and longitudinal distributions are
independent, through a drift of length l, the trace emittance
remains constant, whereas the phase emittance varies:

ε2tr − ε2tr0 ¼ 0; ð13Þ

ε2ph;n − ε2ph0;n ¼ ε2tr0;n

�
σp
p0

�
2

γ0lðγ0l − 2α0Þ; ð14Þ

where the subscript 0 corresponds to the drift entrance and
no subscript corresponds to the drift exit.
This points out that the variation of phase emittance in

a drift is higher when the initial trace emittance or the
energy spread or the Twiss parameter γ0 is bigger. It is, for
example, noted in Ref. [16] that emittance grows more with
a bigger beam emittance and divergence. Those parameters
are known to be particularly big in wakefield acceleration,
such that in Refs. [17,18], for example, it is concluded that
very important emittance growth is unavoidable when
transferring the accelerated beam to a user. However, when
decomposing the beam divergence in factors of emittance
and γ0 separately as in Eq. (14), we are able to suggest to
use the plasma down ramp for minimizing γ0 (the Twiss
parameter at the drift entrance) in order to minimize phase
emittance growth, while ε2tr0 and σ2p are determined in the
acceleration process. Indeed, γ0 being constant through a
free drift and very big in the accelerating plasma where
wakefield focusing forces are huge, it can only be lowered
in the down ramp where these forces progressively and
quickly decrease to zero. On the contrary, if γ0 is not
minimized at this specific location, no action in the plasma

plateau or in the transfer line can avoid an emittance
explosion right at the plasma exit. In short, dissociating the
emittance and γ0 allows pointing out the different mech-
anisms they are submitted to, finding out the only location
where γ0 can be reduced, and therefore proposing a new
way to mitigate emittance growth.
The phase emittance also increases with the drift length,

which should thus be the shortest possible so as to limit
emittance growth [19]. Equation (14) allows us to calculate
the chromatic length Lc [20], the length over which the
phase emittance increases by a factor of

ffiffiffi
2

p
when starting

from a waist. When α0 ¼ 0,

ε2ph − ε2ph0
ε2ph0

¼
σ2x0

0

σ2x0

σ2p

p2
z

l2 ¼ γ20l
2
σ2p

p2
z

; ð15Þ

and Lc is obtained by equalizing the above ratio to 1 and
taking the approximation of Eq. (A12):

Lc ¼
σx0
σx0

0

σp
p0

¼ 1

γ0
σp
p0

: ð16Þ

Here also, it is clear that minimizing γ0 with the plasma
down ramp is the solution allowing one to increase the
chromatic length and thus to limit emittance growth. γ0 is
really the parameter that should be taken into consideration,
which is furthermore a constant parameter through a
free drift.

C. Emittance evolution through a thin lens

Through a thin lens of integrated normalized gradient
k ¼ KL, the derivations developed in the Appendix C show
that, unlike the free drift case, the trace emittance varies
and the phase emittance remains constant:

ε2tr − ε2tr0
ε2tr0

¼ β20k
2

�
σp
p0

�
2

; ð17Þ

ε2ph − ε2ph0 ¼ 0; ð18Þ
where the subscript 0 corresponds now to the lens entrance
and no subscript corresponds to the lens exit. Once more,
independence between transverse and longitudinal distri-
butions is assumed.
Equation (17) expresses the well-known chromaticity

effect. Because of the energy spread, there is a jump of
the trace emittance when crossing a focusing element. To
limit this jump, k20 should be the lowest (smoothest focusing)
and β20 (or the beam size) should be the smallest. Notice that
the latter condition can be met by minimizing the Twiss
parameter γ in the drift preceding the lens. Taking into
account the same result highlighted in the preceding para-
graph, minimizing γ at the plasma exit is the key point: It is
doubly beneficial, for minimizing phase emittance growth
when going through a free drift and also minimizing trace
emittance growth when crossing a thin lens.
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Typically, it is necessary to focus the divergent beam
(α0 < 0) coming from the plasma to make at least a parallel
beam (α ¼ 0). For that, using the definitions of the
Twiss parameters in Eqs. (4)–(6), xx0 must be canceled,
and Eq. (C2) shows that

k0 ¼
α0
β0

: ð19Þ

Combining with Eq. (18) leads to

ε2tr − ε2tr0
ε2tr0

¼ α20

�
σp
p0

�
2

; ð20Þ

which means that the least jump in trace emittance can be
obtained for a minimum α at the lens entrance, and, once
more, this is met for a minimum γ in the drift upstream from
the lens.
Sections II A, II B, and II C analyzed the relations

linking trace and phase emittances, and then their evolu-
tions through a free drift and a thin lens, under the
assumption of uncoupled transverse and longitudinal
motion. Thanks to this simplified context, the main
behaviors of the two emittances are pointed out with a
single formalism, and all the parameters governing their
evolutions are highlighted: the emittances at the plasma
exit, the Twiss parameter γ at the drift entrance, and the
length and smoothness of the transfer line. As no other
parameter than those ones is involved, we can thereafter
focus on the mastering of these parameters, and only of
them, to minimize emittance growth.
Before all nevertheless, it is necessary to check the validity

and the accuracy of the above findings in a more general
framework, with less restrictive assumptions. We propose, in
a first step, to use analytical calculations on a general transfer
line to confirm the emittance behaviors pointed above and, in
a second step, to use numerical tracking through free drifts
and finite-length quadrupoles to quantify the relevance of
formulas (13), (14), (17), and (18). That will be presented,
respectively, in Sec. IID and II E in the following.

