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In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been
carried out in linear approximation, where the plasma perturbation can be assumed small and plasma
equations of motion linearized. This approximation breaks down in the blowout regime where a high-
density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its
wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and
transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used
for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and
laser-wakefield acceleration.
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I. INTRODUCTION

In the blowout regime of both plasma-wakefield (PWFA)
and laser-wakefield (LWFA) acceleration, plasma electrons
are expelled from the region behind the electron bunch, or a
laser driver, creating a cavity filled with the plasma ions
[1,2]. The longitudinal electric field inside this cavity is
used to accelerate a driven (or witness) electron bunch
which is also being focused by the positive charge of the
ions. The dynamics of the accelerating bunch can be
strongly affected not only by the electromagnetic forces
generated by the driver but also its own wakefields, both
longitudinal [3] and transverse. In particular, a major
concern for the future accelerators based on PWFA/
LWFA is the beam break-up instability caused by the
transverse wakefields in the cavity [4].
To study the beam stability in traditional accelerators one

usually invokes the concept of longitudinal and transverse
wakefields [5]. They are calculated by solving Maxwell’s
equation with proper boundary conditions for two point
charges—a leading source charge and a trailing witness
charge—passing through the system, and then finding the
longitudinal and transverse forces acting on the trailing
charge. Given the wakefields for point charges, also called
the wake Green functions, one then calculates the forces
inside the bunch for a given perturbation of the equilibrium
state and analyzes the stability of the perturbation. An
important property of the wakefields used in this analysis is

their linearity—the wake of a bunch is equal to the sum of
the wakes generated by its charges. The wake linearity
follows from the linearity of Maxwell’s equations and the
linearity of typical boundary conditions, such as at the
vacuum-metal or vacuum-dielectric boundaries.
In this paper we extend the classical wakefield theory to

the case of plasma acceleration in the blowout regime. The
setup is shown in Fig. 1: an accelerating bunch is located
inside an axisymmetric plasma cavity behind the driver.
Following the general scheme of the wakefield theory, we
consider two point charges of the accelerating bunch and
calculate the longitudinal and transverse forces exerting by
the leading charge on the trailing one. In the calculation of

leading charges

trailing charge

FIG. 1. Setup for calculation of the longitudinal and transverse
wakefields in the blowout regime. The blue dot on the left is the
driver. Trajectories of the plasma electrons are shown by colored
lines. The light-blue blob is the driven bunch with bunch
electrons shown by the red dots. For calculation of the longi-
tudinal wakefield both the leading and trailing electrons are on
the axis; for the transverse wakefield the leading electron is
displaced from the axis.
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the longitudinal wakefield both charges are located on the
axis of the system. For the calculation of the transverse
force we assume that the leading charge is displaced in the
transverse direction.
In order for the plasma wakes to be useful for the

standard stability analysis, they should be linear—only in
this case the wake of a bunch of particles can be obtained
by integration of the wake Green function with the bunch
charge distribution. In general this is not true because the
plasma wake is generated by a nonlinear flow of the plasma
electrons responding to the presence of the witness bunch
in the cavity. There are, however, two special cases when
the linearity of the longitudinal wake holds. In the first case,
the witness bunch charge is assumed so small that its field
can be considered as a perturbation, and the equations
describing the response of the plasma electrons to this
perturbation can be linearized. In the linearized problem the
wake is a linear function of the charges. In the second, more
practically interesting case, instead of the smallness of the
charge one assumes that the length of the witness bunch is
small, σz ≪ k−1p , where kp is the plasma wave number.
The linearity of the wake in this case is not immediately
evident—the remarkable property of the longitudinal
wake linearity on short distances has been discovered in
Ref. [6] for a bunch propagating in a uniform plasma. In
this paper we extend the treatment of Ref. [6] for the
calculation of the wake for a short bunch inside the plasma
cavity.
While the general method developed in this paper for the

calculation of wakefields is applicable to both PWFA and
LWFA, in our derivations in the subsequent sections we
assume an electron driver bunch.
The paper is organized as follows. In Sec. II we

formulate equations for the steady-state plasma flow
excited by a beam moving with the speed of light in a
uniform plasma. In Sec. III a concept of an electromagnetic
shock wave is introduced and is connected to the short-
range longitudinal wake in a plasma cavity. In Sec. IV
equations for the calculation of the longitudinal wake are
derived. In Sec. V the same procedure is applied to the
transverse wakefield in the cavity. Numerical examples of
wakefield calculations are presented in Sec. VI. Section VII
summarizes the results of the paper.
Throughout this paper we use the Gaussian system

of units.

