
 

Toward low energy spread in plasma accelerators in quasilinear regime
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In this paper, we address the energy spread and slice energy spread of an externally injected electron
beam in plasma wakefield accelerators operating in the linear or quasilinear regime. The energy spread is
first derived taking into account the phase dependence of the wakefield along the finite-length bunch
together with the dephasing during acceleration and found to be strongly dependent on the bunch length.
This could be compensated by the beam loading effect, the energy spread from which is then derived and
found to be nearly independent of the bunch length. However, the transverse dependence of the beam
loading effect also makes the particles at the same longitudinal position experience different accelerating
fields, introducing a significant slice energy spread. To estimate the slice energy spread, a theoretical
analysis was conducted by taking the transverse betatron motion into account. As a study case, 3D
simulations for the 5 GeV laser-plasma acceleration stage of the European Plasma Research Accelerator
with eXcellence in Applications project have been performed. Careful optimization of the parameters
allows one to obtain an energy spread of ≤1% and a slice energy spread of ≤0.1%, with good agreement
between theories and simulations.
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I. INTRODUCTION

Plasma-based accelerators [1–4] have been considered as
promising candidates to drive compact x-ray light sources
[5] or future lepton colliders [6] thanks to their ability to
provide extremely high accelerating fields. The principle of
such accelerators is to use a nonflat laser pulse or an
electron beam to push the plasma electrons to the sides of
its pathway by the ponderomotive force or the space charge
force. As a result, a kind of cavity is formed in its wake,
characterized by an area of electron deficiency surrounded
by a border of electron excess. The resulting Coulomb force
layout will make an electron bunch properly injected into
the cavity on the axis experience a longitudinal accelerating
field Ez toward the front of the cavity and at the same time a
transverse focusing field Er toward the center of the cavity.
As the cavity is tiny, in the sub-mm range, the induced
wakefields can be huge. Typically, an intense laser pulse or
particle beam propagating in an ionized plasma could
induce a plasma wave with electric fields in excess of
the cold nonrelativistic wave breaking field, E0 ¼ mecωp=e

or E0ðV=mÞ ≃ 96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npðcm−3Þ

q
, where me and e are the

electron rest mass and charge, respectively, c the speed of

light in vacuum, np the plasma density, ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npe2=ϵ0me

q
the plasma wave frequency, and ϵ0 the electric constant. The
wakefield could be up to 103 times stronger than the field
available in conventional rf accelerators, but its longitudinal
and transverse profiles are governed by the complex physical
mechanisms which are difficult to handle [7], resulting in
accelerated beams with a significant final energy spread
(σE=E) and/or slice energy spread (σEs

=E), andmaking them
not appropriate formost applications. Here σE and σEs

are the
rms energy spreads for the total beam and for a beam slice,
respectively, and E is the average beam energy either for the
total beam or for the slice.
The EuPRAXIA project [8] for example aims at providing

beams at the final energy of 5 GeV, with σE=E ≤ 1% and
σEs

=E ≤ 0.1%, capable of driving an x-ray free electron
laser. Reaching such a low energy spread requires careful
optimization of the driver (laser or particle beam), the plasma
and the input beam parameters, which implies many simu-
lations, each being very time consuming. In order to limit the
number of numerical simulations, we propose to investigate
the linear theory describing the plasma wakefield in order
to identify the parameters affecting the energy spread and to
estimate their effects.
In the following sections, we start with the linear theory

to derive, for a bi-Gaussian beam, the energy spread
induced by the wakefield due to the fact that electrons at
different longitudinal positions see different accelerating
phases, which furthermore can progressively change along
the acceleration process. Then we derive the effect of beam
loading induced by the accelerated beam itself which can
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compensate the former [9–11]. However, the latter has also
a strong radial dependence, which means particles within
the same longitudinal slice experience nevertheless differ-
ent accelerating fields. The slice energy spread so induced
is derived, taking into account the betatron motion. Finally,
we search to optimize the acceleration parameters accord-
ingly in order to minimize σE=E and σEs

=E through
simulations of the EuPRAXIA electron beam (30 pC)
externally injected by a plasma or rf injector.

II. LINEAR THEORY

In order to provide high energy gains in the GeV range,
a strong enough wakefield is needed, making the choice
of at least a quasilinear regime favored for the plasma wave.
In such a regime, the plasma wakefield will no more be
sinusoidal, as it steepens and its period lengthens [3].
However, we will still investigate the linear regime which
is enough for identifying the parameters influencing the
energy spread and for estimating their effects.