D. Emittance evolution through a general transfer line

If space charge effects can be neglected, the transfer
line can be modeled by a first-order transfer matrix R and
higher-order tensors T and U:

X ¼ R · X0 þ TðX0; X0Þ þUðX0; X0; X0Þ ð21Þ

or with Einstein notation:

Xi ¼ RijX0;j þ TijkX0;jX0;k þ UijklX0;jX0;kX0;l; ð22Þ

where X ¼ ðx; x0; y; y0; l; dp=p0Þ for the trace emittance or
X ¼ ðx; px; y; py; dE=p0cÞ for the phase emittance. Note
that the tensors R, T, and U are different according to the
trace or phase coordinates.
The emittance is linked to the determinant of the sigma

matrix (or covariance matrix) which is defined as

Σ ¼ X · XT; ð23Þ
of which the linear part, noted Σ̃, can be expressed in terms
of Σ0, the sigma matrix at entrance, as

Σ̃ ¼ R · Σ0 · RT: ð24Þ

The expansion of Σ, as defined in Eq. (23), gives, if we
assume a symmetric distribution where first- and third-
order moments are assumed to be zero,

Σ ¼ Σ̃þ ðTiklTjmn þ RikUjlmn þ RjkUilmnÞ
× hXkXlXmXni0 þ oðΣ3

0Þ: ð25Þ

In the case of a Gaussian distribution, we have

hXkXlXmXni0 ¼Σ0;klΣ0;mnþΣ0;kmΣ0;lnþΣ0;knΣ0;lm: ð26Þ

It is shown in Ref. [21] that Eq. (25) can be written

Σij ¼ RikRjlΣ0;kl þ ½TiklTjmn þ 2TikmTjln

þ 3ðRikUjlmn þ RjkUilmnÞ�Σ0;klΣ0;mn þ oðΣ3
0Þ: ð27Þ

In the more general case of a non-Gaussian distribution, but
with a zero final dispersion and assuming that the transverse
and longitudinal distribution are uncorrelated, when consid-
ering only the chromatic terms in T and U, we get

Σij ≈ Σ̃ij þ ðTiklTj66 þ Ti66Tjkl þ 4Tik6Tjl6

þ 3RikUjl66 þ 3RjkUil66ÞΣ0;klΣ0;66 þ oðΣ3
0Þ: ð28Þ

The calculation of the determinant of the Σ matrix gives
then for the horizontal plane (the vertical plane is deduced
by replacing indexes 1 and 2 by, respectively, 3 and 4)

ε2 − ε20
ε20

≈ ½γð2T1klT166 þ 4T1k6T1l6 þ 6R1kU1l66Þ þ βð2T2klT266 þ 4T2k6T2l6 þ 6R2kU2l66Þ

þ 2αðT1klT266 þ T2klT166 þ 4T1k6T2l6 þ 3R1kU2l66 þ 3R2kU1l66Þ�
Σ0;kl

ε0
Σ0;66 þ oðΣ0;66Þ: ð29Þ
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From this general formula, in the case of a drift of length

l, where T126 ¼ T346 ¼ l=2β0 and U1266 ¼ U3466 ¼ 3−β2
0

6β2
0

l,

Eq. (15) can be deduced when using the canonical

coordinates:
ε2ph−ε2ph0
ε2ph0

≈ γ20l
2 σ2p

p2
z

.

In the case of a thin lens of integrated gradient k where
T216 ¼ T436 ¼ k=2 and U2166 ¼ U4366 ¼ −k=3, Eq. (17)
can be deduced when using the coordinates of the trace

emittance:
ε2tr−ε2tr0
ε2tr0

≈ β20k
2ðσpp0

Þ2.
If now the coordinates for the phase emittance are used,

then T126 ¼ T346 ¼ 0, implying that the emittance is not
changed by the thin lens as given in Eq. (18).
This section shows that it is possible to estimate

analytically the emittance growth via transfer matrix terms
of whatever a transfer line. This global approach allows us
to confirm the evolutions of the two emittances pointed out
precedently in restrictive conditions. Even more impor-
tantly, Eq. (29) is used thereafter in Sec. IV in the
optimization of the transfer line aiming at minimizing
emittance growth. Such an analytical expression allows one
to significantly speed up the time-consuming numerical
procedure.

E. Particle tracking

Simulations with the particle tracking code TraceWin [22]
are undertaken so as to check the validity of the formulas
established above. For that, a simple structure including a
0.1 m drift followed by a 0.01 m quadrupole and then a
second drift is considered. The electron beam at the start
has the following features: 104 macroparticles in a
Gaussian distribution cut at 6 sigmas (thus, transverse
and longitudinal coordinates are not strictly independent,
but the dependence is weak). The Twiss parameters
are αx0 ¼ −40, βx0 ¼ 1 m, and εtrx0;n ¼ 10−6 m rad in
transverse and αz0 ¼ 0, βz0 ¼ 1 m, and εtrz0;n ¼
0.01 × 10−6 m rad. This corresponds to the rms sizes
σx0 ¼ 10−5 m, σx 00 ¼ 4 × 10−4 rad, and σp

p0
¼ 1%.