II. BASIC EQUATIONS

We assume that the driver and witness bunches move
through the plasma with the speed of light c. Following the
standard convention, throughout this paper we use dimen-
sionless variables: time is normalized to ω−1

p , length to k−1p ,
velocities to the speed of light c, and momenta to mc. We
also normalize fields to mcωp=e, forces to mcωp, poten-
tials tomc2=e, the charge density to n0e, the plasma density

to n0, and the current density to en0c. Here e is the
elementary charge, e > 0.
We consider a steady state in which all the quantities

depend on z and t through the combination ξ ¼ t − z (the
z coordinate is directed along the axis of the system in the
direction of the beam motion). From the expressions for
the fields in terms of the scalar potential ϕ and vector
potential A, E ¼ −∇ϕ − ∂ξA, B ¼ ∇ × A, it is easy to
derive the following relations,

E⊥ ¼ −∇⊥ψ − ẑ × B⊥; Ez ¼ ∂ξψ ; ð1Þ

where ψ ¼ ϕ − Az, ∇ ¼ ð∂x; ∂y;−∂ξÞ, ẑ is the unit vector
in the z-direction, and the subscript ⊥ refers to the vector
components perpendicular to the z axis. Throughout this
paper we use the notation ∂a to denote differentiation with
respect to variable a.
In our analysis, the plasma is treated as a cold fluid with

ions represented as an immobile, positively charged neu-
tralizing background. The equations of motion of plasma
electrons are

dp
dt

¼ ∇ψ þ ẑ × B⊥ − v × B;
dr
dt

¼ p
γ
; ð2Þ

where p is the momentum, γ is the Lorentz factor,
γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
, and v is the velocity, v ¼ p=γ. These

equations conserve the quantity

γ − pz − ψ ¼ const ¼ 1; ð3Þ

where we have set the value of the constant equal to 1
because plasma electrons are initially at rest, pz ¼ 0 and
γ ¼ 1, in front of the driver where ψ ¼ 0.
In the steady state, the time derivatives in Eq. (2) are

replaced by the derivatives with respect to ξ, d=dt ¼
ð1 − vzÞ−1d=dξ. Using the relation ð1−vzÞ−1¼ γ=ð1þψÞ
that follows from Eq. (3), the equations of motion can be
written as

dp⊥
dξ

¼ γ

1þ ψ
∇ψ þ ẑ × B⊥ −

Bz

1þ ψ
p⊥ × ẑ;

dr⊥
dξ

¼ p⊥
1þ ψ

: ð4Þ

The continuity equation for the plasma electrons can be
written as follows:

∂ξ½neð1 − vzÞ� þ ∇⊥ · nev⊥ ¼ 0; ð5Þ

where ne is the plasma electron density. In this equation, the
electron flow is given by the product nev, which assumes
that the velocity v is uniquely defined at each point. This
is not always true for the blowout regime: there may be
several streams of flow at a given point in space with
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different velocities vs and densities nes; in this case the
flow is given by the sum over all the streams,

P
snesvs. Our

consideration is also valid for this case, however, to
simplify the notation, we will continue to write nev instead
of the sum

P
snesvs. Note that in our dimensionless

variables, the plasma current j is equal to the electron flow
with negative sign, j ¼ −nev.
We now derive equations for the electromagnetic field.

First, we substitute Eq. (1) into Gauss’s law,

∇ · E ¼ 1 − ne; ð6Þ

and use Ampère’s law ∇ × B ¼ ∂ξEþ j to obtain

Δ⊥ψ ¼ neð1 − vzÞ − 1: ð7Þ

Differentiating Eq. (7) with respect to ξ and using Eq. (5)
one can also derive the following equation for the longi-
tudinal electric field Ez ¼ ∂ξψ ,

Δ⊥Ez ¼ ∇⊥ · j⊥: ð8Þ

To obtain an equation for the magnetic field we take the curl
of both sides of the Maxwell equation ∇ × B ¼ ∂ξEþ j
which gives Δ⊥B ¼ −∇ × j. The latter can be decomposed
into the longitudinal and transverse parts,