A. Energy spread induced by plasma wakefield

In the linear regime, the wakefield presents a sinusoidal
form, i.e., EzðzÞ ¼ Ez0 cos½kpðz − vphtÞ þ ϕ0� ¼ Ez0 cosϕ,
where Ez0 and vph ¼ βphc are the amplitude and phase
velocityof thewakefield, respectively,kp ¼ ωp=c theplasma
wave number, z ≈ ct the position of the reference particle in
the relativistic electron bunch in the laboratory frame, ϕ ¼
kpðz − vphtÞ þ ϕ0 the relativephaseof theparticle to thecrest
of the wakefield, and ϕ0 the initial phase after injection.
The phase of an arbitrary particle in the electron bunch

can be written into ϕi ¼ ϕr þ Δϕi, where ϕr and Δϕi are
the phase of the reference particle and the relative phase of
the ith particle to the reference one, respectively. Using
Taylor series, we have to the second order

cosϕi ¼ cosϕr − Δϕi sinϕr −
Δϕ2

i

2
cosϕr; ð1Þ

when Δϕi ≪ 1.
For an electron bunch driver, vph ¼ c and the accelerat-

ing field seen by the reference particle is the same during
the acceleration, EzðzÞ ¼ Ez0 cosϕ0. The energy gain of
the reference particle and the gain difference from an
arbitrary particle are

Wref ¼ Wm cosϕ0; ð2Þ

ΔWi ¼Wi−Wref ¼Wm

�
−Δϕi sinϕ0−

Δϕ2
i

2
cosϕ0

�
; ð3Þ

respectively, where Wm ¼ eEz0Lacc is the energy gain
if ϕ0 ¼ 0 and Lacc is the total accelerating length. For a
beam with a Gaussian longitudinal profile, i.e., ρjjðΔϕÞ ¼

1ffiffiffiffi
2π

p
σϕ
expð−Δϕ2=2σ2ϕÞ and σϕ ¼ kpσz with σz the bunch

length, the rms energy spread is obtained by

σ2E ¼
Z

∞

−∞
ðΔWiÞ2ρjjdðΔϕiÞ −

�Z
∞

−∞
ΔWiρjjdðΔϕiÞ

�
2

¼ W2
m

�
sin2ϕ0σ

2
ϕ þ

1

2
cos2ϕ0σ

4
ϕ

�
: ð4Þ

When the acceleration is near the wave crest (ϕ0 ∼ 0,
sinϕ0 ∼ 1 and cosϕ0 ∼ 1), we have the relative energy
spread:

σE=E ¼
ffiffiffi
2

p

2
k2pσ2z : ð5Þ

When the acceleration is off crest, we have

σE=E ¼ tanϕ0 · kpσz

�
1þ 1

4
cot2ϕ0k2pσ2z

�
: ð6Þ

Both equations show the dependence of the energy spread
on the bunch length.
For a laser pulse driver, vph < c, the wakefields seen by

the particles are continuously shifting, which is known as
the dephasing effect. The energy gain of the reference
particle and the gain difference from an arbitrary particle
are obtained by integrating

Wref ¼
Z

z1

z0

eEzðzÞdz ¼ Wmðsinϕ1 − sinϕ0Þ; ð7Þ

ΔWi ¼ Wi −Wref ¼ Wm½Δϕiðcosϕ1 − cosϕ0Þ

−
Δϕ2

i

2
ðsinϕ1 − sinϕ0Þ� ð8Þ

where ϕ1 is the exit phase of the reference particle, Wm ¼
eEz;0

kpð1−βphÞ ¼ 2eEz;0Ldp=π is the maximum energy gain, and

Ldp is the dephasing length. Equation (8) is obtained by
using the Taylor series again. The rms energy spread thus is

σ2E ¼ W2
m

�
ðcosϕ1 − cosϕ0Þ2σ2ϕ þ

1

2
ðsinϕ1 − sinϕ0Þ2σ4ϕ

�
:

ð9Þ

To the first order, the relative energy spread is

σE=E ≃
jcosϕ1 − cosϕ0j
sinϕ1 − sinϕ0

kpσz; ð10Þ

which also shows a dependence of the energy spread on the
bunch length.
The quantity ðcosϕ0 − cosϕ1Þ=ðsinϕ1 − sinϕ1Þ is plot-

ted as a function of the exit phase ϕ1 for ϕ0 ¼ 0 in Fig. 1,
showing that the energy spread is increasing along the
acceleration. Taking np ¼ 1 × 10−17 cm−3 as an example,
if the beam is accelerated from ϕ0 ¼ 0 to ϕ1 ¼ 90 degrees,
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the phase dependent contribution to the energy spread is
unity and a final energy spread less than 1% means a very
stringent bunch length: kpσz < 0.01 or σz < 0.167 μm.