The resulting variations of the beam size, the trace, and
the phase emittances are shown along the structure in
Fig. 1 for three different quadrupole integrated gradients
Gl ¼ 330, 130, and 100 T. The second gradient is chosen
so as to have a parallel beam (α ¼ 0) after focusing. We can
observe the following. (i) The trace emittance is constant in
the drifts and experiences an abrupt jump in the quadru-
poles, a jump that is smaller for lower Gl. (ii) The phase
emittance increases in the drifts but only when the beam
size is varying, whether it is convergent or divergent, and
varies very little in the quadrupole. (iii) The normalized
trace emittance and phase emittance are equal only and
everywhere α ¼ 0. This occurs at two precise locations for
Gl ¼ 330 T or on a long distance after the quadrupole for
Gl ¼ 130 T, whereas for smaller focusing strengths the
two emittance curves never cross as the beam has no waist.

Those behaviors are totally in agreement with the
formulas given previously. Quantitatively, the discrepan-
cies between these formulas and numerical tracking are less
than 15% (see Table I), although there is a weak depend-
ence between transverse and longitudinal coordinates, and
the quadrupole has a finite length.

F. The three key roles

The above studies show precisely the relation between
the two emittances, which emittance grows in which
context, and the exact parameters governing these growths.
By means of a unique and consistent formalism, the four
equations (13), (14), (17), and (18) show the following.
(i) Through a free drift, the trace emittance is unchanged,
while the phase emittance regularly grows along the drift,
all the more so for bigger Twiss parameter γ0 at the drift
entrance (γ0 remaining anyway constant in the drift).
(ii) Through a thin lens, the phase emittance is unchanged,
while the trace emittance is subjected to a kick, and that
more considerably when the focusing strength is bigger.
Those behaviors have been above supported by more

general analytical considerations and quantitatively checked
with multiparticle tracking.
Even more importantly, the above studies highlight

exhaustively the primary parameters governing emittance
growth when transferring the accelerated beam from a
plasma stage to another plasma stage or toward the users.
Therefore, we can focus exclusively on them for mitigating
the emittance growth. Furthermore, this analysis points
out the only location where it is possible to act on those
parameters. All that allows us to announce the three tasks
necessary for mitigating emittance growth, associated to the
three key roles: (1) minimizing emittance and energy
spread during acceleration—therefore, this should be the
exclusive role of the acceleration plasma; (2) minimizing γ0
(Twiss parameter) at the transfer line entrance—therefore,
this should be the exclusive role of the plasma down ramp,
with the reservation that the latter would not itself induce
significant emittance growth; (3) minimizing the total
length and the integrated focusing strength in the transfer
line—therefore, this should be the exclusive role of the
focusing elements in the transfer line.
Once the best is achieved at each of those three

components as recommended, the emittance growth is
ensured to be the minimum. The advantage is that the
optimization can be done separately at each stage without
minding about the nature or the capacity of the next stage.
On the contrary, if it is not done correctly at a given stage, it
cannot be compensated elsewhere. That is why it is
important to insist on the exclusive role of each stage.
In the following, we examine a given case of laser-

plasma acceleration where the emittance and energy spread
are already minimized along the acceleration process and
only the two last tasks listed above will be then successively
explored.
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III. LIMITING EMITTANCE GROWTH WITH
PLASMA RAMPS

A. Laser-plasma configuration

We consider here the laser-plasma acceleration stage of
the EuPRAXIA project [10]. The plasma, at the nominal
density np0, consists of three sections: (i) a matching-in or
up ramp section to match the coming electron beam into the
plasma channel, with a density increasing from zero to np0,
(ii) an acceleration section to boost the beam energy from
150 MeV to 5 GeV, with a longitudinally uniform density

TABLE I. Emittance variation through the first drift or through
the quadrupole, given by the formulas or the particle tracking.

Emittance variation (10−12 m2 rad2)
Eq. (14)
or (17) Tracking

ε2ph − ε2ph0 when crossing the first drift 3.76 3.34

ε2tr − ε2tr0 when crossing quadrupole 330 T 5.50 5.72
ε2tr − ε2tr0 when crossing quadrupole 130 T 3.72 3.68
ε2tr − ε2tr0 when crossing quadrupole 100 T 2.18 2.40

FIG. 1. Variation of beam size (left), normalized phase and trace emittance (right) along a structure including a 0.1 m free drift,
followed by a 0.01 m quadrupole (blue rectangle in the graphs) and a second drift. The cases of three different quadrupole strengths are
shown from top to bottom: 330 (a), 130 (b), and 100 T (c), the second one being chosen for obtaining a parallel beam after focusing.
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np0, and (iii) a matching-out or down ramp section to match
the ultrasmall beam to the following transport beam line,
with a density decreasing from np0 to zero. Throughout
these sections, the beam quality needs to be preserved as
much as possible, so that it can be used to drive an x-ray
free-electron laser. The acceleration section has been
previously studied, showing that the beam emittance could
be maintained during the acceleration by matching the
beam size to the wakefield focusing gradient [23], and
the beam energy spread along with the slice energy spread
can be controlled by manipulating the beam loading effect
adequately [24]. The resulting optimized parameters of the
laser, the plasma, and the beam before and after accel-
eration are summarized in Table II, where kp is the plasma
wave number and nc is the critical channel depth [23].
At the entrance of the acceleration section, the beam

must present at a waist with a very large Twiss parameter γ,
corresponding to a tiny transverse size. This will need a
very strong focusing in the upstream transfer line, leading
to a significant emittance growth according to Eq. (17).
Adding a plasma up ramp is mandatory to ease these
requirements at injection.
At the end of the acceleration section, due to the very

strong focusing provided by the wakefield, the beam size is
very small, associated to a very big divergence, charac-
terized by the large Twiss parameter γ. If the plasma ended
sharply at this position, the beam emittance will strongly
grow in the next transfer line, according to Eqs. (14)
and (17). Adding a plasma down ramp will help to
efficiently mitigate this issue.

