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We report on the application of machine learning (ML) methods for predicting the longitudinal phase
space (LPS) distribution of particle accelerators. Our approach consists of training a ML-based virtual
diagnostic to predict the LPS using only nondestructive linac and e-beam measurements as inputs. We
validate this approach with a simulation study for the FACET-II linac and with an experimental
demonstration conducted at LCLS. At LCLS, the e-beam LPS images are obtained with a transverse
deflecting cavity and used as training data for our MLmodel. In both the FACET-II and LCLS cases we find
good agreement between the predicted and simulated/measured LPS profiles, an important step towards
showing the feasibility of implementing such a virtual diagnostic on particle accelerators in the future.
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I. INTRODUCTION

Accurate nondestructive diagnostics of the electron beam
longitudinal phase space (LPS) distribution can be chal-
lenging for high-intensity particle accelerators. As an
example, the FACET-II accelerator is designed to deliver
beams of unprecedented intensity to a suite of advanced
accelerator experiments. The design parameters for the
beam are 2 nC charge, 10 GeVenergy,<10 μm normalized
transverse emittance and up to 200 kA peak current [1].
These unique characteristics present many opportunities for
scientific experiments [2], and a threefold hurdle from the
diagnostic point of view. First, the high intensity of the
beams limits the possibility of utilizing intercepting diag-
nostics due to heat-induced surface damage of the meas-
urement devices. Second, the very short pulse duration for
high-current shots (σz ∼ 1 μm for I > 100 kA) is close to
the resolution limit of state-of-the-art longitudinal diag-
nostics such as transverse deflecting cavities (TCAVs) [3].
Finally, a drawback of the aforementioned diagnostics is
that they provide a destructive measurement of the electron
beam properties and cannot be made in conjunction with
experiments unless they are located downstream of the
interaction region.
In an effort to meet these challenges, we investigate the

possibility of incorporating a machine learning (ML) based

virtual diagnostic to provide shot-to-shot nondestructive
measurements of the LPS distribution in particle acceler-
ators. The virtual diagnostic is a computational tool which
creates a mapping between nondestructive measurements
of the linac and e-beam properties and the 2D LPS
distribution of the beam. The rationale behind choosing
an ML-based approach for the virtual diagnostic is moti-
vated by a number of factors. First, ML methods have made
tremendous progress in the fields of image recognition
and prediction in the past few years [4]. This gives us
confidence that a virtual diagnostic trained on image data,
e.g., from TCAV or profile monitors, can be used to
reconstruct desired properties of the e-beam such as the
LPS and/or the current profile. Furthermore, ML tech-
niques are also well suited for solving problems involving
large amounts of data. Large data sets can be acquired in
real time on accelerators such as FACET-II or LCLS
operating at nominal repetition rates of 10 and
120 Hz. ML models can also be trained off-line using
simulation data from computationally expensive particle
tracking codes and updated with measurements on the
accelerator, as has been recently demonstrated in Ref. [5].
Finally, there is growing interest due to recent studies
which highlight the versatility of ML methods used in
particle accelerators as tools for prediction, control and
optimization of accelerator performance [6–10]. As an
example, recent work performed at Fermilab’s FAST
facility has been aimed at training a virtual diagnostic to
predict the e-beam emittance through a combination of
simulation and experimental studies [5,11].
With these potential benefits in mind, the first goal of this

work is to show the feasibility of applying ML techniques
to predict the LPS of the FACET-II accelerator. Our
approach is to acquire training data for the ML model
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from a large number of simulations. These simulations
represent the performance of the machine which changes as
a result of several key accelerator parameters jittering
around their design values. The accuracy of this ML model
based on simulation data, as well as its dependence on
diagnostic inputs, will inform the measurement resolution
necessary for this to be successful on the actual machine.
Our second goal is to test out a similar predictive MLmodel
on the Linac Coherent Light Source (LCLS). For that part
of the study we train a ML model using existing nonde-
structive diagnostics and images of the e-beam LPS
obtained with the X-band TCAV [3]. In the following
sections we present results from the simulation study of
FACET-II and measurements from the LCLS, with a
discussion of the steps necessary to implement this diag-
nostic tool on future particle accelerators.