Δ⊥Bz ¼ −ẑ · ð∇⊥ × j⊥Þ;
Δ⊥B⊥ ¼ ẑ × ∇⊥jz þ ẑ × ∂ξ j⊥: ð9Þ

Sometimes it is convenient to use an equation that is
obtained by projecting ∇ × B ¼ ∂ξEþ j onto the z-axis

∂ξEz þ jz ¼ −∇⊥ · ðẑ × B⊥Þ: ð10Þ

It is important to emphasize here that at a given value of ξ
and with the known transverse distributions of the plasma
density ne and the current j, the transverse dependence of
the fields are found uniquely from Eqs. (7) and (9).
Equations (4)–(9) are simplified in the case of axial

symmetry when the three components of the electromag-
netic field, Ez ¼ ∂ξψ , Er ¼ −∂rψ and Bθ, together with ψ ,

depend on ξ and r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
. The equations of motion (4)

reduces to

dpr

dξ
¼ γ

1þ ψ
∂rψ − Bθ

dr
dξ

¼ pr

1þ ψ
: ð11Þ

Equation (7) for the wake potential becomes

1

r
∂
∂r r

∂
∂rψ ¼ neð1 − vzÞ − 1; ð12Þ

and for the magnetic field we have

∂
∂r

1

r
∂
∂r rBθ ¼ −

∂
∂ξ nevr −

∂
∂r nevz −

∂nd
∂r : ð13Þ

Equation (8) for Ez can be integrated once to give

∂
∂r Ez ¼ −nevr: ð14Þ

Wewill also use Eq. (10), which in axisymmetric case takes
the following form:

∂Ez

∂ξ − nevz ¼
1

r
∂
∂r rBθ: ð15Þ

III. LONGITUDINAL WAKEFIELD INSIDE
THE PLASMA CAVITY

Before we consider a point charge moving inside a
plasma cavity, we will briefly summarize the results of the
steady-state solution of a point charge q propagating with
the velocity of light in a plasma of uniform density [6,7].
Let the charge position in the plasma be characterized by
the coordinate ξ ¼ t − z ¼ ξ0. Because of the assumption
v ¼ c, the plasma in front of the charge, ξ < ξ0, is not
perturbed. Behind the charge, at ξ > ξ0, a flow of plasma
develops with a sharp boundary between the region near
the axis from where the plasma electrons are expelled and
ne ¼ 0, and the region at large radii, where the electron
plasma density is not zero. The most salient feature of this
solution is that the transition from ξ < ξ0 to ξ > ξ0 occurs
through an infinitesimally thin layer in which the fields
have a delta-function discontinuity,

Er ¼ Bθ ¼ 2νK1ðrÞδðξ − ξ0Þ; ð16Þ

where K1 is the modified Bessel function of the second
kind, ν is the dimensionless magnitude of the charge,
ν ¼ qrekp=e, and re ¼ e2=mc2 is the classical electron
radius. In what follows, we will refer to this discontinuity
as the electromagnetic shock wave, or simply the shock,
for brevity.
Wewill now turn to the problem of wakefields excited by

a point source charge q located inside a plasma cavity at the
longitudinal position ξ ¼ ξ0 behind the driver bunch. We
assume an axisymmetric cavity and the source charge on
the z axis. Our goal will be to calculate the longitudinal
wakefield immediately behind the charge, at ξ ¼ ξþ0 . We
denote by Erðr; ξÞ, Ezðr; ξÞ and Bθðr; ξÞ the field generated
by the driver beam only (that is in the limit q ¼ 0), and by
Ẽrðr; ξÞ, Ẽzðr; ξÞ and B̃θðr; ξÞ the field in the presence of
the witness point charge q. Again, from the causality, it
follows that the field and the plasma flow in front of the
charge q do not change and hence E ¼ Ẽ, B ¼ B̃ in region
ξ < ξ0. The fields change behind the point charge, at
ξ > ξ0; moreover, we expect that there will be an
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electromagnetic shock wave, as described above, but with
yet unknown radial distribution of the field amplitude in
the shock. Hence, the general expression for the field with
the source charge q can be written as follows:

Ẽr ¼ Erðr; ξÞ þ ΔErðr; ξÞhðξ − ξ0Þ
−Dðr; ξ0Þδðξ − ξ0Þ; ð17aÞ

B̃θ ¼ Bθðr; ξÞ þ ΔBθðr; ξÞhðξ − ξ0Þ
−Dðr; ξ0Þδðξ − ξ0Þ; ð17bÞ

where hðξÞ is the step function equal to one for positive
arguments and zero otherwise, ΔEr and ΔBθ denote the
change of the field due to the charge q, and the terms with
the delta function represent a shock wave with the radial
profileDðr; ξ0Þ. The longitudinal electric field Ez exhibits a
discontinuity, ΔEz, on the shock wave,