B Matching in with plasma density up ramp

In order to mitigate the emittance growth by the betatron
decoherence mechanism [13], the incoming electron beam

must be properly matched to the focusing structure of the
plasma acceleration stage where the plasma density is
constant (longitudinally). This means its Twiss parameters
must verify

α ¼ 0 and β ¼ 1ffiffiffiffi
K

p ; ð30Þ

where K is the focusing gradient at the plateau entrance.
As the latter is very large, the beam transverse size is tiny,
of the order of 1 μm. This requires very strong focusing
strengths in the upstream transfer line, inducing significant
emittance growth according to Eq. (17). It is thus man-
datory to implement a density up ramp to smoothly increase
the plasma density from zero to its value in the plateau in
order to relax the two constraints above.
We set ourselves the objective to relax the required beam

size to 10 μm and propose to explore the Twiss parameter
α0 at the ramp entrance and the ramp length L so that there
is a minimum emittance growth, for exponential up ramps
with density defined as

npðzÞ ¼ np0 expðz=LÞ ð31Þ

over −5L < z < 0.
Instead of a fully 3D particle-in-cell (PIC) simulation, we

first use the electromagnetic fields calculated from linear
theories to replace the laser wakefield and the beam loading
effect for the tracking of the electron beam, as done in the
Astra code [25], so that a fast parameter scan is possible. The
results are shown in Fig. 2. It is found that, for each up ramp
length, there exists an optimal α0 that results in a minimum
emittance growth. The longer the ramp is, the less the

TABLE II. Main parameters of the plasma acceleration section.

Laser

Strength a0 2.0
Spot size kpw0 3
Pulse length kpσz 1

Plasma
Density np0 1 × 1017cm−3
Channel depth Δn=Δnc 0.35
Plateau length 260 mm

Electron beam Before
acceleration

After
acceleration

Charge Qb 30 pC 30 pC
Energy Ek 150 MeV 5 GeV
Energy spread σE=E 0.5% 1.1%
Slice energy spread σEs

=E 0% 0.09%
rms emittance εph;n 1.0 mm mrad 1.03 mm mrad
rms size σ 1.3 μm 0.5 μm
Twiss parameter γ 2003 m−1 411 m−1
rms length σz 2.1 μm 2.1 μm

FIG. 2. Emittance growth as a function of α0 for various ramp
lengths, calculated with the Astra code (continuous lines) and one
case calculated with the 3D PIC code Warp (dashed line).
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emittance grows, but the minimum is more peaked, mean-
ing that it should be more precisely achieved. In the cases
studied here, the minimum emittance growth is found to
be around 2%, with a ramp length of L ¼ 11 mm and
α0 ¼ 1.0.
Then 3D PIC simulations were conducted with the Warp

code in the boosted frame [26], with the boosted factor
γboost ¼ 16. Since here the laser pulse is not focused by any
external means, its spot size evolves following

wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z2R

q
; ð32Þ

where zR ¼ πw2
0=λ0 is the Rayleigh length and λ0 the laser

wavelength. As a result, the transverse size of the moving
window in the simulation is much larger than that used in
the acceleration stage where the laser pulse is focused by
the parabolic plasma channel. The dimension of the moving
window is typically 404 × 404 × 150 μm with 466 ×
466 × 5524 cells and only one particle per cell for the
plasma and about 200 particles per cell for the electron
beam. In order to speed up simulations, the plasma particle
per cell here is set to only 1. Nevertheless, 3D simulations
has been compared to 2D simulations in cylindrical
coordinates with many more plasma particles per cell,
and a good agreement has been found in terms of the laser
pulse evolution and the longitudinal wakefield distribution.
In order to save computation time, a not too long ramp,

L ¼ 7 mm, is studied. It is found that (see Fig. 2) results are
even better than those found with the Astra code for the same
ramp length: For α0 ¼ 2.0, emittance growth is only 4%.
The evolutions along the up ramp of beam emittance and
beam size are also shown in Fig. 3. It is interesting to note
that, no matter how well the beam is matched, the beam size
always converges to its matched value, due to the presence

of the very strong transverse focusing gradient. But the
stronger the beam size oscillates before it reaches its
equilibrium value, the more the emittance increases.

C. Matching out with plasma density down ramp

A plasma density decreasing smoothly to zero is highly
desirable instead of a sharp decrease. We will consider in
the following different types of density profile, exponential,
linear, and adiabatic, and for each of them will adjust their
length so as to minimize the parameter γ at the ramp exit as
recommended in Sec. II.
3D PIC simulations have been carried out with the Warp

code in the boosted frame [26], under the similar setup of
the simulation area and grid size as in Sec. III B. Figure 4
shows the evolution of γ and emittance till far in the free
drift downstream from the plasma, for the exponential
profile defined as

npðzÞ ¼ np0 expð−z=LÞ ð33Þ

over 0 < z < 5L, for L ¼ 3, 5, 7 mm. The longer the ramp,
the smaller is γ, and consequently the phase emittance
varies less after the ramp as predicted by Eq. (14), but then
emittance growth inside the ramp itself becomes more
significant.
Notice that the emittance growth occurs only near the

ramp exit. This is due to the presence of the beam loading
effect, i.e., due to nonlinear focusing fields excited by the
beam itself. As pointed out in Ref. [23], when the wakefield
is strong enough, the beam loading effect could be
negligible. In the down ramp, however, the wakefield
decreases due to both the reduced (or increased) laser
strength (or spot size) and the reduced plasma density,
while the beam loading effect decreases mainly due to the