B. Energy spread induced by beam loading effect

The accelerated beam itself excites a comoving plasma
wave when it goes through the plasma. The process that
the wave produced by the accelerated beam modifies the
wakefield in the plasma is referred to as beam loading. And
its effect can no more be ignored when the bunch charge is
high enough. In this paper, we use “plasma wakefield” to
describe the wakefield induced by the driver and “beam
loading effect” to describe that induced by the witness
beam. In the linear or quasilinear regime, the beam loading
effect can be calculated using perturbation theory [9]. For
an arbitrary relativistic electron density of the form
nbðξ; rÞ ¼ njjðξÞn⊥ðrÞ, the longitudinal component of the
wakefield can be written into

Ez;bðξ; rÞ ¼
e
ϵ0

Z
ξ

−∞
njjðξ0Þ cos½kpðξ − ξ0Þ�dξ0 · RðrÞ; ð11Þ

with

RðrÞ ¼ k2p

Z
∞

0

r0dr0n⊥ðr0ÞK0ðkpjr⃗ − r⃗0jÞ; ð12Þ

where “b” denotes beam related parameters, K0 the zeroth-
order modified Bessel function, and ξ and r the longitudinal
and radial coordinates in the comoving frame, respectively.
Let us study a bi-Gaussian bunch profile, that is, nbðξ; rÞ ¼
nb expð−ξ2=2σ2zÞ expð−r2=2σ2rÞ, with nb ¼ Qb=½eð2πÞ1.5
σzσ

2
r], Qb the bunch charge, σr and σz the rms beam size

and bunch length, respectively. For this profile, the on-axis
longitudinal field at the bunch center (ξ ¼ 0, r ¼ 0) is

Ez;bð0Þ ¼
e
ϵ0

Z
0

−∞
njjðξ0Þ cos½kpðξ − ξ0Þ�dξ0 · Rð0Þ

¼
ffiffiffi
π

2

r
enb
ϵ0

σz exp

�
−
k2pσ2z
2

�
Rð0Þ; ð13Þ

and the expression for Rð0Þ is [12]

Rð0Þ ¼
�
k2pσ2r
2

�
exp

�
−
k2pσ2r
2

�
Γ
�
0;
k2pσ2r
2

�
ð14Þ

where Γ is the incomplete gamma function. In the limit of
kpσr ≪ 1, Rð0Þ can be expanded asymptotically as

Rð0Þ ¼ k2pσ2r ½0.058 − lnðkpσrÞ�: ð15Þ

Insertion of nb and Rð0Þ into Eq. (13) leads to

Ez;bð0Þ ¼
Qb

4πϵ0
k2pe−

k2pσ
2
z

2 ½0.058 − lnðkpσrÞ�

∝ Qbnp½0.058 − lnðkpσrÞ�: ð16Þ

The on-axis longitudinal field, to the first order of Taylor
series, is

Ez;bðξÞ ≃ Ez;bð0Þ þ E0
z;bð0Þξ; ð17Þ

where E0
z;bð0Þ is the derivative of Ez;b with respect to ξ at

ξ ¼ 0 and r ¼ 0 and can be obtained by applying the
Leibniz’s rule to Eq. (11),

E0
z;bð0Þ ¼

enb
ϵ0

�
1þ

ffiffiffi
π

2

r
ðikpσzÞerf

�
ikpσzffiffiffi

2
p

�
e−

k2pσ
2
z

2

�
Rð0Þ

≃
enb
ϵ0

�
1 − k2pσ2ze−

k2pσ
2
z

2

�
Rð0Þ ð18Þ

where erfðxÞ ¼ 2=
ffiffiffi
π

p ðx − x3=3þ � � �Þ is used to replace
the error function term, also in the limit of kpσz ≪ 1.
Figure 2 shows the on-axis longitudinal fields calculated

by integrating Eq. (11) and by the approximated solution
Eq. (17), indicating good agreement for −σz < ξ < σz
where most of the particles reside.
Using this approximation, we obtain the rms energy

spread induced on the beam per unit length:

σE
L

≃ eE0
z;bð0Þσz ¼

eQbk2p
ð2πÞ32ϵ0

ð1 − k2pσ2zÞ½0.058 − lnðkpσrÞ�:

ð19Þ

While the energy spread induced by the plasma wake-
field is directly dependent on the bunch length, the energy
spread induced by the beam loading effect is not, in the
limit of kpσz ≪ 1. The latter is more sensitive to the beam
size as the lnðkpσrÞ term implies. Therefore, for either a

FIG. 1. The quantity ðcosϕ0 − cosϕ1Þ=ðsinϕ1 − sinϕ1Þ as a
function of the exit phase, showing how the relative energy
spread evolves along with the acceleration.
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particle beam driver or a laser pulse driver, we can choose a
proper bunch length such that the two effects cancel out as
much as possible.

