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The method of enhanced self-amplified spontaneous emission (eSASE) is one of the strongest candidates
for the generation of sub-femtosecond x-ray pulses in a free-electron laser (FEL). The optimization of an
eSASE experiment involves many independent parameters, which makes the exploration of the parameter
space with thee-dimensional (3D) simulations computationally intensive. Therefore, a robust theoretical
analysis of this problem is extremely desirable. We provide a self-consistent, analytical treatment of such a
configuration using a one-dimensional (1D), time-dependent FEL model that includes the key effects of
electron beamchirp and undulator taper.Verified via comparisonwith numerical simulation, our formalism is
utilized in parameter studies that seek to determine the optimum setup of the FEL.
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I. INTRODUCTION

The generation of ultrashort x-ray pulses is one of the
main objectives of research into advanced operation modes
for a modern FEL facility [1–4]. One of the most promising
schemes for generating sub-fs x-rays in a high-gain FEL is
eSASE (enhanced self-amplified spontaneous emission)
[5]. This technique involves the interaction of an electron
beam with an optical laser pulse in the presence of a short
wiggler, prior to the beam being sent into a conventional
undulator. Apart from providing an attractive mechanism
for generating X-ray pulses in the attosecond range, this
method also results in a significant improvement in the
performance of the FEL. In common with some other
schemes for generating ultrashort x-rays [6], the eSASE
process essentially relies on an intense manipulation of the
longitudinal phase space of the electrons, after which the
e-beam is strongly chirped and typically has to travel
through a tapered undulator in order to achieve lasing with
the required properties. Thus, from an FEL physics point of
view, the key features of eSASE are beam chirp and
undulator taper, as well as the finite-pulse effects associated
with a short (fs-level) electron bunch. In the context of FEL
theory [7], these topics are typically studied in the one-
dimensional (1D) regime, where effects such as radiation
diffraction, emittance and focusing can be neglected. Even
in this approximation, however, a comprehensive analytical
treatment of this important subject is lacking. In particular,

most of the theoretical literature deals with short-pulse
effects [8,9] or beam chirp alone [10–12], without combin-
ing these topics or including the effect of taper in the
analytical calculations.
In this paper, we provide a generalized, self-consistent,

time-domain analysis of an FEL configuration that utilizes
a short, chirped e-beam and a tapered undulator. Aiming to
model the FEL portion of an eSASE-based scheme, we use
a simplified 1D formalism that also includes the key effects
of startup from shot noise and radiation slippage. Our
treatment is based on the linearized Maxwell-Vlasov
equations of the FEL and therefore is valid for that stage
of the interaction prior to the onset of saturation. The main
objective is to determine the basic properties of the
generated radiation pulse (such as the peak radiation power
and the radiation pulse length) and to investigate how these
depend on the various parameters of the system. In this
way, we hope to obtain a more thorough understanding of
the physics behind the experimental technique.
This paper is organized as follows: Section II contains

the bulk of the theoretical development. Starting from the
time-dependent Maxwell-Vlasov equations, a single evo-
lution equation is obtained for the amplitude of the FEL
radiation, assuming startup from noise. Next, the evolution
equation is solved through a Laplace transform technique,
leading to a description of the radiation field in terms of a
Green’s function. This, in turn, enables us to calculate
various key figures of merit for the FEL in the latter stage of
the exponential gain regime. This capability is exploited in
Sec. III, which presents the results of a numerical study
based on our method. After checking its validity through
comparison with appropriate FEL simulation data,
our semianalytical formalism is utilized in parameter
studies that seek to determine the optimum setup of an
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eSASE-based FEL. The main results of this paper are
summarized in Sec. IV.

II. THEORY

A. Maxwell-Vlasov analysis

The starting point of our treatment is the equations of
motion for a single electron in the combined field of the
FEL radiation and the undulator. In the context of our one-
dimensional analysis, the appropriate phase space variables
are ðθ; ηÞ, where θ ¼ kuzþ krðz − ct̄Þ is the ponderomo-
tive phase and η ¼ γ=γ0 − 1 is the relative energy deviation.
Here, ku ¼ 2π=λu, kr ¼ 2π=λr, t̄ is the arrival time aver-
aged over the fast wiggle motion and γ0 is the average
relativistic factor of the electrons. The undulator period λu
and the resonant wavelength λr are related through the well-
known resonance condition λr ¼ λuð1þ K2