FIG. 3. Beam emittance (a) and size (b) evolutions in the up ramps.
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reduced plasma density. The wakefield is further decreased
in the down ramp, because it is no longer in the resonant
conditions set in the plasma plateau [23]. It means that, at
some point, the beam loading effect may prevail over the
wakefield, and as a result the nonlinear focusing field
becomes dominant, degrading quickly the beam quality. In
our simulations, the plasma density was reduced to zero too
fast for the beam loading effect to influence the beam
quality when the down ramp is short (e.g., 3 mm). But for a
longer down ramp (e.g., 5–7 mm), the beam loading effect
started to deteriorate the beam quality from the middle
of the ramp, leading to a valuable emittance growth.
Therefore, the down ramp length should be chosen in such
a way that the emittance is not affected too much by the
beam loading effect, while γ is small enough not to affect
the emittance in the following transfer line.
Linear density profiles have also been tried (not shown

here), and it is found that, for a length around 3L,
equivalent results are obtained while being slightly less
good when compared to exponential profiles.
All those results show that a smooth down ramp with the

appropriate length, which must not be at a very precise
value, thus easily achieved, is enough to strongly mitigate
emittance growth in the downstream transfer line, com-
pared to the case without a down ramp. From the practical
point of view, such plasma density ramps can also be
implemented with a good flexibility, for example, by
changing the plasma cell radius at appropriate positions
at the cell entrance and exit [16,27].
We have also wondered whether an adiabatic down ramp

as recommended by Ref. [14] could help avoid emittance
growth in the down ramp itself. That could be achieved
with a focusing strength evolving as

KðzÞ ¼ K0

ð1þ gzÞ4 ; ð34Þ

whereK0 is the focusingstrengthat the rampentranceandg is
a parameter to adjust the ramp length. Thegeneration of such
a profile has beenproposedby tapering the laser spot size in a
constant density plasma [15], resulting in a preserved
emittance being observed for a very low bunch charge. In
this article, we propose to study a varying plasma density in
the presence of a laser spot sizewithout any specific focusing
technique in order to produce such an adiabatic profile. After
some first tries, g ¼ 100 m−1 seems to be the most appro-
priate value. Figure 5 gives the adiabatic profileKðzÞ and the
corresponding density profile, compared to an exponential
profile with L ¼ 7 mm. The adiabatic density profile drops
very quickly and then increases gradually to around 10% of
the initialdensity.That isbecause the laserspot size (strength)
has become so large (small) that the plasma density has to be
increased to maintain the gradient profile of Eq. (34). As a
result, theadiabatic focusingdecreases fasterat thebeginning
than at the end, compared to that of the exponential profile.
The Twiss parameter γ and the phase emittance growth in

the presence of the adiabatic down ramp are given in Fig. 6.
Compared to the case of an exponential down ramp, γ is
here even smaller, but the emittance growth is much more
significant. As discussed above, this emittance growth
comes from the nonlinear fields generated by the beam
loading effect that become significant in the down ramp
as the plasma density decreases. Away to avoid it is to cut
the adiabatic density profile earlier, letting it going down
quickly to zero after z ¼ 10 mm, for example. The beam
would then be extracted out of the ramp before its emittance
gets worse, but the Twiss parameter γ would be still large.

FIG. 4. Evolution of Twiss parameter γ (a) and normalized phase emittance εph;n (b) along the down ramp and then the downstream
drift, for the exponential density profiles with L ¼ 3, 5, and 7 mm, compared to the case without a ramp. z ¼ 0 mm is the down ramp
entrance.
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Only in the case of a very small bunch charge, 0.3 pC as
shown in Fig. 6 and in Ref. [15], is the beam loading effect
negligible and can the emittance be kept unchanged. In any
case, the adiabatic density profile as studied here is not very
practical to achieve. Linear or exponential down ramps
would be preferable, regarding the ease of its implementa-
tion and the efficiency of its emittance growth mitigation.

D. Discussions

Plasma down ramps are very efficient for decreasing
the Twiss parameter γ0, as recommended in Sec. II for
minimizing emittance growth in the transfer line next to the
plasma acceleration stage. Furthermore, no specific density

profile is really needed, as long as the ramp length is
correctly chosen, and this can be done without the need of
great precision. The longer the down ramp, the smaller γ0
is, but then emittance growth in the ramp itself caused by
the nonlinear effect progressively counterbalances the
benefit of smaller γ0. As the latter mechanism is rather
progressive, the optimum zone is smooth, meaning an easy
achievement of the down ramp.
Up ramp plasmas are mandatory for properly matching

the incoming beam into the plasma acceleration stage. Here
also, no specific shape and no great precision are needed,
as long as the ramp length and the beam divergence are
correctly tuned.

FIG. 5. Focusing gradient (a) and corresponding plasma density profiles (b) for adiabatic (g ¼ 100 m−1) and exponential
(Lexp ¼ 7 mm) down ramps.