Ẽzðr; ξÞ ¼ Ezðr; ξÞ þ ΔEzðr; ξÞhðξ − ξ0Þ: ð18Þ

The jump ΔEzðr; ξ0Þ is the longitudinal wake generated by
the charge q immediately behind it; we will show that this
field is proportional to the charge q.
When plasma electrons cross the shock wave at a given

radius r, due to its infinitesimal thickness, their crossing
time is vanishingly small. The crossing changes both the
transverse and longitudinal velocities, however, one can
neglect the transverse displacement of plasma electrons and
consider the crossing as occurring at a fixed value of r. The
problem then reduces to the relativistic motion of plasma
electrons in the field that depends only on one coordinate ξ.
The solution to this problem is well known [8,9]; for the
reader’s convenience we reproduce it in the Appendix. The
vector potential A in the Appendix for our case has only a
radial component Ar. Through the comparison of the
expressions for the fields in the shock wave (A1) with
the last terms in Eqs. (17), and the fact that Ar ∝ hðξ − ξ0Þ,
we find that the function Dðr; ξ0Þ is equal to Ar taken
behind the shock, D ¼ Arðξþ0 Þ. The solution (A13), (A14)
shows that the shock generates a discontinuity in the radial
flow nevr:

ΔðnevrÞ ¼
ne0ðr; ξ0Þ
γ0ðr; ξ0Þ

Dðr; ξ0Þ: ð19Þ

Here ne0ðr; ξ0Þ and γ0ðr; ξ0Þ refer to the values in the
unperturbed flow in front of the shock wave that are equal
to the corresponding values in the absence of charge q.
We can now obtain an equation for the functionDðr; ξ0Þ.

We substitute the magnetic field from Eq. (17b) into
Eq. (13) and integrate it over ξ from ξ ¼ ξ−0 to ξ ¼ ξþ0 .
The only contribution on the left-hand side comes from the
delta-function term in Eq. (17b), and on the right-hand side
the integration of ∂ξðnevrÞ gives a jump in nevr. Using

Eq. (19) for the jump we obtain a differential equation
for Dðr; ξ0Þ,

∂
∂r

1

r
∂
∂r rDðr; ξ0Þ ¼

ne0ðr; ξ0Þ
γ0ðr; ξ0Þ

Dðr; ξ0Þ: ð20Þ

The variable ξ0 is a parameter in this equation.
Substituting Eq. (18) into Eq. (15) and equating the

terms proportional to δðξ − ξ0Þ we relate ΔEz to D:

ΔEzðr; ξ0Þ ¼ −
1

r
∂
∂r rDðr; ξ0Þ: ð21Þ

Differentiating this equation with respect to r and using
Eq. (20) we can also obtain

∂
∂rΔEzðr; ξ0Þ ¼ −

ne0ðr; ξ0Þ
γ0ðr; ξ0Þ

Dðr; ξ0Þ; ð22Þ

which is more convenient in numerical calculations.
Integration of this equation yeilds

ΔEzðr; ξ0Þ ¼
Z

∞

r
dr0Dðr0; ξ0Þ

ne0ðr0; ξ0Þ
γ0ðr0; ξ0Þ

: ð23Þ

Taken with the minus sign and normalized by the dimen-
sionless charge ν ¼ qrekp=e, gives the longitudinal wake
wl on the axis behind the source charge located at
coordinate ξ0 in the bubble, wl ¼ ν−1ΔEzð0; ξ0Þ. In the
next section, we will show how to calculate this wake for
given functions ne0 and γ0.