II. FACET-II SIMULATION STUDY

A key performance feature for the success of advanced
acceleration experiments is knowledge and control of the
e-beam LPS and current profile [12]. We therefore train two
separate ML models to predict the current profile and LPS
of the bunch using some key nondestructive diagnostics as
input to the models (see Table I). We consider the nominal
operation of the FACET-II accelerator in single-bunch
mode, with the machine set up to deliver a beam of
10 GeV energy, 25 kA peak current, and <10 μm trans-
verse emittance (see Fig. 1 for a schematic). In order to

capture the performance of the machine we perform 55

LUCRETIA [13] simulations starting from the exit of the
injector, with key linac parameters and the bunch charge
jittering around their nominal values. The simulations
include longitudinal space charge and incoherent and
coherent synchrotron radiation. The mean value and the
range for each simulation parameter scanned was set
using the values from the FACET-II technical design
report (TDR) [1]. The output of these simulations is a
6 × 6 × Np distribution of Np ¼ 2 × 105 macroparticles

TABLE I. Linac and e-beam parameters scanned in the 55

simulations of the FACET-II accelerator. The ranges are chosen
closely based on the jitter parameters from the FACET-II
technical design report (TDR) [1]. The diagnostics fed to the
ML model include random errors introduced artificially to
approximate the measurement accuracy present in the accelerator.

Simulation parameter scanned Range

L1 & L2 phase [deg] �0.25
L1 & L2 voltage [%] �0.1
Bunch charge [%] �1

Input to ML model Accuracy
L1 & L2 phase [deg] �0.1
L1 & L2 voltage [%] �0.05
Ipk at BC (11,14,20) [kA] �ð0.25; 1; 5Þ
ϵn at BC (11,14) [μm] �1
Beam centroid BC (11,14) [m]

FIG. 1. Schematic of the FACET-II and LCLS electron accelerators and example LPS profiles from particle tracking simulations
(FACET-II), experimental measurements (LCLS) and from the ML-based virtual diagnostic predictions. The figure highlights the
similarities between the two accelerator layouts up to the BC20 chicane in FACET-II which is used to increase the current from 3–4 kA
to 10–200 kA.
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which approximates the six-dimensional phase space of
the e-beam. We artificially simulate measurement error by
inserting random deviations in the diagnostic readings to
approximate the measurement accuracy on the real accel-
erator. The value for each shot was set by adding Gaussian
random errors to the mean with the �σ ranges shown in
Table I. These values are determined from operational
experience on the FACET linac and estimated performance
of diagnostics for FACET-II [1]. Note that we assume the
nondestructive emittance measurements will be made using
a coherent edge radiation diagnostic currently under design.
The prediction accuracy of the ML model is not critically
sensitive to these inputs. We also assume the peak current
after BC-20 can be measured nondestructively either using
coherent edge radiation or coherent undulator radiation
[14,15]. For all the examples presented we use the open
source ML library scikit-learn, specifically the multilayer
perceptron (MLP) regressor from the library’s neural net-
work (NN) module. Note that in the plots of the current
profile or 2D LPS we use the convention that the head of
the beam is on the left.
The results for the current profile prediction are shown in