FIG. 6. Evolution of Twiss parameter γ (a) and normalized phase emittance εph;n (b) along the down ramp and then the downstream
drift, for the adiabatic density profiles (g ¼ 100 m−1), compared to the case without a ramp. The case of a very low particle charge
(0.3 pC) is also shown. z ¼ 0 mm is the down ramp entrance.
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IV. OPTIMIZING BEAM TRANSFER
TO FEL ENTRANCE

A. Objective and setup

The objective here is to drive the beam from the down
ramp exit obtained in Sec. III B, with the beam parameters
as given in Table III, toward the FEL entrance with precise
required parameters as given in the same table. It can be
seen that the emittance growth should be maintained as low
as possible.
As three parameters should be achieved in the two

transverse directions, the transfer line should be designed
with six quadrupoles. They can be divided into two groups:
The first group can be used for capturing the beam coming
from the plasma which often presents a big divergence. The
quadrupoles should thus be the shortest and the closest to
the plasma exit. Permanent magnets are the best suitable for
that. The second group can be used for tuning the beam size
and divergence at FEL entrance. Four electromagnets are
enough for that.
Therefore, with two permanent magnet quadrupoles and

four electromagnet quadrupoles for achieving the six
constraints in Table III, the solution found for the quadru-
pole gradients should be unique once their lengths, posi-
tions, and polarities are fixed and when considering only
their linear effects as here. However, in order to ensure that
there are no better configurations with other quadrupole
lengths and positions, or even with more permanent

magnets as done in Ref. [20], we will also explore all
those possibilities.

B. Optimization method and results

When the number of free parameters (unknowns) is
larger than the number of constraints (equations), there are
an infinity of solutions. For example, two close quadru-
poles with whatever strengths produce the same effect as
long as the difference of these strengths is the same. As the
aim here is to search for the minimum of a function, that is
of a surface in a multidimensional space, it is essential to
find out the lowest minimum while avoiding the local
minima. The particle swarm optimization (PSO) algorithm
[28] is well suited for that, because it employs an “army” of
“swarms” to explore the topology of the studied space
before converging toward the lowest minimum.
A code based on the PSO algorithm has been written in

Python to optimize the transfer line. When the program is
near converging, a gradient conjugate method was used to
speed up the convergence. Although requiring massive
simulations, this optimization code is not very time con-
suming, because it relies uniquely on analytical transfer
matrices like those used in Eq. (29) so that no particle
tracking has to be performed. Only once the solution is
found is the latter checked with the tracking codes TraceWin

[22] and Astra [26], where space charge effects are taken into
account.
The function to be minimized is the quadratic sum of

the relative difference to the targeted Twiss parameters (as
specified in Table III) and the relative emittance growth as
specified in Eq. (29), which by its analytical nature allows
one to significantly speed up numerical procedures. The
unknown parameters to be determined are the position and
the gradient of the quadrupoles. The fixed input data are
the number of electromagnet quadrupoles (4), their length
(400 mm), and their maximum gradient (100 T=m); the

TABLE III. Characteristics of the electron beam obtained at the
down ramp exit and as required at the FEL entrance.

Electron beam Down ramp exit FEL entrance

rms emittance εph;n 1.07 mm mrad ∼1 mmmrad
rms size σ 2.8 μm 23=15 μm
Twiss param. γ 80.1 m−1 0.63=0.67 m−1

FIG. 7. Relative emittance growth [(a) horizontal and (b) vertical] as a function of the number of permanent quadrupoles and of the
transfer line total length.
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permanent magnet quadrupole length (100 mm) and
maximum strength (700 T=m); the distance between the
first magnet and the plasma end (50 mm); and the minimum
distance between the magnets (30 mm). The variable input

data are the number of permanent magnets (from 2 to 8) and
the total length of the transfer line (from 4 to 8 m).
Results on phase emittance variations are shown in Fig. 7

as a function of the two last variable parameters. We can see
that the results are roughly the same, proving that the PSO
algorithm is capable of finding the lowest minimum, that is,
the best solution, which is necessarily the unique solution
when there are only two permanent magnets.
This study confirms that, as sensed at the end of

Sec. IVA, because six parameters must be mastered, the
solution with six quadrupoles is the best one. Once such a
line is implemented, i.e., when the quadrupoles with given
polarities and lengths are positioned, the solution is unique,
so that classical algorithms searching by the largest slope
method can be used for quickly finding out the minimum.
By then changing either the quadrupole polarities, lengths,
or positions, further satisfying solutions can be found.
Indeed, when more than six quadrupoles are used, i.e.,

more than two magnets are used in Fig. 7, often the
maximum strength is higher and sometimes much higher,
because, as said above, close magnets can contradict
between them, whereas all other results remain the same.
Besides, there is no significant difference between lengths
of 4 and 5 m, but, for longer lengths, the emittance growth
becomes higher as predicted by Eq. (14) for a free drift.
This growth looks, however, not so significant in Fig. 7,
because the effect of the first drift is the most important,
whereas all the cases studied here have the same first drift;
for the following drifts, as asking for minimizing emittance
growth is equivalent to asking for the smoothest focusing,
it results in a bigger beam envelope in average and, thus, a
smaller γ in the drifts, reducing the effect of their lengths on
emittance growth, always according to Eq. (14).
As a consequence, the shortest solution is adopted, with

two permanent magnet quadrupoles and a total transfer
length of 4 m. The resulting beam envelope variation is
shown in Fig. 8. The maximum gradient for the permanent
magnet is 700 T=m and for the electromagnet is 85 T=m.

FIG. 8. 3-rms envelopes of the 5 GeV beam in the transfer line
from the plasma exit to the undulator entrance (blue, horizontal;
red, vertical).

