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With a Bayesian approach, the linear optics correction algorithm for storage rings is revisited. Starting
from the Bayes’ theorem, a complete linear optics model is simplified as “likelihood functions” and “prior
probability distributions.” Under some assumptions, the least square algorithm and then the Jacobian
matrix approach can be rederived. The coherence of the correction algorithm is ensured through specifying
a self-consistent regularization coefficient to prevent overfitting. Optimal weights for different correction
objectives are obtained based on their measurement noise level. A new technique has been developed to
resolve degenerated quadrupole errors when observed at a few select beam position monitors (BPMs).
A necessary condition of being distinguishable is that their optics response vectors seen at these specific
BPMs should be near orthogonal.
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I. INTRODUCTION

At modern particle accelerator facilities, advanced beam
diagnostics instruments with high acquisition rate can gen-
erate copious amounts of datawithin a short time period. The
data can be used in a wide variety of applications such as
characterizing machine parameters, monitoring machine
performance, realizing real-time correction, feedbacks, etc.
A specific example would be obtaining beam turn-by-turn
(TbT) data from beam position monitors (BPMs) after the
beam is disturbed. The linear optics functions, such as the
envelope function β of betatron oscillation and its phase ϕ
[1], can be extracted [2–4]. Due to various measurement
noise, accurately identifying quadrupole error sources is
important for optics correction. One can average over
repetitive measurements, then use the mean values directly.
Distributions of measurement noise, which are usually
ignored, however, can provide rich information for identify-
ing error sources precisely. Using a Bayesian approach and
the information provided by the error analysis, the linear
optics correction problem presented by accelerators can be
approached from the viewpoint of probability.
Lattice measurement noise and quadrupole excitations

errors are usually randomly distributed around their expect-
ation values. Overfitting quadrupole errors must be avoided.
Specifically, the optics functions β and ϕ can be measured
with BPMs at many locations si, where i ¼ 0; 1;…; N − 1,

and N is the total number of BPMs. Given a set of measured
data with noise, fitting the actual quadrupole errors ΔK, is a
typical nonlinear regressionproblem since the dependence of
β andϕ onK is nonlinear. In regression problems, overfitting
is a modeling error which occurs when a function is too
closely fit to a limited set of data points [5,6]. There are two
reasons of revisiting this problem with a Bayesian approach.
First, the Bayesian approach is a proven technique in
preventing overfitting. Second, several optics distortions
caused by quadrupole errors need to be corrected simulta-
neously, but measured in different units and scales. With the
Bayesian approach, the coherence of the correction algo-
rithm, which is capable of dealing with multiobjective
regression problems, can be established.
In some scenarios, an optics distortion pattern is indeed

caused by a single quadrupole error rather than normally
distributed errors. However, the goal of the Bayesian
approach is to distribute the error to multiple sources. It
can sometimes fail to distinguish the single source from its
highly degenerated neighbors. A new technique has been
developed where only a few specific BPMs are selected to
address the degeneracy. One necessary condition for being
distinguishable is that the optics response vectors of those
specific BPMs should be near orthogonal.
To further explain this approach, the remaining sections

are outlined as follows: Sec. II briefly reviews the well-
known correction scheme, i.e., use of Jacobianmatrix aswell
as a discussion of the difficulties of this method. In Sec. III,
we start from the Bayesian theorem to rederive the least
square algorithm. It will become clear that using the Jacobian
matrix is a simplified versionof theBayesian approachwith a
flat prior probability. Section IV introduces a new technique
for resolving the degeneracy of neighboring quadrupoles.
Both simulation and experimental data taken from the
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National Synchrotron Light Source II (NSLS-II) storage ring
are used to illustrate this technique. A brief summary is given
in Sec. V.

II. JACOBIAN MATRIX APPROACH

A linear optics model of a storage ring can be represented
by a set of s-dependent optics functions. For simplicity’s
sake, the envelope function βðsÞ is used as an example.
Other lattice functions such as betatron phase, ϕðsÞ, will be
covered later. Given a fixed magnetic lattice layout, an
optics model reads as

β ¼ βðs;KÞ: ð1Þ

Here K is a vector composed of all normalized quadrupole
focusing strengths, and s is the longitudinal coordinate.
Bold symbols, such as “X,” are used to denote vectors and
matrices throughout this paper. The design lattice model is
represented as