IV. CALCULATION OF THE
LONGITUDINAL WAKE

Before applying Eq. (23) to the wakefield inside the
plasma cavity, we consider first two simpler examples of
the calculation of the longitudinal wake with this equation.
In the first example, we consider a point charge qmoving

with the speed of light through a plasma with uniform
density, ne ¼ 1. We can use all the results of the previous
section by simply setting E ¼ 0, B ¼ 0, which means that
there are no fields in front of the charge q. To find the
structure of the shock wake we need to solve Eq. (20)
with γ0 ¼ 1 and ne0 ¼ 1. The boundary conditions for the
function DðrÞ are the following: DðrÞ → 0 when r → ∞
and

DðrÞ → 2ν

r
; when r → 0: ð24Þ

The second condition means that at small distances the
plasma currents do not shield the vacuum magnetic field
of the relativistic point charge, Bθ;vac ¼ 2ν=r. These two
boundary conditions uniquely define the solution of Eq. (20),
D ¼ 2νK1ðrÞ, in agreement with Eq. (16). Having found
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DðrÞ we can now integrate Eq. (22) and find ΔEz,
ΔEz ¼ 2νK0ðrÞ. Using the Taylor expansion of K0ðrÞ for
r ≪ 1 we find that in this region ΔEz ≈ −2ν lnðrÞ: the
longitudinal field behind the point charge has a singularity
on the axis. The field at small r is positive: it accelerates
plasma electrons in the direction−z, opposite to the direction
the charge motion.
In the second example, a point charge propagates along

the axis of a hollow cylindrical plasma channel of radius a.
The plasma density is zero, ne ¼ 0, for r < a, and ne ¼ 1
for r > a. In vacuum, the right-hand sides of Eqs. (20) and
(22) are zeros and solving these equations we find ΔEz ¼
ΔEz0 ¼ const and D ¼ 2ν=r − rΔEz0=2, where we have
used the boundary condition (24) and also Eq. (21). In
plasma, at r > a, we haveD ¼ CK1ðrÞ andΔEz ¼ CK0ðrÞ
where C is a constant. The unknown constants C and ΔEz0
are found from the continuity of D and ΔEz at r ¼ a:

2ν

a
−
a
2
ΔEz0 ¼ CK1ðaÞ; ΔEz0 ¼ CK0ðaÞ: ð25Þ

Solving these equations we obtain

C ¼ 2ν

a

�
K1ðaÞ þ

a
2
K0ðaÞ

�
−1

¼ 4ν

a2K2ðaÞ
; ð26Þ

and the longitudinal wake

wl ¼
4K0ðaÞ
a2K2ðaÞ

: ð27Þ

This result agrees with the longitudinal wake in a plasma
channel derived in Ref. [10]. Note however, that the wake in
that reference is valid in the limit of a small charge only,
while in our derivation we do not need to assume the
smallness of the charge. In the limit a ≫ 1 we find that
wl ≈ 4=a2 which is a standard universal expression for the
wake at a short distance behind a point charge propagating
in a round pipe of radius a with resistive, dielectric, or
corrugates walls [11,12]. In the opposite limit, a ≪ 1, we
find wl ≈ 2 lnð2=aÞ − 2γE with γE ¼ 0.577 the Euler con-
stant. We see that in this example, as well as in the previous
one, the electric field ΔEz is proportional to the charge ν.
We now return to the problem of the longitudinal

wakefield inside a bubble cavity in the blowout regime
of PWFA. As in the previous example, inside the bubble
at a given ξ, we have ΔEz ¼ ΔEz0 ¼ const and D ¼
2ν=r − rΔEz0=2. Outside of the bubble we need to
solve Eq. (20) with the boundary condition at infinity
Dðr → ∞Þ → 0. Let us denote by D̂ðrÞ a particular
solution of this equation that satisfies this boundary
condition and also D̂ðrbÞ ¼ 1, where rb is the radius of
the cavity at the location ξ0 of the source charge (in what
follows, we omit ξ0 from the arguments of all functions).
The general solution at r>rb is DðrÞ¼CD̂ðrÞ. Introducing
the auxiliary function

ΔÊz ¼
Z

∞

r
dr0D̂ðr0Þ

X
s

ne0ðr0Þ
γ0ðr0Þ

; ð28Þ

we also haveΔEz ¼ CΔÊz. The unknown factorC is found
from the continuity of D and ΔEz analogous to Eq. (25),

C ¼ 2ν

rb

�
1þ rb

2
ΔÊzðrbÞ

�
−1
; ð29Þ

with the longitudinal wake on the axis wl ¼ ΔEz0=ν
equal to

wl ¼
2ÊzðrbÞ

rb

�
1þ rb

2
ΔÊzðrbÞ

�
−1
: ð30Þ

For a given radial distributions of the plasma density ne0
and the Lorentz factor γ0 outside of the bubble the two
functions D̂ and ΔÊz can be computed numerically at each
cross section of the cavity. Examples of such numerical
calculations are presented in Sec. VI.