Fig. 2, where the shots displayed are not used in the training
of the NN and are 625 randomly selected cases (20% of the
total data set). The specific NN architecture for the current
profile prediction is a three hidden layer (200,100,50)-
neuron fully connected feed-forward NN with a relu as the
activation function for each neuron in the hidden layers.
There is very good agreement between the NN prediction
and the current profile from simulation as shown by the
example profiles in Fig. 2(a). A comparison of the peak
current and FWHM of the actual distribution vs the
prediction also shows good overlap between the two
[Figs. 2(b) and 2(c)]. The difference in charge between
the predicted and actual profiles, integrated from the

current profile, is below 3% in all cases. As shown in
Figs. 2(d) and 2(e), the distributions of predicted and
simulated peak current and FWHM values are also very
well matched.
We use the same MLP regressor and the same diagnostic

inputs as for the current profile to predict the 2D LPS
distribution. The ability to combine the prediction from
both models—one for the current profile and one for the 2D
LPS—will provide valuable information for commission-
ing the accelerator as well as tailoring specific beam
properties for different experiments. It is important to note
that the LPS reconstruction accuracy depends critically on
defining a suitable region of interest for each image which
has to be done in a preprocessing step. For the cases shown
we crop each 2D LPS picture to a 52 × 42 pixel image with
a 2 μm and 10 MeV=pixel resolution in (z,E) respectively.
The resolution values are obtained from estimates of the
FACET-II TCAV performance [1]. A quantitative measure
of the accuracy of the prediction for each shot is given by
the score, defined as

score≡ R2 ¼ 1 −
Σi;jðxtrueij − xpredictedij Þ2
Σi;jðxtrueij − x̄trueÞ2 ; ð1Þ

where xij are the pixel values of the ith row and jth column
in the image and x̄ denotes the mean over those values for
each image. In most cases, as shown in Fig. 3, the 2D LPS
reconstruction is quite accurate and provides a good
indication of the LPS shape and chirp. In the worst-
performing examples, the reconstruction is subject to some
numerical artifacts and blurring, which smear out the phase
space density. The mean (�rms) score for the whole test set
is 0.68� 0.16. The majority of the shots (85%) have a good
reconstruction with a score above 0.5. It is interesting to
note that shots with worse reconstruction [see Fig. 3(a)] are

FIG. 2. (a) Examples of reconstructed current profiles from a ML model compared to the true data from simulation at the exit of the
FACET-II accelerator. The profiles are taken from a set of 625 test cases which the NN is not trained on. (b)–(e) Sorted plots of the peak
current and full width half maximum and histograms of the distributions for the ML prediction and the simulation, showing good
agreement between the ML model and simulation data.
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mostly fully compressed or overcompressed (low energy
electrons arrive at the same time as high energy electrons on
the head of the beam). This is due to the fact that there are
fewer shots with these characteristics in the data set since
this configuration is the furthest from the nominal output
LPS distribution [shown in Figs. 3(b) and 3(c)]. These
shots occur due to larger excursions in L1 and L2 phase
(jΔΦL1;2

j ¼ 0.2–0.25 deg).
We have considered a limited set of diagnostic inputs in

our simulation study of FACET-II as a conservative
approach for determining the feasibility of applying the
ML-based virtual diagnostic on the real machine whilst
retaining satisfactory prediction accuracy. For the diagnos-
tics considered, the ML model is least sensitive to the
emittance and centroid measurements in BC 11–14,
achieving a mean score of 0.53 for the LPS reconstruction
with those diagnostics removed. A more critical input is the
nondestructive peak current measurement after BC20,
without which the model’s mean prediction score drops
to 0.33. We note that a reduction in the measurement error
associated with the BC20 current reading (from �5 to
�1 kA) increases the mean score to 0.73. Additional more
advanced diagnostics such as current profile monitors after
each bunch compressor may also increase the prediction
accuracy of the model and are improvements which will be
considered in future optimization studies.