0=2Þ=ð2γ20Þ,
whereK0 is the dimensionless (initial) undulator parameter.
For future reference, it is also worth noting that the phase θ
is related to the longitudinal position within the electron
bunch zb via θ ¼ krzb. In fact, we have 0 ≤ θ ≤ θb ¼ krlb
(lb is the bunch length), where the upper/lower limits
respectively represent the head/tail of the bunch. The
electric field of the radiation, which is assumed to be
linearly polarized along the x-axis, is given by Erad ¼
Ex ¼ Aðθ; zÞ expðikrðz − ctÞÞ þ c:c:, where Aðθ; zÞ is a
slowly varying amplitude and c.c. stands for complex
conjugate. The fact that the amplitude A is θ-dependent
is a principal feature of the time-domain analysis, facili-
tating the description of a short radiation pulse. Moreover,
the meaning of the term “slowly varying” is to be under-
stood in the following way: the characteristic length in z for
a significant variation of A (gain length) is much larger than
λu, while the corresponding length in terms of the internal
bunch position θ=kr (cooperation length) is much larger
than λr (the actual length scales will be quantified later on).
As far as the undulator is concerned, we assume that the
undulator parameter K is tapered according to the relation
K ¼ K0ð1þ εzÞ, where ε is a constant linear taper gradient.
The single-particle dynamics of the electrons (after aver-
aging over many undulator periods) is determined by the
well-known pendulum equations, suitably modified for the
case of a tapered undulator. These are [13]

dθ
dz

¼ 2kuηþ a1z ð1Þ

and

dη
dz

¼ ζ1Aðθ; zÞexpðiθÞ þ c:c: ð2Þ

where a1¼−2kuK2
0ε=ð2þK2

0Þ and ζ1¼eK0½JJ�=ð2γ20mc2Þ.
In the definitions given above e andm are the electron charge
and mass while ½JJ� is an averaging factor given by
½JJ� ¼ J0ðQ0Þ − J1ðQ0Þ, where Q0 ¼ K2

0=ð4þ 2K2
0Þ and

J0, J1 are Bessel functions.

In order to describe the interaction between the electron
beam and the radiation in a self-consistent fashion, we
introduce a distribution function fðθ; η; zÞ that is a measure
of the beam phase space density. The distribution function
f is constant along an individual electron trajectory, so that
∂f=∂zþ ð∂f=∂θÞðdθ=dzÞ þ ð∂f=∂ηÞðdη=dzÞ ¼ 0. This
evolution equation for f (i.e., the Vlasov equation) is,
generally speaking, nonlinear in nature. However, in the so-
called linear regime of the FEL interaction (comprising the
initial lethargy stage and the subsequent exponential gain
region) the analysis can be considerably simplified by
following a perturbation approach. In particular, we assume
that the distribution function can be written as f ¼ f0 þ f1,
where f0 is a background (or unperturbed) part and f1 is a
small perturbation due to the FEL effect (so that jf1j ≪ f0).
Up to the beginning of the saturation region, this is a
reasonably good approximation. Furthermore, we can
express f1 as f1 ¼ Fðθ; η; zÞexpðiθÞ þ c:c:, where the
density amplitude F-like the field amplitude A-is a slowly
varying function of θ and z. This decomposition is justified
by the fact that the characteristic length for the micro-
bunching is the radiation length λr, which is much shorter
than the cooperation length. In the context of the above-
mentioned approximation, the phase space evolution of the
electron beam is described by a linearized version of the
Vlasov equation [9], namely

∂F̄
∂z þ ð2kuηþ a1zÞ

∂F̄
∂θ ¼ −ζ1AexpðiθÞ

∂f0
∂η ; ð3Þ

where we have introduced the complex quantity F̄ ¼
FexpðiθÞ (so that f1 ¼ F̄ þ c:c:) and the unperturbed
distribution f0 satisfies the relation

∂f0
∂z þ ð2kuηþ a1zÞ

∂f0
∂θ ¼ 0: ð4Þ

To complete our description of the system, we need a
relation that quantifies the change in the radiation field in
response to the currents associated with the electron beam.
In general, this is facilitated by a driven, paraxial wave-type
equation, which, in our case, takes the form [9]

∂A
∂z þ ku

∂A
∂θ ¼ −ζ2n0expð−iθÞ

Z
dηF̄: ð5Þ

Here, the new coupling coefficient ζ2 is given by ζ2 ¼
eK0½JJ�=ð4ε0γ0ΣÞ, where ε0 is the vacuum permittivity and
Σ is a cross-sectional area. For a round beam with a
Gaussian transverse profile, Σ is equal to 2πσ2x, where σx is
the transverse rms beam size. Moreover, n0 is the maximum
value of the electron line density (i.e., the maximum
number of electrons per unit length along the bunch).
An analytical solution to the linearized Vlasov equation