C. Slice energy spread induced by transverse
dependence of the fields

In deriving the analytical expressions for the energy
spread, only the on-axis longitudinal fields are considered.
However, both the plasma wakefield and beam loading
effect have a transverse dependence, which means particles
within the same longitudinal slice, i.e., same ξ, will see
different accelerating fields depending on their radial
positions. The accelerating field experienced by one
particle is the addition of the wakefields, that is

Eaccðξ; r; zÞ ¼ Ezðr; zþ ξÞ þ Ez;bðξ; r; zÞ: ð20Þ
Note here Ez;b is written as a function of z in case that the
plasma density seen by the beam evolves gradually due
to dephasing. The first term on the right-hand side of
Eq. (20) representing the plasma wakefield has the form of
Ez ∼ expð−2r2=r20Þ, where r0 is the driver’s size. It is r
independent near the axis when the beam size is much
smaller than the driver’s size, i.e., σr ≪ r0 [3], which is
often the case. The second term on the right-hand side
representing the beam loading effect can be written into

Ez;bðξ; r; zÞ ¼ Ez;bðξ; zÞR̂ðrÞ; ð21Þ
so as to point out its significant transverse dependence,
where R̂ðrÞ ¼ RðrÞ=Rð0Þ. The distributions of R̂ðrÞ
numerically solved from Eq. (12) are shown in Fig. 3

for various beam sizes with the plasma density np ¼
1.0 × 1017 cm−3. As Ez;b is positive inside the electron
beam, Fig. 3 implies that the off-axis electrons are less
decelerated than those on the axis.
Because of the betatron motion induced by the wakefield

focusing gradient, the transverse coordinate of one particle
is changing fast with time, as well as the decelerating
field it experiences. To derive the slice energy spread, the
betatron motion must be taken into account. Note that only
the wake field gradient should be considered because that
of the beam loading is negligible for a relatively low bunch
charge, as demonstrated in [13] (when the bunch charge
goes very high, the beam loading effect would dominate
and cancel the accelerating field, making the bubble regime
more adequate [10], which can load much higher bunch
charge). For the single particle differential equation
x00 þ Kx ¼ 0, its solution reads [14]

x ¼ x0 cosφx þ
x00ffiffiffiffi
K

p sinφx; ð22Þ

where K is the focusing strength, φx ¼
ffiffiffiffi
K

p
z is the phase

advance. When the beam is matched, we have αm ¼ 0 and
βm ¼ 1=

ffiffiffiffi
K

p
, where αm and βm stand for the matched Twiss

parameters. If there is no acceleration, the particle has a
harmonic motion and its trajectory in the normalized trace
space (x=

ffiffiffi
β

p
,

ffiffiffi
β

p
x0) would be a closed circle, as shown in

Fig. 4. But with acceleration, the oscillation amplitude is
gradually decreasing and the trajectory becomes a spiral
toward the origin. To estimate the effect of acceleration on
the betatron motion, consider the dependence of β on the
beam size σx, the normalized beam emittance εn;x and the
energy relativistic factor γr: β ¼ σ2x=ðεn;x=γbÞ, which leads
to K ¼ ðεn;x=γrσ2xÞ2 when matched. The oscillation period
is related to K by cT ¼ 2π=

ffiffiffiffi
K

p
, and the relative energy

gain during the time T is

FIG. 2. On-axis longitudinal fields along the bunch (dotted black
line) given by Eq. (11) (solid red line) and the approximation (17)
(dashed blue line), respectively, with np ¼ 1 × 1017 cm−3,
σr ¼ σz ¼ 1 μm, and Qb ¼ 30 pC.