III. LCLS EXPERIMENTAL DEMONSTRATION

In order to validate our simulation study of FACET-II,
we apply the same NN approach to predict the LPS at

the exit of the LCLS linac. The linac was set at a nominal
operating energy of 13.4 GeV and 180 pC charge.
To collect a data set with a large variety of LPS profiles
we scan the values of the L1S phase between−27.8 and−21
degrees and the BC2 peak current between 1–7 kA gen-
erating LPS profiles with multiple different features (see
Figs. 1 and 4). The diagnostics we use as inputs to the ML
model are amplitude and phase readings from L1s and
amplitude readings from the L1x accelerator sections aswell
as nondestructive current measurements (coherent radiation
monitors [14]) after BC1 andBC2. TheXTCAVwas used to
measure the LPS at the exit of the accelerator with a
resolution of ∼1.2 μm and 0.92 MeV=pixel [3]. As for
the FACET-II case, the prediction accuracy is critically
sensitive to preprocessing the LPS image, specifically
normalization, centering and cropping of the distribution,
with the cases presented cropped to 100 × 100 pixels. This
kind of preprocessing has to be done on-the-fly if such a
virtual diagnostic is to be applied to an accelerator during
run-times and should be adapted depending on the expected
output LPS distribution.
As shown in Figs. 4(a)–4(c), the reconstruction has high

fidelity with respect to the current profile and LPS shape.
These examples are not used in the training of the ML
model and are taken from a test set of 808 shots (20% of the
size of total data set). As in the case for the FACET-II
simulations, the LPS reconstruction suffers from some
numerical artifacts which for some shots smears out the
phase space [see Fig. 4(c)]. Nonetheless, for a limited set of
input diagnostics (five scalar inputs) and a data set with
large variations in the LPS and current profile, the NN is
fairly successful in predicting the bunch profile. Note that
the current profiles shown are normalized using an inde-
pendent measurement of the beam charge. As shown in the
distribution of peak current vs FWHM [Fig. 4(d)] the
measured values and those predicted by the ML model
mostly overlap. The model fails to predict some current
profiles, mostly with high peak current (I > 4 kA), which
are furthest away from the nominal LCLS settings at this
energy (I ∼ 1–4 kA). The low prediction accuracy for these
shots [labeled “bad shots” in Fig. 4(e)] is correlated to the
large discrepancy between the BC2 peak current reading
and the peak current measured on the XTCAV. The result is
the ML model predicts a profile with lower peak current in-
line with the BC2 measurement. This is an important point
as it underscores the fact that a diagnostic input error may
result in a prediction error for a ML-based virtual diag-
nostic. One potential way to address this issue would be to
have built-in redundancy in the diagnostic inputs fed to the
ML model. This would facilitate flagging suspect shots for
which there is significant discrepancy between two separate
measurements of the same quantity.
To ensure the reliability of the ML prediction a long-term

study of the prediction accuracy under the influence of
linac drifts and long-term parameter variations is under

FIG. 3. (a)–(c) Simulated and predicted 2D LPS distributions
for FACET-II. The predictions are outputs of a NN with 11 scalar
valued nondestructive diagnostic inputs (see Table I). Case
(a) represents an imperfect prediction with noticeable blurring
and some visual artifacts. Cases (b) and (c) represent average to
good predictions and show good agreement with the LPS
distribution. (d) Histogram of the prediction accuracy in the test
set quantified by the score (R2 coefficient of the LPS prediction).
The mean score is 0.68, and 85% of the shots are above
a score of 0.5.
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consideration. Preliminary considerations can be made by
examining changes in the prediction accuracy by training
the ML models using data from the start of our data set
and making predictions on shots taken at the end of the data
set (two hours later). For this case, there is no reduction
in performance for the prediction of the current profile.
The 2D LPS reconstruction however does suffer from a
small but noticeable decrease in prediction accuracy as
shown in Fig. 4(f). The mean (�rms) score for the 2D LPS
reconstruction drops from 0.85� 0.14 to 0.68� 0.14
which may in part be due to the smaller size of the training
set (410 shots compared to 3236). A detailed study of the
robustness and reliability of the ML model for longer drift
times (one day, one week etc.) and with larger data sets will
be conducted and the results reported in future work.
Following such long-term prediction accuracy studies,
the ML model could be deployed as a virtual diagnostic
for predicting the LPS at LCLS when the XTCAV is off.