[Eq. (3)] can be obtained using the method of integration
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along the unperturbed trajectories [7]. Omitting the details,
the end result of this procedure is the relation

F̄ ≈ F̄ðθ − 2kuηz − gðzÞ; η; 0Þ − ζ1
∂f0
∂η

Z
z

0

dsAðθ; sÞ

× expðiθ þ 2ikuηðs − zÞ þ ifgðsÞ − gðzÞgÞ; ð6Þ
where gðzÞ ¼ R

z
0 a1tdt ¼a1z2=2. As far as the background

distribution is concerned, the same analytical method yields
a general solution that can be written as f0 ¼ χðθ1ÞVðη1Þ.
In this relation, θ1 ¼ θ − 2kuηz − gðzÞ and η1 ¼
ηþ μðθ1 − θmÞ þ Yðθ1Þ, where χðθÞ, VðηÞ and YðθÞ are
arbitrary functions, μ is a constant and θm ¼ θb=2.
Assuming that θ ≫ 2kuηz; gðzÞ, we have θ1 ≈ θ and the
z-dependent character of f0 can be neglected, yielding
f0 ≈ χðθÞVðηþ μðθ − θmÞ þ YðθÞÞ. The validity of this
important approximation will be verified in due course.
From a physical point of view, the meaning of the various

functions and parameters associated with f0 is as follows:
χðθÞ is a dimensionless quantity that represents the scaled
current profile of the electron bunch. In particular, we have
IðθÞ ¼ IpχðθÞ for 0 ≤ θ ≤ θb-where Ip ¼ n0ec is the peak
current-and χð0Þ ¼ χðθbÞ ¼ 0. The function VðηÞ repre-
sents the uncorrelated energy spread profile of the beam
and satisfies the relation

R
dηVðηÞ ¼ 1. In this paper, we

neglect uncorrelated energy spread effects so we may
assume that VðηÞ ¼ δðηÞ from now on. We do, however,
take into account the correlated energy spread due to
the chirp of the electron beam, which is modeled by
η ¼ −μðθ − θmÞ − YðθÞ. Thus, μ is a linear chirp coeffi-
cient and −YðθÞ represents the contribution of a possible
nonlinear chirp component.
Substituting Eq. (6) into the right-hand side (rhs) of

Eq. (5) and making use of the expression for f0 leads to a
single, self-consistent equation for the radiation amplitude
Aðθ; zÞ. In this study, we are only concerned with the case
of SASE (self-amplified spontaneous emission), which
corresponds to startup from shot noise. As a result, the
process of deriving the required amplitude equation also
involves making use of the representation F̄ðθ; η; 0Þ →
ðkr=n0Þ

P
j δðθ − θjÞδðη − ηjÞ, where θj are the random

initial phases of the electrons—i.e., the phases at z ¼ 0—
and ηj are the corresponding energies (the summation over
the discrete index j extends over all electrons of the bunch).
The final result of this manipulation is� ∂
∂z− ia1zþ ku

∂
∂θ

�
Ãðθ; zÞ

¼ −ζ2kr
X
j

expð−iθjÞ

× expð2ikuzfμðθj − θmÞ þ YðθjÞgÞδðθ − θjÞ− 8iρ3k3u

× χðθÞ
Z

z

0

dsÃðθ; sÞðs− zÞ exp½−2ikufμðθ − θmÞ

þ YðθÞgðs− zÞ�; ð7Þ

where Ãðθ; zÞ ¼ Aðθ; zÞ expðia1z2=2Þ and ρ is the FEL
(or Pierce) parameter, introduced here through the relation
ζ1n0ζ2 ¼ 4k2uρ3.

B. Green’s function

To solve an integral-differential equation like Eq. (7), we
typically make use of a Laplace transform technique. In our
case, we introduce an auxiliary amplitude quantity Âðθ; λÞ
via

Âðθ; λÞ ¼
Z

∞

0

dzexpð2ikuλzÞÃðθ; zÞ ð8Þ

and substitute Eq. (8) back into Eq. (7). This results in a
partial differential equation for Âðθ; λÞ, namely

∂Âðθ;λÞ
∂θ − ā1

∂Âðθ;λÞ
∂λ −2iλÂðθ;λÞþ 2iρ3χðθÞÂðθ;λÞ

ðμðθ−θmÞþYðθÞþλÞ2

¼ Ãðθ;0Þ
ku

þζ2kr
2k2u

X
j

expð−iθjÞδðθ−θjÞ
iλþiμðθj−θmÞþiYðθjÞ

; ð9Þ

where ā1 ¼ a1=ð2k2uÞ. For the SASE case under consid-
eration, the initial electric field amplitude is zero so
Ãðθ; 0Þ ¼ 0. Taking this into account, we find that the
solution to Eq. (9) can be written as