FIG. 3. Transverse dependence of the beam loading effect, with
np ¼ 1 × 1017 cm−3.
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ΔE
E

¼ eEacc · cT
γrmec2

¼ eEacc

mec2
2πσ2x
εn;x

: ð23Þ

Taking typical beam parameters, σx ∼ 0.5 μm, εn;x ∼
1 mm mrad, and Eacc ∼ 10 GV=m, we get ΔE=E ≈ 0.03.
The small change in beam energy implies that even with
acceleration, the particle’s trajectory during the time T is
still close to a circle thanks to the very fast oscillation.
Since the focusing field in the plasma wave is cylin-

drically symmetric, the motion in ðy; y0Þ trace space is
similar,

y ¼ y0 cosφy þ
y00ffiffiffiffi
K

p sinφy: ð24Þ

Together, the radial coordinate of the particle can be
written into

r2 ¼ A2
xcos2φ0 þ A2

ycos2ðφ0 þ ΔφÞ; ð25Þ

where Ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ x020 =K

p
and Ay ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y20 þ y020 =K

p
are the

oscillation amplitudes in x and y planes, respectively, φ0 the
initial phase in ðx; x0Þ trace space, andΔφ the relative phase
between ðx; x0Þ and ðy; y0Þ trace spaces.
Within a slice, all the particles experience the same

focusing strength and therefore have the same betatron
period. To obtain the slice energy spread, it is necessary to
average their energy gains within one or multiple turns of
oscillation. To illustrate this, consider the motion of
particles in Fig. 4. The energy gains of P1 and P3 will
be the same after one turn because of their same trajecto-
ries. The energy gains of P1 and P2 will be very different
after one turn because of their different trajectories,
although they have the same transverse coordinates at
the beginning of oscillations.
For a slice located at ξ, the difference in accelerating field

between a particle oscillating around the axis and a particle
fixed on the axis is eEz;bðξ; zÞ½1 − R̂ðrÞ�. And the difference
in energy gain during the period T or the distance L ¼ cT is

ΔWs ¼ eEz;bðξ; zÞL · h1 − R̂ðAx; Ay;φ0;ΔφÞi: ð26Þ

To solve the rms energy spread, the distributions of Ax, Ay,
φ0, and Δφ should be known first. As demonstrated in
Eq. (A6), fðAxÞ [or fðAyÞ] follows exactly the same
distribution as n⊥. Here we use f to denote the probability
distribution function (PDF). Since the particles are ran-
domly distributed in the trace space, we have fðφ0Þ ¼
fðΔφÞ ¼ 1=2π. With these, the R̂ related contribution to
the rms is obtained by

h½1 − R̂�2i ¼
Z

π

−π

Z
π

−π

Z
∞

0

Z
∞

0

½1 − R̂�2fðAxÞfðAyÞfðΔφÞ

× fðφ0ÞdAxdAydðΔφÞdφ0;

h1 − R̂i ¼
Z

π

−π

Z
π

−π

Z
∞

0

Z
∞

0

½1 − R̂�fðAxÞfðAyÞfðΔφÞ

× fðφ0ÞdAxdAydðΔφÞdφ0;

σ1−R̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½1 − R̂�2i − h1 − R̂i2

q
: ð27Þ

And the rms slice energy spread is given by

σEs
¼ eEz;bðξ; zÞL · σ1−R̂: ð28Þ

The multiple integrals in Eq. (27) can be solved efficiently
using the Monte Carlo method, knowing the distributions
of Ax, Ay, φ0, and Δφ. The numerical results are shown in
Fig. 5, with σ1−R̂ also being solved in 2D trace space. It can
be found that the smaller the normalized beam size, the less
the transverse dependence will contribute to the slice
energy spread. As the beam is accelerated, the beam size
is reduced and the effect of the transverse dependence on

FIG. 4. Illustration of particles’ motions in 2D trace space.

FIG. 5. σ1−R̂ as a function of the normalized beam size
numerically solved in 2D (solid red line) and 4D (dashed blue
line) trace space, respectively.
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the slice energy spread is weakened. Moreover, σ1−R̂ is
found to be higher in 2D trace space than in 4D trace space,
implying that 2D simulations in a slab geometry would lead
to an overestimated slice energy spread.
Furthermore, assume that the beam size and the plasma

density seen by the accelerated beam do not change
significantly during the whole acceleration process. The
former holds when the beam energy is very high and the
latter is valid for a particle beam driver. For a laser pulse
driver operating in the quasilinear regime, the plasma
density seen by the beam does not change too much,
either, as illustrated later in Fig. 6. These assumptions mean
that the beam loading effect [determined by np and kpσr as
in Eq. (16)] will be constant despite the acceleration, or
Ez;bðξ; zÞ ¼ Ez;bðξÞ, and its contribution to the slice energy
spread will be the same period after period. As a result, the
final slice energy spread will be

σEs
¼ eEz;bðξÞLacc · σ1−R̂; ð29Þ

and the relative slice energy spread will be

σEs
=E ≃

eEz;bðξÞLacc · σ1−R̂
Wref

¼ Ez;bðξÞ
hEacci

· σ1−R̂; ð30Þ

where hEacci ≃ ΔWref=Lacc is the accelerating field aver-
aged on the whole accelerating length.