FIG. 9. Final beam current (blue dashed line) and average beam
energy (red solid line) in each 0.2 μm long slice. The reference
energy is given by the black dotted line.

FIG. 10. Initial (a) and final (b) energy spread (red solid line) and horizontal (vertical) normalized slice emittance [blue (green) dashed
line] in each 0.2 μm long slice.
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In case there is a need to lower these gradients, there is
still room to lengthen those magnets. With this line, the
emittance increase is only 10% if the beam energy included
in �1% of the nominal energy, that is, 84% of the total
beam, is considered.
Another important parameter for the FEL is the slice

emittance, that is, emittance of a given longitudinal slice. Its
estimation tightly depends on the slice length. What matters
for the FEL is the coherent length, which is 4.6 nm at the
energy of 5 GeV. In our case, the shortest length that can be
considered is around 0.2 μm to get enough macroparticles
for statistic calculations. With this length, the final beam
current and average energy are given in Fig. 9. The initial
and final energy spread and emittances are given in Fig. 10.
As we can see, the variation of the slice emittance is very
low (a few percent) because of the reduced slice energy
spread. Because of the small number of particles in each
slice, the results shown are rather noisy. Using a shorter
slice length will give an even smaller slice emittance
and slice energy spread, but the result is even noisier.

V. CONCLUSIONS

The principle of particle acceleration by a plasma-based
setup is already well established. Its efficiency and fea-
sibility have been demonstrated theoretically and exper-
imentally. In the next steps that consist in sending the beam
to either the users or to the next acceleration stage, beam
matching out and matching in an acceleration stage along
with the transfer line design are the key points, where
preserving beam quality, especially its emittance, is the top
issue. In this article, the phase and trace emittance change
through a transfer line have been derived, pointing out
the primary parameters involved in this process. Particle
tracking in typical focusing configurations allowed us to
confirm those behaviors of the emittance. Then 3D PIC
code simulations for a given acceleration scheme of the
EuPRAXIA project proved that the density ramp at the
plasma entrance and exit are mandatory for preserving
emittance. Finally, the design of a specific transfer line
demonstrated that it is possible to deliver a beam right at
the FEL entrance with characteristics meeting its very tight
requirements.
This performance has been achieved thanks to the

application of the following rules: (a) The plasma density
up ramp length and the initial beam divergence are tuned so
as to match the incoming beam to the focusing structure of
the plasma acceleration stage, i.e., so that, at its entrance,
the beam presents a waist and its rms size is equal to the
square root of the wakefield focusing gradient. (b) The
density down ramp length is tuned so that the Twiss
parameter γ at the exit is as low as possible while emittance
growth in the ramp itself is not significant and is not spoiled
by the nonlinear beam loading effect. (c) The transfer line
should include six quadrupoles, aiming at achieving the
four required transverse rms parameters at the FEL and the

lowest emittance growth in the two transverse directions,
i.e., in the smoothest way.
As a consequence, for a relatively high charge beam up

to 30 pC, the emittance growth in the up ramp is ∼4%,
during acceleration ∼3%, in the down ramp ∼4%, and in
the transfer line ∼10%. Therefore, the overall emittance
growth throughout the different sections is ∼22% of that at
the plasma entrance.
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APPENDIX A: TRACE EMITTANCE
AND PHASE EMITTANCE

Let us first precise some notations and some basic
statistical rules.
In the following, for a given random variable a, its

average, rms, and variance are noted, respectively, by ā, σa,
and ha2i. They are linked by the relations

σ2a ¼ ha2i ¼ ða − āÞ2 ¼ a2 − ā2: ðA1Þ
If a is a centered distribution,

ā ¼ 0 and hence ha2i ¼ a2: ðA2Þ

For two random variables a and b, the covariance σab is
given by

σab ¼ habi ¼ ða − āÞðb − b̄Þ ¼ ab − āb̄: ðA3Þ

If a and b are statistically independent,

ab ¼ āb̄ and thus σab ¼ habi ¼ 0: ðA4Þ

In all this article, in order to simplify the writing, we
assume that the transverse distributions are centered and,
thus,

x̄ ¼ px ¼ 0: ðA5Þ
The two emittances, Eqs. (2) and (8), can then be written

as, according to Eqs. (1) and (A1)–(A3),

ε2tr ¼ x2 x02 −xx02 ðA6Þ
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and

ε2ph ¼ x2 x02p2
z −xx0pz

2 ðA7Þ

If transverse and longitudinal distributions are indepen-
dent, which is generally the case, according to (A4),

ε2ph ¼ x2 x02 p2
z −xx02pz

2: ðA8Þ

This can be written, using Eqs. (A1) and (4)–(6),

ε2ph;n ¼ ε2tr;n

�
p2
z

p2
0

þ α2
σ2p
p2
0

�
; ðA9Þ

calling p0 the average of the pz distribution.
Developing pz around this average value

pz ¼ p0

�
1þ dp

p0

�
ðA10Þ

implies that

dp
p0

¼ 0; ðA11Þ

then to the first order in dp=p0, one has

p2
z ≈ p2

0: ðA12Þ

When in addition α ¼ 0, i.e., at a beam waist, where the
beam changes from divergent to convergent and vice versa,
the two normalized emittances are equal:

εph;n ¼ εtr;n when α ¼ 0: ðA13Þ

Notice that Eq. (A9) is no longer valid in the presence
of strong focusing elements which introduce significant
dependences between x0 and pz, but the property given by
Eq. (A13) remains always true. Indeed, a quadrupole will
induce a spread in x0 increasing linearly with the position x
and the momentum deviation dp. The typical pattern of
such a beam in the (x, x0) phase space is two symmetrical
isosceles triangles joined by the upper corner at the center
of the phase space. At a waist, this pattern is straightened
up, and the last terms xx0 and xx0pz in Eqs. (A6) and (A7)
are null. In the case of a waist in a focusing element,
the beam size is maximum, and the pattern is horizontal,
where particles having p0 þ pz and p0 − pz are distributed

symmetrically in þx0 and −x0, so that x02p2
z ¼ x02 p2

z . In the

case of a waist in a free drift, the beam size x2 is minimum,

close to zero, which, once multiplied by the constant x02 and

x02p2
z in the drift, makes the difference between the two

emittances minimum, so that they are equal around this

waist. We have also checked the validity of Eq. (A13) with
simulations in many different configurations and carefully
tracked each term of the expression of the two emittances to
understand the mechanism leading to this property.

APPENDIX B: EMITTANCE EVOLUTION
THROUGH A FREE DRIFT

Through a drift of length l, the coordinates change as

x ¼ x0 þ x0
0l; x0 ¼ x0

0; ðB1Þ

where the subscript 0 corresponds to the drift entrance and
no subscript corresponds to the drift exit. With this, the
trace emittance [Eq. (A6)] at the drift exit can be expressed
exclusively in terms of coordinates at the drift entrance:

ε2tr ¼ ðx20 þ 2lx0x0
0 þ x02

0 l
2Þx02

0 − ðx0x0
0 þ x02

0 lÞ2; ðB2Þ

hence we can see that the trace emittance remains constant
in a free drift:

ε2tr − ε2tr0 ¼ 0: ðB3Þ

The variation of the phase emittance can be calculated in
the same way from Eq. (A7) using Eq. (1):

ε2ph − ε2ph0 ¼ 2lðx0x0
0 x

02
0p

2
z −x0x0

0pz x02
0 pzÞ

þ l2½x02
0 x

02
0 p

2
z −ðx02

0 pzÞ2�: ðB4Þ

If transverse and longitudinal distributions are sta-
tistically independent, and by expressing in terms of the
initial Twiss parameters given by Eqs. (4)–(6), one can
obtain

ε2ph;n − ε2ph0;n ¼ ε2tr0;n

�
σp
p0

�
2

γ0lðγ0l − 2α0Þ: ðB5Þ

APPENDIX C: EMITTANCE EVOLUTION
THROUGH A THIN LENS

Through a thin lens of integrated normalized gradient
k ¼ KL, the coordinates change as

x ¼ x0; x0 ¼ kx0 þ x0
0; ðC1Þ

where the subscript 0 corresponds now to the lens entrance
and no subscript corresponds to the lens exit. Notice that
the focusing gradient experienced by a particle is inversely
proportional to its momentum. Based on the expression of
pz in Eq. (A10), k can be developed as

k ¼ k0

�
1 − dp

p0

þ 1

2

�
dp
p0

�
2
�
; ðC2Þ
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where k0 is the integrated normalized gradient seen by the
particle with nominal energy. k is thus a distribution linked

to the longitudinal motion, for which the averages k̄ and k2

can be calculated as functions of dp
p0
. As it is a centered

distribution, averages of its odd powers vanish, and,
neglecting its fourth order, we have

k2 − k̄2 ¼ k20

�
σp
p0

�
2

: ðC3Þ

The trace emittance after lens crossing given in Eq. (A6)
can be expressed exclusively with coordinates at the lens
entrance:

ε2tr ¼ x20ðk2x20 þ 2kx0x0
0 þ x02

0 Þ − ðkx20 þ x0x0
0Þ2; ðC4Þ

hence

ε2tr − ε2tr0 ¼ 2ðkx0x0
0 x

2
0−kx20 x0x0

0Þ þ k2x20 x
2
0−kx202: ðC5Þ

If transverse and longitudinal distributions are indepen-
dent, we can obtain using Eqs. (4) and (C3)

ε2tr − ε2tr0
ε2tr0

¼ β20k
2

�
σp
p0

�
2

: ðC6Þ

Let us switch to the calculation of the phase emittance as
given in Eq. (A7) at the lens exit. It can be expressed as a
function of coordinates at the lens entrance:

ε2ph ¼ x20ðk2x20p2
z þ 2kx0px0pz þ px0

2Þ
− ðkx20pz þ x0px0Þ

2; ðC7Þ

and the variation through the thin lens is

ε2ph − ε2ph0 ¼ 2ðkx0px0pz x20 −kx20pz x0px0Þ
þ k2x20p

2
z x20 −kx20pz

2: ðC8Þ

If transverse and longitudinal distributions are indepen-
dent, the phase emittance remains constant when crossing a
thin lens:

ε2ph − ε2ph0 ¼ x20
2ðk2p2

z − kpz
2Þ ¼ 0: ðC9Þ

This section clearly shows the different behaviors of
the two emittances when crossing a thin lens: the trace
emittance is subjected to a jump proportional to the square
of the focusing strength, while the phase emittance remains
unchanged. Although the thin lens induces a coupling
between transverse and longitudinal motion via the pz
depending on focusing strength k [Eqs. (C1) and (C3)],
separating x and z dependencies is still possible, allowing
one to analytically calculate the precise behavior of the
emittances.
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