Âðθ;λÞ ¼ ζ2kr
2ik2u

Z
θ

−∞
dθ0 exp½ΔQ̄ðθ;θ0;λÞ�

×
X
j

expð−iθjÞδðθ0−θjÞ
λþ ā1θþμðθj−θmÞþYðθjÞ− ā1θj

; ð10Þ

where

ΔQ̄ðθ;θ0;λÞ¼−2iλðθ0−θÞþ iā1ðθ0−θÞ2

þ2iρ3
Z

θ0

θ

dξχðξÞ
½λþ ā1θþμðξ−θmÞþYðξÞ− ā1ξ�2

:

ð11Þ

The inverse Laplace transform is given by

Ãðθ; zÞ ¼ ku
π

Z þ∞þiy

−∞þiy
dλexpð−2ikuλzÞÂðθ; λÞ; ð12Þ

where the path of the integration is parallel to the real
axis and above all singularities of the integrand. Combining
Eqs. (10), (11), and (12), we obtain the following
expression for the original field amplitude Aðθ; zÞ ¼
Ãðθ; zÞ expð−ia1z2=2Þ:

Aðθ; zÞ ¼ −
ζ2kr
ku

X
j

expð−iθjÞGðθ; θj; zÞ; ð13Þ

TIME-DOMAIN ANALYSIS OF ATTOSECOND PULSE … PHYS. REV. ACCEL. BEAMS 21, 110702 (2018)

110702-3



where Gðθ; θj; zÞ is the Green’s function given by

Gðθ;θj; zÞ ¼ −
exp½iΨ2ðθ;θj; zÞ�

2πi

×
Z þ∞þiy

−∞þiy

dλ
λ
exp

�
−2iλ½kuz− ðθ− θjÞ�− 2iρ3

×
Z

θ

θj

dξχðξÞ
½λþ ðμ− ā1Þðξ− θjÞ þ YðξÞ− YðθjÞ�2

�

ð14Þ

and the phase term Ψ2 is given by

Ψ2ðθ;θj; zÞ ¼ −ā1½θ− kuzþ θj�ðθ− θj − kuzÞ
þ 2fμθm − ðμ− ā1Þθj −YðθjÞgðθ− θj − kuzÞ:

ð15Þ

It is worth noting that ð∂=∂zþ ku∂=∂θÞΨ2ðθ; θj; zÞ ¼ 0

since Ψ2 depends on θ and z through the combination
θ − kuz. The field Green’s function Gðθ; θj; zÞ is the
principal result of our analysis. Multiplied by the factor
expð−iθjÞ, it represents the contribution of the jth electron
to the radiation amplitude. Moreover, it is only nonzero for
0 ≤ θ − θj ≤ kuz, as one could infer from causality argu-
ments. In the case of zero nonlinear chirp (YðθÞ ¼ 0) and
zero undulator taper (ā1 ¼ 0), Eq. (14) is equivalent to the
result of [10] regarding the Green’s function for a pure
linear chirp. Another important remark concerns the case
with μ; ā1 ≠ 0 and μ ¼ ā1 (still in the absence of nonlinear
chirp), for which jGj is identical to what it would be when
μ ¼ ā1 ¼ 0. Since—as will be shown below—the absolute
value of G determines the power profile of the radiation,
this observation corresponds to the well-known fact that
the power-degrading effects of linear beam chirp can be
removed by the appropriate linear taper [14]. In fact, the
condition μ ¼ ā1 readily reproduces the chirp-taper match-
ing condition postulated (but not proven) in Ref. [6].
Knowledge of the Green’s function allows us to deter-

mine the basic properties of the radiation and the electron
beam in the linear regime. To begin with, we consider the
shot-averaged radiation power Prðθ; zÞ defined by

Prðθ; zÞ ¼ 2Σε0chjAj2ishot; ð16Þ

where the symbol hishot denotes average over many differ-
ent ensembles of random initial phases θj. In view of
Eq. (13), we obtain the result

jAj2 ¼
�
ζ2kr
ku

�
2
�X

j

jGðθ; θj; zÞj2

þ
X
k≠j

expð−iðθj − θkÞÞGðθ; θj; zÞG�ðθ; θk; zÞ
�
:

In the absence of density gradient-related coherent effects
[8,9], the second term in the equation given above can be
disregarded. This is a reasonable assumption for λr ≪ lb.
The remaining sum can be converted to an integral via the
substitution

P
j → ðn0=krÞ

R
dθjχðθjÞ. The end result of

this manipulation is the relation

Prðθ; zÞ ¼ 4γ0mc3krρ3
Z

dθjχðθjÞjGðθ; θj; zÞj2 ð17Þ

for the radiation power. The above equation can be used
to obtain the shot-averaged power profile of the FEL
radiation.
A similar result can be obtained for the local bunching

factor bðθ;zÞ¼jhexpð−iθlÞiΔj, which expresses the degree
to which the electron beam is bunched due to the FEL
effect. Here, the Δ-average takes into account only those
electron phases θl for which θl ∈ ðθ; θ þ 2πÞ. In terms of
the beam distribution function f, we have

hexpð−iθlÞiΔ ¼
R
θþ2π
θ dθ0

R
dηfðθ0; η; zÞexpð−iθ0ÞR

θþ2π
θ dθ0

R
dηfðθ0; η; zÞ : ð18Þ

Recalling that f is given by f ¼ f0 þ f1 (with jf1j ≪ f0,
f1¼ F̄þc:c: and F̄ ¼ F expðiθÞ), the denominator becomesR
θþ2π
θ dθ0

R
dηf0 ¼ 2πχðθÞ while the numerator is equal toR

θþ2π
θ dθ0

R
dηf1expð−iθ0Þ ¼ 2πexpð−iθÞ R dηF̄, wherewe

have also made use of the fact that f0 ≈ χðθÞVðηÞ andR
dηVðηÞ ¼ 1. Inview of the above observations and Eq. (5),

Eq. (18) becomes

bðθ; zÞ ¼ 1

χðθÞ
����
Z

dηF̄

���� ¼ 1

ζ2n0χðθÞ
����∂A∂z þ ku

∂A
∂θ

����;

which, when combined with Eq. (13), leads to

bðθ; zÞ ¼ kr
χðθÞn0ku

����
X
j

expð−iθjÞGbðθ; θj; zÞ
����; ð19Þ

where Gbðθ; θj; zÞ≡ ð∂=∂zþ ku∂=∂θÞGðθ; θj; zÞ is a
derivative Green’s function. An inspection of Eq. (14) shows
that G is a function of θ − kuz for θ > θb, in which case
Gb ¼ 0. Thus, unlikeG, the derivative (or bunching)Green’s
function Gb is nonzero only within the limits of the electron
bunch. A procedure entirely analogous to the one we
followed for the radiation power yields a result for the
shot-averaged bunching factor, namely

hb2ishot ¼
kr

½χðθÞ�2n0k2u

Z
dθjχðθjÞjGbðθ; θj; zÞj2: ð20Þ

Though a product of a linearized analysis, Eq. (20) can be
used to estimate the saturation length by finding the
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z-position for which hb2ishot ∼ 1 for the various positions
within the electron beam.

III. NUMERICAL RESULTS

In our treatment so far, we have assumed that the current
and nonlinear chirp profiles are arbitrary. For the purpose of
numerical illustration, we now select a truncated parabolic
current profile of the form χðθÞ ¼ 1 − ðθ − θmÞ2=θ2m and a
nonlinear chirp profile given by YðθÞ ¼ μ3ðθ − θmÞ3,
where μ3 is a cubic chirp coefficient, these relations being
valid for 0 ≤ θ ≤ θb ¼ 2θm. The logic of this particular
selection can be justified in the following way: since the
chirp profile of the beam is actually shaped by space charge
effects before the amplification process, it can be modeled
by the θ-derivative of the current profile, which can be
approximated by a Gaussian [15]. Thus, we have

η ¼ −μðθ − θmÞ − μ3ðθ − θmÞ3

∝
d
dθ

exp

�
−
ðθ − θmÞ2

2σ2θ

�
; ð21Þ

up to third order terms in θ − θm. This motivates the
selection of a cubic chirp profile and also correlates μ3
with μ via the relation μ3 ¼ −μ=ð2σ2θÞ. As far as σθ is
concerned, we can either choose it in an ad-hoc way or
derive it by matching the parabolic and Gaussian current
profiles up to second order in θ − θm. Apart from justifying
the use of a parabolic profile, this manipulation yields
σθ ¼ θm=

ffiffiffi
2

p
. Though not entirely self-consistent, this

strategy allows us to adequately model the space charge-
induced chirp while preserving some degree of analyticity
as far as the Green’s function is concerned. This is so
because, for the case of parabolic current/cubic chirp, the
ξ-integral in Eq. (14) can be determined analytically, a
feature which enhances computational efficiency.
Additionally, it is essential to introduce an appropriate

scaling in order to facilitate our numerical calculations.
Specifically, the Green’s function can be written as