D. Comparison with nonlinear regime

The beam loading effect in linear regime and strong
nonlinear or bubble regime has been studied previously
[9–11]. A triangular bunch shape has been found to be able
to produce a completely flat accelerating field along the
beam axis in both regimes, thus eliminating the energy
spread. In the bubble regime, as the witness beam sees no
background plasma electrons inside the bubble, the field it

induces is much weaker than that in the linear regime.
As a result, it requires a much higher bunch charge (e.g.,
100 pC—nC) to generate the ideally constant field.When the
bunch charge is not high enough, a much shorter bunch
length would be required to mitigate the phase-dependent
effect of the accelerating field following Eq. (6) or (9). For a
moderate bunch charge (e.g., 30 pC in the EuPRAXIA
project) the quasilinear regime is more favorable because the
beam loading effect is strong enough to cancel with the
accelerating field, in the presence of a relatively long bunch
length. Therefore, in term of energy spread it depends on the
bunch charge to be accelerated and the bunch length available
whether to choose the quasilinear regime or the bubble
regime. In term of slice energy spread the bubble regime
prevails over the quasilinear regime, since it is free of radial
dependence [10,11].

III. SIMULATIONS AND ENERGY SPREAD
MINIMIZATION

A. Simulation configuration

Though the expressions established above describe the
laws governing the energy spread in the context of linear
regime, it is worth examining them with numerical sim-
ulations in the more efficient quasilinear regime to see how
they can help minimize the energy spread.
We consider one of the EuPRAXIA laser wakefield

acceleration (LWFA) configurations [8], comprising a
powerful laser driver to induce a strong wakefield capable
of accelerating a 30 pC electron beam externally injected at
150 MeV to 5 GeV. One of the challenging requirement is
that the final energy spread will not exceed 1% and 0.1% in
terms of σE=E and σEs

=E, respectively. Themain parameters
used in the simulations are listed in Table I. The beam has a
Gaussian profile both transversely and longitudinally (there-
fore no bunch shaping). The normalized vector potential of

FIG. 6. On-axis longitudinal electric field (solid red line) and
plasma density (dashed blue line), with np ¼ 1.5 × 1017 cm−3

and a0 ¼
ffiffiffi
2

p
.

TABLE I. Simulation parameters for the LWFA.

Variable Value Unit

Laser
Strength a0 1–2
Spot size kprL ∼3
Duration kpσL

ffiffiffi
2

p

Plasma
Density np 1–2 1017 cm−3

Accelerating length Lacc ∼30 cm
Channel depth Δn=Δnc <1

Electron
Charge Q 30 pC
Energy Ek 150 MeV
Energy spread σE=E 0.5 %
Emittance εn;x 1.0 π mmmrad
Beam size σx ∼1 μm
Bunch length σz 1–3 μm
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the laser pulse is defined as a2ðξ; rÞ ¼ a20e
−2r2=r2L−ξ

2=σ2L ,
where rL is the spot size and σL the rms pulse length. The
critical plasma channel is given by Δnc ¼ ðπrer2LÞ−1, where
re ¼ e2ð4πϵ0mec2Þ−1 is the classical electron radius.
The input beam parameters look rather challenging,

seeing the high bunch charge and simultaneously the small
energy spread, small beam size and small bunch length.
Different teams in charge of achieving those beam qualities
are however not far from reaching these objectives.
Different techniques are under consideration, like resonant
multipulse ionization injection [15], ionization injection
[16], magnetically controlled injection [17,18], downramp
injection [19], or conventional photoinjector [20]. The
option of increasing the beam energy up to 350 MeV
for photoinjectors is also considered, in order to combat
the space charge effects. For the bunch length, a bunch
compressor should be available in the transfer line.
For the minimization of the energy spread and slice