β0ðsÞ ¼ βðs;K0Þ; ð2Þ

where K0 represents the quadrupoles’ nominal setting, β0 is
the nominal envelope function along s. If quadrupoles have
some errorsΔK on top of K0, the linear lattice is distorted as

β ¼ β0 þ Δβ ¼ βðs;K0 þ ΔKÞ: ð3Þ

Δβ is often referred to as β-beat.
Given the total distribution of N BPMs, a ring’s optics

model can be simply represented as anN-dimensional vector.
Once the linear optics is measured at these BPMs, the lattice
correction needs to identify (account for) the actual quadru-
pole errors. A well-known and straightforward correction
method is to use the linear dependence of the β-function on
each quadrupole, i.e., its Jacobian matrix [4],

Mi;j ¼
∂βsi
∂Kj

; ð4Þ

where si is the ith BPM’s longitudinal location, and j is the
index of quadrupoles.M can be constructed based on either a
design model or a beam-based measurement. By solving the
following equation,

Δβ ¼ M · ΔK; ð5Þ

the error sources ΔK can be identified approximately. Here
Δβ is a vector of the β-beat seen at the BPMs. Since the
dependence is not linear, iteratively applying Eq. (5) is
needed.
It turns out that, due to measurement noise, highly

degenerated quadrupoles and even bad BPMs, the solution
to Eq. (5) is spoiled by overfitting. It is well known that
overfitting can be prevented by a regularization technique

[5–7]. But how to choose a reasonable regularization
coefficient to cut off measurement noise is not obvious
here. At the same time, multiple optics functions are
measured, but in different scales and units. We can stack
their response matrices vertically with some weights.
However, the strategy for specifying appropriate weights
is not clear. An inappropriate regularization and weight
specification could degrade the performance of correction.
For example, some functions are overfitted and can
sacrifice others. Another concern is that the quadrupole
errors obtained with Eq. (5) usually reproduce the optics
distortions at the location of the BPMs rather than the
whole ring. This might be a critical issue for collider rings,
in which no BPM can sit exactly at their interaction points
(IPs). Minimizing the β-beat at the IP’s neighboring BPMs
does not ensure that the optics at IPs are optimized.
Therefore, it is important to precisely identify errors in
order to correct lattice distortion globally, rather than
limited to the locations of BPMs. Some of these difficulties
can be mitigated by using a complete accelerator model
instead of its Jacobian matrix. Another method is to
validate the obtained quadrupole errors at a few testing
BPMs, which are intentionally left out from the fitting.
However, iterative fitting and validation with a complete
optics model is time consuming, especially for large scale
storage rings. In the next section, the lattice correction
problem will be addressed using the Bayesian approach.

III. BAYESIAN APPROACH

From the viewpoint of probability, identifying quadrupole
errors from repetitive and independent measurements can be
achieved by computing a posterior conditional probability
distribution and determining its maxima. Consider a simple
case of β function in the horizontal plane. Based on the
Bayes’ theorem, the conditional probability of having an
error ΔK with a measured β reads as [5,8]

pðΔKjβÞ ¼ pðβjΔKÞpðΔKÞ
pðβÞ

∝ pðβjΔKÞpðΔKÞ: ð6Þ

Equation (6) can be interpreted as, given a measured optics
distortion β ¼ β0 þ Δβ, the probability of it being the error
source of ΔK is proportional to the product of a likelihood
function pðβjΔKÞ and a probability distribution of errorΔK.
The likelihood function can be recognized as being related to
the dependence of β onK, i.e., the Jacobianmatrix of Eq. (4).
pðΔKÞ is known as prior probability distribution which will
be covered in greater detail later. pðβÞ is the normalizing
constant.
By maximizing the probability in Eq. (6), the most

likely quadrupole error distribution can be obtained. In
general, we can assume that both β measurement noise
and quadrupole excitation errors are normally distributed.
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For example, at a particular BPM, repetitive measurement
of β s is distributed around an expectation value EðβÞ ¼ β̄
with a variance σβ:

N ðβjβ̄; σ2βÞ ¼
1ffiffiffiffiffiffi
2π

p
σβ

exp

�
−
ðβ − β̄Þ2
2σ2β

�
: ð7Þ

Equation (6) thus can be rewritten as

pðΔKjβÞ ∝ N ðβjβ̄ðsi;ΔKÞ; σ2βÞ ·N ðΔKjK0; σ2KÞ; ð8Þ

where σK is the variance of quadrupole error distribution.
Maximizing the probability of Eq. (8) is equivalent to
minimizing its negative logarithm,