G ¼ −
expðiΨ2Þ

2πi

Z þ∞þiŷ

−∞þiŷ

dλ̂

λ̂
exp

�
−iλ̂½z̄ − ðθ̂ − θ̂jÞ�

− i
Z

θ̂

θ̂j

dξ̂χ̂ðξ̂Þ
½λ̂þ Δ̂0ðξ̂ − θ̂jÞ þ Ŷðξ̂Þ − Ŷðθ̂jÞ�2

�
; ð22Þ

where the following dimensionless variables and constants
have been introduced: λ̂ ¼ λ=ρ, ξ̂ ¼ 2ρξ, z̄ ¼ 2ρkuz,
θ̂ ¼ 2ρθ, θ̂j ¼ 2ρθj, χ̂ðξ̂Þ ¼ 1 − ðξ̂ − θ̂mÞ2=θ̂2m, and Ŷðξ̂Þ ¼
μ̂3ðξ̂ − θ̂mÞ3, with θ̂m ¼ 2ρθm, μ̂3 ¼ μ3=ð8ρ4Þ, and Δ̂0 ¼
ðμ − ā1Þ=ð2ρ2Þ ¼ μ̂ − â1. The main advantage of this
scaling is that the new dimensionless quantities are of
the order of unity. This property can be utilized in order to
elucidate and justify some of the approximations that where

introduced in the theory section. Specifically, the gain
length lg can be roughly estimated through the condition
z̄¼2ρkuz∼1, which yields lg∼ð2ρkuÞ−1¼λu=ð4πρÞ≫λu.
In a similar way, the cooperation length lc may be
obtained from θ̂ ¼ 2ρθ ¼ 2ρkrzb ∼ 1, i.e., lc ∼ ð2ρkrÞ−1 ¼
λr=ð4πρÞ ≫ λr. We also recall that, in disregarding the
z-dependence of the background distribution f0, we made
use of the approximation θ ≫ 2kuηz. Taking η ∼ μθ, this
requirement is equivalent to 2μkuz ≪ 1 or ρμ̂ z̄ ≪ 1 (valid
since ρ ≪ 1). Similar arguments may be invoked in order to
validate the remaining assumptions.
From a practical point of view, the numerical calculation

of the Green’s function G via the contour integral of
Eq. (22) is facilitated by the stationary phase approxima-
tion. As a reminder, this technique approximates an integral
of the form

R
dλ̂Pðλ̂Þ expðiEðλ̂ÞÞ with the expression

Pðλ̂0Þ expðiEðλ̂0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πi=E00ðλ̂0Þ

q
, where λ̂0 is a stationary

point of Eðλ̂Þ (E0ðλ̂0Þ ¼ 0) and jEðλ̂0Þj ≫ 1. In our case,
this approximation is sufficiently accurate in the latter (or
high-gain) stage of the linear regime. Finally, we note that,
in terms of our scaling, Eqs. (17) and (20) become

Prðθ̂; z̄Þ ¼ 2γ0mc3krρ2
Z

dθ̂jχ̂ðθ̂jÞjGðθ̂; θ̂j; z̄Þj2 ð23Þ

and

hb2ðθ̂; z̄Þishot ¼
4πρ

n0λr

Z
dθ̂jχ̂ðθ̂jÞjĜbðθ̂; θ̂j; z̄Þj2=χ̂2ðθ̂Þ; ð24Þ

respectively, where Ĝb ¼ ð∂=∂z̄þ ∂=∂θ̂ÞG (Ĝb is calcu-
lated through numerical differentiation of G). Along with
Eq. (22), these relations complete the array of tools
necessary for carrying out the numerical study presented
below.

A. Comparison with 1D simulation

To start with, we select a parameter set that roughly
approximates a plausible configuration of the X-LEAP
eSASE experiment at SLAC [16]. This involves the
generation of 800 eV photons (λr ¼ 1.55 nm) with a
standard LCLS undulator (λu ¼ 3 cm, K0 ¼ 3.5) and a
4.24 GeV beam with a peak current of 4.5 kA. The average
beta function βx is about 10 m, which corresponds to a rms
beam size σx ¼