IV. CONCLUSION

Accurate measurement and control of the LPS distribu-
tion is often critically important for applications of high
brightness electron beams, ranging from free electron lasers
to beam-driven plasma wakefield accelerators. We have
explored the feasibility of training a ML-based virtual
diagnostic for predicting the LPS distribution of particle
accelerators. The study was divided into two parts: a
first section using particle tracking simulations of the
FACET-II linac as training data for the ML model, and a
second using experimental data from the LCLS accelerator.

The simulation study explored the single bunch operation
mode of FACET-II for which we trained two separate
neural networks to predict the current profile and the 2D
LPS image based on the input from a number of non-
intercepting diagnostics (e.g., beam position monitors,
bunch length monitors, emittance measurements). The
experimental study performed on the LCLS linac used
five measurements from nondestructive diagnostics as
well as the XTCAV to measure the electron beam LPS
and train the ML models. The results showed close agree-
ment between the predicted current and 2D LPS profiles and
those obtained from both simulation and experiment.
It is important to note that the accuracy of a predictive

virtual diagnostic based on this kind of supervised learning,
in which the neural network generates a mapping between
input-output pairs of data, depends critically on the accuracy
and resolution of diagnostic inputs. In the experimental
study for LCLS, the temporal resolution of the TCAV was
∼1.2 μm,much smaller than the typical bunch length which
ranged from 6–60 μm. In our FACET-II simulation exam-
ple, the training data fed to the ML model assumes a 2 μm
resolution for the LPS images which may present a chal-
lenge for the current FACET-II TCAV design. The ability
to resolve fine features in the LPS will be challenging,
especially in the longitudinal direction due to the very short
bunches (σz ∼ 1 μm) which are at or beyond the resolution
limit of the existing TCAV diagnostic. While the temporal
reconstruction may be subject to experimental challenges,
the simulation study gives us confidence in the ability
of the virtual diagnostic to accurately resolve and predict
the energy distribution with ∼10 MeV=pix resolution.

FIG. 4. (a)–(c) Examples of reconstructed LPS and current profiles from the LCLS accelerator. The measured data is collected using
the XTCAVand the prediction is made using two separate NNs for the LPS and the current profile. The plots show good agreement in
predicting both the LPS and the current profile. For some shots the LPS reconstruction suffers from numerical artifacts [see (c)] which
lead to an imperfect reconstruction. (d) Measured and predicted values for the peak and FWHM of the current profile. (e) Correlation
between peak current from the XTCAV and the BC2 current monitor highlighting a number of bad shots (2% of the total) where the
difference between the two values is large and the prediction accuracy is low. (f) Score for the 2D LPS prediction model trained on 3236
shots and tested on 808 shots randomly selected from the entire data set (grey). Score for the 2D LPS prediction with model trained on
410 shots from the start of the data set and tested on 200 shots recorded at the end of the data set two hours later (yellow).
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We expect that we will be able to obtain this resolution or
better experimentally using the energy spectrometer down-
stream of the FACET-II experimental area [1]. We also note
that these methods can be used to predict transverse phase
space properties of e-beams, such as the emittance, using
single shot emittance reconstruction techniques [16,17].
As a next step we plan to include the realistic effect of

TCAV measurements in the LUCRETIA tracking code for
both single and two-bunch operation, and use the simulated
LPS profile on the TCAV rather than the actual LPS
distribution to train the ML model. This, together with a
more accurate simulation of the diagnostic inputs, will
more closely approximate the actual implementation of the
virtual diagnostic in the real accelerator. Sensitivity studies
related to the accuracy of the neural network prediction
based on varying degrees of error for the nondestructive
inputs and LPS outputs are currently under consideration.
Finally, we plan to use this virtual diagnostic in tandem
with optimization methods such at extremum seeking (ES)
[18,19], to not only predict the phase space distribution, but
to tailor it specifically for different experimental setups.
Recent results from LCLS [9] have shown that applying a
neural network inverse model to predict machine settings
based on LPS images as inputs can improve the conver-
gence and accuracy of an ES-based feedback for custom-
ization of the 2D LPS distribution.
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