− ln ½pðΔKjβÞ� ∝ 1

2σ2β

X
i

½βðsi;ΔKÞ − β̄ðsiÞ�2

þ 1

2σ2K
kΔKk2: ð9Þ

Here k•k is the Euclidean norm of a vector. Equation (9)
can be recognized as the least-square algorithm but with
some well-defined weights. It is important to note that,
since we assume a normal distribution for quadrupole
errors, the solution to Eq. (9) is intended to allocate errors
according to a normal distribution, even if they are not. If
there is a systematic calibration error on the quadrupole
excitations, the second distribution in Eq. (8) has a nonzero
mean. But after the first several iterations, the nonzero
mean value should be filtered out. A more detailed
discussion on a single outlier of quadrupole error will be
addressed in Sec. IV.
Nowwe take a look at the first term on the right-hand side

of Eq. (9). By expanding β with respect to quadrupole errors
ΔK at β0 and keeping the linear components, it reads as

1

2σ2β

X
i

�
β0ðsiÞ þ

∂βðsiÞ
∂K ΔK − β̄ðsiÞ

�
2

¼ 1

2σ2β

X
i

�∂βðsiÞ
∂K ΔK − Δβ̄ðsiÞ

�
2

; ð10Þ

where Δβ̄ðsiÞ ¼ β̄0ðsiÞ − β0ðsiÞ. After differentiating every
term with respect to ΔK and expressing it in the format of a
matrix, we obtain the well-known Eq. (5). The solution to
Eq. (5) is given as

ΔK ¼ ½MTM�−1MTΔβ̄: ð11Þ

½MTM�−1MT is often known as the pseudoinverse of M,
because M is usually noninvertible.
Thus far, the measurement noise σβ has been ignored.

The solution to Eq. (11) often overfits quadrupole errors
from either noisy BPM data, or even bad BPMs if they are

present. The overfitting can be mitigated by taking the
second term into account, which is known as regularization
technique. By adding an additional penalty term to the sum
of squares in Eq. (9), one can prevent the fitted quadrupole
errors from deviating from a reasonable normal distribu-
tion. In other words, a complete linear optics model
provides not only a likelihood function but an informative
prior probability distribution of quadrupole errors as well.
The solution to the least-squares problem with regulariza-
tion is

ΔK ¼ ½MTM þ λI�−1MTΔβ̄: ð12Þ

It is important to note that the optimal regularization

coefficient λ ¼ σ2β
σ2K

is well defined here. More specifically,

the variance σkðΔβ̄Þ of the quadrupole error distribution
pðΔKÞ should be determined by the measured β-beat level
using the designed lattice model. Figure 1 illustrates that
the horizontal β-beat is linearly proportional to the variance
of quadrupole error distribution at the NSLS-II ring. After
averaging repetitive βx measurements and comparing
against the nominal βx;0, the variance of quadrupole error
probability distribution σkðΔβ̄Þ can be determined with
Fig. 1. During an iterative correction, β-beat reduces
gradually, as do the corresponding quadrupole errors.
Therefore the regularization coefficient should be dynami-
cally adjusted to speed up the convergence as well. The
pðΔKÞ is named as the prior probability because it can be
estimated analytically [1] or numerically in advance. In the
previous section, one can still use the regularization
technique to avoid overfitting, but the coefficient is not
necessarily optimal due to lack of a theoretical basis.
Experimentally one can obtain this regularization coeffi-
cient based on correction performance on a trial basis [7].

FIG. 1. Statistic illustration of the horizontal β-beat due to the
random quadrupole errors. This linear correlation with gradually
increasing variance are calculated with the NSLS-II ring lattice
model in advance. Once an averaged β-beat is measured, its
corresponding variance of quadrupole error distribution can be
used as the prior probability to prevent overfitting.
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However, the Bayesian approach can explicitly give its
statistic and physics interpretation.
Now consider the case of having multiple correction

objectives. With precisely aligned TbT data, the betatron
oscillation envelope function β and its phase ϕ can be
obtained simultaneously. The strategy for balancing the
correction among multiple objectives is straightforward in
the Bayesian approach. The probability of having an error
ΔK with given measured β and ϕ is a product of two
conditional probability distributions:

pðΔKjβ;ϕÞ ≈ pðβjΔKÞpðϕjΔKÞpðΔKÞ
pðβ;ϕÞ

∝ pðβjΔKÞpðϕjΔKÞpðΔKÞ: ð13Þ

Maximizing the probability yields

− ln ½pðΔKjβ;ϕÞ� ∝ 1

2σ2β

X
i

½βðsi;ΔKÞ − β̄ðsiÞ�2

þ 1

2σ2ϕ

X
i

½ϕðsi;ΔKÞ − ϕ̄ðsiÞ�2

þ 1

2σ2K
kΔKk2: ð14Þ

After minimizing and linearizing the first two sums of
squares in Eq. (14), two response matrices with different
weighted blocks can be vertically stacked as

M ¼
" Mβ

σ2β
σ2ϕ
Mϕ

#
; ð15Þ

where the weight for β-block has been normalized to 1. The

significance of the weight coefficient
σ2β
σ2ϕ

of ϕ-block is to

allow for correcting β and ϕ coherently. In other words, no
objectives are overemphasized by sacrificing others. The
objective, which can be measured more precisely (with a
smaller variance), plays a more important role in the
process of correction, automatically, as it should. The
overfitting of Eq. (15) can be mitigated with the same
regularization technique as Eq. (12), in which M needs to
be replaced by the stacked matrix M. The product of
two conditional probability distributions can be extended
to cover multiple distributions, for example, β, ϕ and
dispersion η on two separate planes.
Strictly speaking, in Eq. (13), the probability distribu-

tions, pðβ;ϕjΔKÞ can be expressed as the products of
pðβjΔKÞ and pðϕjΔKÞ only when they are completely
independent. In reality they are correlated by

ϕðs1 → s2Þ ¼
Z

s2

s1

1

βðsÞ ds: ð16Þ

Numerically we can use a lattice model to compute the
correlation distribution of Δβ and Δϕ for given quadrupole
error distributions. Both their mean and variance have a
linear dependence on quadrupole errors as shown in Fig. 2
for the NSLS-II ring. If measured data are within this range
they can be treated approximately as two independent
probability distributions. If not, the measurement data is not
reliable, and should be discarded.
Both β and ϕ-functions at different locations have

different sensitivities to the quadrupole errors [1]. With a
designed lattice model, one can compute another prior
probability to specify different weights for each term in
Eqs. (9) and (14) to further optimize the algorithm. This
process might be necessary for collider rings because the
variation of β is extremely large around interaction points,
i.e., the final focus sections.

IV. RESOLVING DEGENERACY

In the previous section, we discussed the case in which
the lattice distortion is due to normally distributed quadru-
pole errors. Once a real error is localized in a particular
quadrupole, it may require us to identify which quadrupole
is the root cause. This is nontrivial because quadrupoles are
closely packed in modern storage rings, the NSLS-II being
no exception. Therefore, their lattice response vectors
(corresponding columns in M) are often highly degener-
ated, especially between neighboring quadrupoles. The
degeneracy between the ith and jth quadrupole is defined
by the correlation coefficient [7]

Ci;j ¼
mi ·mj

kmikkmjk
; ð17Þ

where mi is the ith column of M, which has N elements. If
jCi;jj approaches 1, it is difficult to distinguish which one is

FIG. 2. The correlation of βx and ϕx distortion distribution for
the NSLS-II ring. This correlated distribution is calculated with
the lattice model and could be used as another prior probability to
eliminate incoherent measurement data. The farther away from
the line, the less reliable the measured data is. Once a data point is
not within the range of the error bars, it should be removed from
the data pool.
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the actual error source with a full Jacobian matrix. It was
found that rather than using all BPMs, and instead selecting
a few specific BPMs among them, the highly degenerated
quadrupoles were distinguishable.
Consider that there areN BPMs. The β-beats seen by these

BPMs are N-dimension vectors. Among them, nðn ≪ NÞ
components can be selected to form two much shorter
subvectors vi;j in such a way that vi;j have much less
correlation between them. This means they should be as
near orthogonal as possible in an n dimensional vector space.
There are N!=ðn!ðN − nÞ!Þ different permutations to select
from. We found that it is not difficult to distinguish 5–6
BPMs out of 180 BPMs in the NSLS-II ring even if the
correlation between some neighboring quadrupoles is above
0.98. Experimentally, we repetitively measure the lattice
functions. Then we compute the correlation coefficients
between vi;j and the measured lattice distortion patterns,
u, as seen only at those 5–6 specific BPMs. If the quadrupole
error was due to the ith quadrupole, the correlation coef-
ficients Cvi;u ¼ vi·u

kvikkuk should be distributed close to �1.