ffiffiffiffiffiffiffiffiffi
ϵxβx

p
≈ 25 μm (for a transverse normal-

ized emittance γ0ϵx ≈ 0.5 μm). The ρ parameter is about
2 × 10−3, while we also assume zero uncorrelated energy
spread. The latter is not actually true in the experimental
setup but this discrepancy is balanced by choosing a lower
peak current for the beam (4.5 kA instead of 6–7 kA). As
far as the other parameters are concerned, we take z ¼
11.45 m (corresponding to z̄ ¼ 9.2) and consider two
different cases for the bunch length: case A with a bunch
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length of 500 nm (θ̂b ¼ 7.8, so that θ̂b < z̄) and case B
with a longer bunch length of 750 nm (for which θ̂b ¼ 11.7
and θ̂b > z̄). For both of these cases, μ is given by
μ ¼ −ðΔγ=γ0Þ=θb, where Δγ ¼ ΔE=mc2 and ΔE ¼
30 MeV is the total energy variation due to the linear
chirp. Moreover, we choose σ ¼ σθ=kr ¼ 160 nm. This
leads to a negative linear chirp, which is compensated by
the appropriate (reverse) taper, leaving only the cubic
component contribution (see the schematic of Fig. 1).
In Figs. 2 and 3, we plot the (shot-averaged) radiation

power and bunching factor (the latter defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2ishot

p
)

as functions of the position zb along the bunch. The
theoretical values are calculated by Eqs. (23) and (24)
while the simulation values are obtained from a 1D FEL
simulation code (some details for the latter are given in [9]).
Reasonable agreement is observed between the two
approaches, which enables us to build confidence in our
analysis.

B. Parameter study

Having verified our formalism, we use it in a simple
parameter study that is relevant for an eSASE-based FEL
configuration. In particular, we scan the electron pulse
duration te ¼ lb=c ¼ θb=ðckrÞwhile keeping constant both
the peak current Ip and the product μ × te. According to our
previous discussion, the latter is proportional to the total
energy variation ΔE, which is kept fixed at 35 MeV. Using
the Green’s function method, we obtain the shot-averaged
power profiles for the pure, matched linear chirp case (red
data in Figs. 4–6) and for the case with the added nonlinear
chirp component (blue data in the same figures). This
particular scan was performed assuming μ3 ¼ −μ=ð2σ2θÞ
and σθ ¼ θm=

ffiffiffi
2

p
. In Fig. 4, we plot the two contrasting

power profiles for a bunch length of 1.5 fs. A power
suppression due to the addition of the cubic chirp is
immediately evident. Moreover, we find that the radiation
full-width-at-half-maximum (FWHM) is also reduced.
These observations are confirmed in Fig. 5, where the

peak radiation power and the FWHM are plotted as
functions of te. A marked linear dependence of the
FWHM with te is observed, along with what appears to
be a constant vertical shift (reduction) due to the cubic
chirp. Moreover, Fig. 6 verifies that, even for the same peak
power level, the radiation pulse length is reduced when the
nonlinear chirp is added. This effect can probably be
attributed to the reduction of the effective electron bunch
length due to the introduction of a chirp component that is
not compensated by the undulator taper.
The observed linear character of the FWHM plot (red

curve) can be reproduced in a heuristic fashion through the
following argument: since the ρ parameter scales according
to ρ ∼ n1=30 ∼ I1=3p , we can define a θ-dependent, effective
FEL parameter ρeff ¼ ρðχðθÞÞ1=3 by plugging in the scaled
current profile χðθÞ ¼ 1 − ðθ − θmÞ2=θ2m [we recall that
I ¼ IpχðθÞ]. Combining this with the power growth rela-
tion Pr ¼ P0 expðz=LgÞ, where Lg ∼ ρ−1eff is the local power
gain length, we find a Gaussian power profile of the form
exp½−ðz=L0Þðθ − θmÞ2=ð3θ2mÞ�, where L0 ¼ λu=ð4π

ffiffiffi
3

p
ρÞ

is the basic (minimum) value for the power gain length
(which is about 0.70 m for our parameters). This predicts

FIG. 1. Generic schematic that illustrates the chirp profile of the
electron beam vs the current profile.

(a)

(b)

FIG. 2. Shot-averaged radiation power and bunching factor
along the e-beam (case A: z ¼ 11.45 m, 0.50 μm bunch length,
σ¼σθ=kr¼160nm, ΔE¼30MeV, 400 shot average, matched
linear chirp). The blue/brown curves represent theory/simulation
data.
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maximization of the radiation power in the middle of the
electron bunch, which is not very accurate (in fact, it
happens closer to the head of the beam, see Fig. 4). On the
other hand, the FWHM is simply te ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log 2=ðz=L0Þ

p
, a

result which exhibits linear dependence with respect to
te with a slope of about 0.35. This is very close to the
value calculated from the Green’s function data (0.32),
even though the simple model under study does not take
into account detuning effects etc. In any event, the scaling
predicted by the above formula may be of interest
when doing back-of-the-envelope calculations involving
attosecond-style pulses.
We would also like to point out that, besides elucidating

the underlying physics, the Green’s function formalism

FIG. 4. Shot-averaged radiation power profiles for a matched
linear chirp with or without the cubic chirp component (blue and
red curves, respectively). The bunch length is 1.5 fs andwe assume
z ¼ 12.3 m. The dashed line denotes the scaled current profile.