energy spread, we have performed simulations with differ-
ent laser and plasma parameters. For each set of parameters,
the plasma channel depth and the beam size have been
optimized first [13]: the channel depth is chosen so that the
laser propagates without neither significant overfocusing
nor defocusing [21]; the initial beam size is matched to
the transverse focusing force at the plasma entrance so
that the emittance is preserved during the acceleration
[22,23]. The simulations were carried out by the 3D
Particle-In-Cell code WARP [24] in the boosted frame.
The dimension of the moving window was typically
228 × 228 × 150 μm. The transverse grid size was λ0=2
to λ0 and the longitudinal grid size was λ=32 with λ0 ¼
0.8 μm the laserwavelength, corresponding to at least 285 ×
285 × 5524 cells. Therewas only one particle per grid for the
plasma and about 200 particles per grid for the electron
beam. The coarser transverse grid size has been compared to
the finer one and the results agreed well. Therefore, the
coarser one was typically used to save simulation time. The
length of the moving window was longer when the plasma
density was lower, ensuring that the first wave crest behind
the laser pulse was well located inside the moving window.
The boosted factor was γboost ¼ 16.
Figure 6 shows the typical longitudinal laser wakefield

together with the plasma density distribution. In the quasi-
linear regime, the perturbation of plasma density is sig-
nificant, leaving an almost constant density channel for the
accelerated beam.

B. Minimization of total energy spread

The idea here is to minimize the energy spread by varying
the bunch length at injection. According to Eq. (10), this will
change the energy spread induced by the plasma wakefield
such that it is the best balanced by that induced by the beam
loading effect which is invariant as regards the bunch length
[Eq. (19)].
Figure 7(a) shows the resulting energy spread along the

acceleration path for 5 different bunch lengths with the

plasma density np ¼ 1.5 × 1017 cm−3 and the laser strength
a0 ¼

ffiffiffi
2

p
. At the plasma entrance, due to the only presence

of the strong beam loading effect, there is an abrupt but
same increase of energy spread for all the bunch lengths.
Then as the acceleration continues the effect from the
plasma wakefield plays its role more and more according to
Eq. (10) or Fig. 1, i.e., depending on the bunch length and
therefore compensating more or less with the unchanged
beam loading effect.
The resulting energy spread is collected at the targeted

energy of 5 GeV in Fig. 7(b) for two different plasma
densities np ¼ 1.0 and 1.5 × 1017 cm−3 and the laser
strength a0 ¼

ffiffiffi
2

p
. We can see that for each case, there

exists a bunch length for which the energy spread is
minimized and the minimum is around the requirement
of 1%. Those bunch lengths are just less than 3 μm (see
Table I) as imposed by Free-Electron-Laser requirements in
the EuPRAXIA project. A bunch compressor is foreseen in
the transfer line for achieving the desired bunch length.

(a)

(b)

FIG. 7. (a) Evolutions of beam energy spread for the plasma
density np ¼ 1.5 × 1017 cm−3 and various bunch lengths and
(b) energy spread vs the bunch length for np ¼ 1.0 and

1.5 × 1017 cm−3. The laser strength is a0 ¼
ffiffiffi
2

p
.
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C. Optimization of slice energy spread

According to Eq. (30), the slice energy spread is
dependent on the acceleration term, hEacci, and the beam
loading term, Ez;b. On one hand, hEacci is determined by
the amplitude of the laser wakefield which increases with
the plasma density and by the acceleration phase interval
which tends to move toward the crest in a lower plasma
density considering the dephasing effect. This implies there
exists a best plasma density for maximizing hEacci. On the
other hand, Ez;b is proportional to

ffiffiffiffiffinpp . Therefore by tuning
the plasma density, the slice energy spread could be
reduced. Moreover, the higher the laser strength, the
stronger the laser wakefield becomes and the lower the
remnant plasma density is left for the witness beam, which
in return means a lower beam loading effect, making the

slice energy spread decrease too. Taking these into account,
simulations were performed first with various plasma
densities while keeping the laser strength of a0 ¼

ffiffiffi
2

p
.

Then for the plasma density of np ¼ 1.0 × 1017 cm−3, a
higher laser strength (a0 ¼ 2) was investigated. The
resulted slice energy spread distributions along the beam
were shown in Fig. 8(a). The slice energy spread at the
buncher center (ξ ¼ 0) was shown as a function of the
plasma density in Fig. 8(b).
From Fig. 8, it was found that the slice energy spread

could be reduced by choosing the proper plasma density
and be further mitigated to be below 0.1% with a stronger
laser strength. Figure 8(b) also shows the estimated slice
energy spread at the bunch center using Eq. (30), indicating
a good agreement between the simulations and the esti-
mations. The deviation, especially at lower plasma density,
was probably due to the limits of the linear theory when the
beam density is much higher than the plasma density [12].
It is worth noting that for all the distributions in Fig. 8(a),

it peaked near the bunch center other than the predicted
bunch tail where Ez;b is supposed to be stronger, as shown
in Fig. 2. The inconsistency can be explained by Fig. 9,
where a nearly uniform transverse distribution of the
longitudinal field driven by a beam was observed near
the bunch tail. Because of the much higher beam density
than the plasma density, plasma electrons were expelled by
the space charge field from the bunch head, leaving a
bubble-like channel for the bunch tail and therefore a
transversely uniform wakefield, as found in the nonlinear
regime [11].