Another one, Cvj;u ¼
vj·u

kvjkkuk should be around zero, and

vice versa.
To verify this technique, an experiment and a simulation

study were carried out on the NSLS-II ring. The excitation
current of one quadrupole QL1G2C01A (with an index of
10) was changed by 1 Ampere. The bunch-by-bunch
feedback system [9] was then used to resonantly drive
the beam to perform betatron oscillation at a nearly constant
amplitude. Beam TbT data was acquired for 800 × 1024
turns. For every 1024 turns of data, a set of βx functions was
extracted at 180 BPMs. After averaging them, an error
distribution was fitted out with the Bayesian approach. It
was found that the maximum error is not QL1G2C01A as it
should be, but its neighbor QL2G2C01A (with an index 11)

(see Fig. 3). It is not surprising because the correlation
between the 10th and 11th columns of the JacobianM is as
high as 0.9896.
Among 180 BPMs, we specifically selected six of them

with their indices as f30; 31; 37; 62; 71; 78g. Observed at
these BPMs, the unit βx functions response to these two
quadrupoles is near orthogonal with a correlation coeffi-
cient as low as 0.0612 (see Fig. 4). 800 independently
measured βx-beat patterns at those specific six BPMs were
compared against these two unit response vectors v10;11.
The histograms of their correlation coefficients are illus-
trated in Fig. 5. It becomes clear that the βx distortion is
likely due to the quadrupole QL1G2C01A rather than its
neighbor QL2G2C01A, because the measured optics dis-
tortion pattern is highly correlated with its response vector.

FIG. 3. The 10th quadrupole QL1G2C01A excitation is
changed by 1 Ampere intentionally at the NSLS-II ring. By
observing βx distortion at all 180 BPMs, the error source is
incorrectly identified as its neighbor, the 11th quadrupole
QL2G2C01A. The reason for that is the correlation between
the two magnets, as seen by all 180 BPMs, is as high as 0.9896.

FIG. 4. The unit βx responses vectors of quadrupole 10 and 11
seen at six selected BPMs. They are near orthogonal in the 6D
vector space because their correlation calculated with Eq. (17) is
as low as 0.0612.

FIG. 5. The probability density distribution (PDD) of the
correlation coefficients between 800 measured βx distortion
and two unit vectors v10;11. The independently and repeatedly
measured β-beats are highly correlated with quadrupole 10’s
pattern, rather than its neighbor. Based on that we can conclude
that the actual error source is more likely from the quadrupole 10
(QL1G2C01A) instead of quadrupole 11 (QL2G2C01A).
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A simulation was also performed to reproduce the experi-
ment observation as illustrated in Fig. 6.

V. SUMMARY

The Bayesian approach explicitly emphasizes the coher-
ence in the existing methods for linear lattice correction. By
representing the lattice models as several likelihood func-
tions and some prior probability distributions, overfitting of
the optics corrections can be prevented. Prior probabilities
can be calculated based on the lattice model prior to lattice
correction. At the same time, the Bayesian approach gives
the weights for different fitting objectives based on their
measurement errors so that no objectives are overempha-
sized by sacrificing others. If a distorted β pattern comes
from a single error source that is highly degenerated with its
neighbors, it can be difficult to address. A new technique
for resolving degeneracy and identifying the real error
source has been demonstrated with both simulation and
experimental observation.
The Bayesian approach is general and can be incorpo-

rated into other lattice and orbit correction algorithms or
online optimizations [10], such as the linear optics from
closed orbits (LOCO) algorithm [11]. The distortions of
orbit response matrix (ORM) elements, due to each
individual quadrupole error, can be calculated in advance
and used to explicitly define the regularization coefficient
to control overfitting [7]. Using a few specific ORM
elements to compose orthogonal vectors should be able
to address quadrupole degeneracy as well. One advantage
of LOCO is that it unifies the β and ϕ as the directly
measurable parameters with their intrinsic correlation.
Therefore, the fitting needs to be driven by a complete

lattice model, and might be time consuming. In some
scenarios, the prolonged time the LOCO method would
require may be considered worth it; for example, when TbT
data is polluted by the beam decoherence due to a large
positive chromaticity and/or nonlinearity [12].
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