FIG. 6. Radiation peak power vs FWHM (using the data of
Fig. 5).

(a)

(b)

FIG. 5. Radiation peak power and FWHM vs the electron
bunch length (same color convention as in Fig. 4).

(a)

(b)

FIG. 3. Shot-averaged radiation power and bunching factor
along the e-beam (case B: z ¼ 11.45 m, 0.75 μm bunch length,
σ ¼ σθ=kr ¼ 160 nm, ΔE ¼ 30 MeV, 400 shot average,
matched linear chirp). The blue/brown curves represent theory/
simulation data.
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allows us to get a sense of what the optimum setup of the
FEL configuration is. Apart from determining the proper
matching strategy involving the linear chirp and taper, we
can study the interplay between power suppression and
FWHM reduction due to nonlinear chirp in order to find a
suitable working point, even for realistic, machine-relevant
scenarios. Moreover, even though our theoretical results are
based on a one-dimensional model, the essential conclu-
sions remain valid in a more complicated (3D) setup. To
demonstrate this, in Figs. 7 and 8, we show the results of a
GENESIS-based [17] 3D FEL simulation involving a
chirped drive beam. Specifically, Fig. 7 shows the chirp
profiles for the two cases considered (i.e., pure linear chirp
and linear chirp plus cubic component) while Fig. 8
presents the output of the FEL simulation in terms of

the radiation power and bunching factor along the undu-
lator. The simulation parameters we used are as follows:
500 eV photon energy, LCLS-like initial undulator param-
eter (K0 ¼ 3.5, increasing linearly to 3.85 over the undu-
lator length of 27 m), flattop current profile with a 2 fs
bunch length and a 4.5 kA current and 0.4 μm transverse
normalized emittance. The beam is considered matched to
a standard LCLS lattice, which translates into a roughly
constant transverse beam size ∼20 μm. As in the case of 1D
theory, Fig. 8 shows that adding a nonlinear (cubic) chirp to
the longitudinal profile of the beam clearly suppresses the
output power in the presaturation region but also reduces
the effective pulse length of the radiation.

IV. CONCLUSIONS

We have developed a one-dimensional, time-dependent
theoretical formalism that can adequately model the ampli-
fication portion of an eSASE-based FEL configuration. Our
formalism includes startup from noise, radiation slippage,
short-pulse effects, electron beam chirp (linear and non-
linear) and linear undulator taper. Working in the context of
a self-consistent, linearized Maxwell-Vlasov analysis, we
derived a Green’s function for the amplitude of the FEL

(a)

(b)

FIG. 7. Chirp profiles of the electron beam used in GENESIS
simulations. The upper graph shows the case of a pure linear
chirp, while the lower figure shows the phase-space profile after
the addition of a cubic chirp component at the head of the beam
(left-hand side of the graph). This example is pretty close to the
matched case in terms of linear chirp-taper compensation.

(a)

(b)

FIG. 8. Shot-averaged radiation power and bunching factor
along the undulator for the drive beam of Fig. 7 (the average
involves ten SASE shots). A power reduction/pulse shortening
effect due to nonlinear chirp is evident in the high-gain stage of
the linear region. The output radiation FWHM is about a third of
the bunch length of the electron beam.
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radiation, which allows us to determine the basic properties
of the radiation pulse prior to the onset of saturation.
As part of our derivation, we provide a rigorous proof of
the well-known compensation condition between linear
chirp and taper and generalize previous analytical results
for the Green’s function. Reasonable agreement is observed
between our formalism and the output of a 1D FEL
simulation code, while our technique is robust enough to
enable us to perform fast parameter scans. In the course of
such a parameter study, we explored the variation of the
radiation FWHM with respect to the electron bunch length
(establishing a linear dependence between the two) and also
observed an interesting pulse-shortening effect due to the
presence of a nonlinear chirp component in the e-beam.
This effect may have some practical applications in terms
of offering a scheme for further pushing the attainable
radiation pulse length well into the attosecond region.
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