IV. CONCLUSION

Detailed studies of the effects on the energy spread and
slice energy spread of the plasma wakefield driven by laser
or particle beam drivers on one side, and of the beam
loading effect on the other side allow one to identify the
main parameters involved. Although established in the
linear regime, the expressions found turn out to be mean-
ingful for reflecting faithfully enough the behavior of the

(a)

(b)

FIG. 8. (a) Slice energy spread distributions for a0 ¼
ffiffiffi
2

p
and

np ¼ 0.75; 1.0; 1.5 × 1017 cm−3 (I to III) and for a0 ¼ 2 and
np ¼ 1.0 × 1017 cm−3 (IV) and (b) slice energy spread at the
bunch center (ξ ¼ 0) as a function of the plasma density and laser
strength.

FIG. 9. 2D distributions of Ez;b on the x-z plane (z > 0 for the
bunch head), with np ¼ 1 × 1017 cm−3, σr ¼ σz ¼ 1 μm, and
Qb ¼ 30 pC.

LI, NGHIEM, and MOSNIER PHYS. REV. ACCEL. BEAMS 21, 111301 (2018)

111301-8



accelerated beam as observed in simulations in the quasi-
linear regime. They have served as very valuable guidance
for efficiently minimizing the energy spread and the slice
energy spread, leading to beam qualities suitable for driving
x-ray free electron lasers. In the context of the EuPRAXIA
project, the energy spread was minimized by varying the
bunch length at injection and the slice energy spread was
optimized by tuning the plasma density and the laser
strength. The results from 3D Particle-In-Cell simulations
were compared with the theory and a final energy spread
less than 1% and slice energy spread less than 0.1% were
obtained.
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APPENDIX: DISTRIBUTION OF THE
AMPLITUDE OF THE BETATRON

OSCILLATION

For a Gaussian beam, the distributions of the beam size
and divergence are

fXðxÞ ¼
1ffiffiffiffiffiffi
2π

p
σx

e−x
2=2σ2x ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πβεrms
p e−x

2=2βεrms ; ðA1Þ

fX0 ðx0Þ ¼ 1ffiffiffiffiffiffi
2π

p
σx0

e−x
02=2σ2

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

β

2πεrms

s
e−βx

02=2εrms ; ðA2Þ

respectively, where for the Twiss parameters the relation
βγ ¼ 1 has been used for a matched beam.
The amplitude of the betatron oscillation in ðx; x0Þ trace

space is given by Ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ β2x02

p
. To get its distribution,

we use the following statistical laws [25]: (1) Let X be a
continuous random variable with a PDF fXðxÞ defined over
−∞ < x < ∞. And, let Y ¼ uðXÞ be a continuous, mon-
otonic function of X with inverse function X ¼ vðYÞ. Then,
the PDF of Y is given by

fYðyÞ ¼ jv0ðyÞjfXðvðyÞÞ: ðA3Þ

If uðxÞ is a piecewise monotonic function, then fYðyÞ ¼P
n
j¼1 jv0jðyÞjfXðvjðyÞÞ, where vjðyÞ is the jth subfunction.

(2) Let X and Y be two independent continuous random
variables with PDF fXðxÞ and fYðyÞ defined over

ð−∞;∞Þ, respectively. Then, the PDF of Z ¼ X þ Y is
given by

fZðzÞ ¼
Z

∞

−∞
fXðxÞfYðz − xÞdx: ðA4Þ

Using Eq. (A3), we can first obtain the PDF of Z1 ¼ x2

and Z2 ¼ β2x02. Then the PDF of Z ¼ Z1 þ Z2 is calcu-
lated using Eq. (A4). Since Ax ¼

ffiffiffiffi
Z

p
, its PDF is derived by

using Eq. (A3) again and is

fAx
ðAxÞ ¼

Ax

σ2x
e
− A2x
2σ2x : ðA5Þ

In the ðy; y0Þ trace space, we have Ay ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ β2y02

p
and

its p.d.f is

fAy
ðAyÞ ¼

Ay

σ2y
e
−

A2y

2σ2y : ðA6Þ
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