V. TRANSVERSE WAKE

We will now calculate the dipole transverse wake. For
this, we consider the charge q as moving with an offset a
inside the plasma cavity, where the magnitude of a is much
smaller than k−1p . This charge can be considered as having
a dipole moment d ¼ qa. The electromagnetic field of a
dipole moving with the speed of light in free space is

E ¼ 2δðξ − ξ0Þ
2ðd · rÞr − dr2

r4
; B ¼ ẑ × E; ð31Þ

where r ¼ ðx; yÞ is the two-dimensional vector
perpendicular to the z axis and ξ0 defines the longitudinal
position of the dipole. Assuming that d is directed along x
we can write its electric field in the cylindrical coordinate
system r, θ, z as

�
Er

Eθ

�
¼ 2d

r2
δðξ − ξ0Þ

�
cos θ

sin θ

�
: ð32Þ

When the relativistic dipole d propagates inside the
plasma cavity it changes the cavity field at ξ > ξ0, similar
to the monopole case. Due to the vector nature of the dipole
perturbation the monopole equations Eqs. (17) and (18) are
now replaced by

Ẽ⊥ ¼ E⊥ þΔE⊥ðx; y;ξÞhðξ− ξ0Þ−Dðx; y;ξÞδðξ− ξ0Þ
B̃⊥ ¼ B⊥ þΔB⊥ðx; y;ξÞhðξ− ξ0Þ− ẑ×Dðx; y; ξÞδðξ− ξ0Þ
Êz ¼ Ez þΔEzhðξ− ξ0Þ; ð33Þ

where D is a two-dimensional vector, D ¼ ðDx;DyÞ.
Comparing the singular terms in Eq. (33) with the
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expressions for the fields (A1), and taking into account that
A ∝ hðξ − ξ0Þ, we find that D ¼ Aðξþ0 Þ. The jumps in the
transverse currents nvx and nvy are expressed through the
vector potential using Eq. (A13) which reduces to

Δðnev⊥Þ ¼
ne0
γ0

D: ð34Þ

Equation (20) is now replaced by

Δ⊥D ¼ Δðnev⊥Þ ¼
ne0
γ0

D: ð35Þ

The equations for the change of the z-components of the
electric field through the shock wave can be obtained from
Eq. (10),

ΔEz ¼ −∇⊥ · Dðx; y; ξÞ; ð36Þ

from which we obtained Eq. (21) in axisymmetric case.
Generalizing the vacuum expressions (32), we now seek

the function D in the following form:

�
Dr

Dθ

�
¼ uðrÞ

�
cos θ

sin θ

�
: ð37Þ

Substituting this equation into Eq. (35) we obtain a
differential equation for the function uðrÞ,

u00 þ u0

r
−
4u
r2

¼ u
ne0
γ0

: ð38Þ

Using Eq. (36) we find that ΔEz ¼ ΔÊz cos θ where

ΔÊz ¼ −
∂u
∂r −

2u
r
: ð39Þ

Inside the bubble the right-hand side of Eq. (38) is zero and
the solution is u ¼ br2 þ 2d=r2 which gives for ΔEz

ΔÊz ¼ −4br; ð40Þ

where b is a constant that should be defined from the
matching of u at the bubble boundary, as it was done in the
previous section.
We can now find the transverse force using the Panofsky-

Wenzel theorem [13] that relates the longitudinal derivative
of the transverse force with the transverse derivative of the
longitudinal field (in our dimensionless units),

∂F⊥
∂ξ ¼ ∇⊥ðΔEzÞ: ð41Þ

With account of Eq. (40) we can write ΔEz as ΔEz ¼
−4br cos θ ¼ −4bx, from which we conclude that the
transverse force is in x-direction,

Fx ¼ −4bðξ − ξ0Þ: ð42Þ

Because this expression was derived with an assumption
that the charge offset was in the x direction, it is clear that,
in general, F⊥ is directed along a. The force F⊥ normalized
by the charge ν and by the offset a is the transverse wake
inside the bubble.
In the next section we will present an example of

numerical calculations of the wake inside a bubble cavity
generated by a driver bunch.

VI. NUMERICAL EXAMPLES

To be able to calculate the wakefields in the plasma
bubble using the method developed in the preceding
sections we first need to find the plasma flow behind the
driver bunch without the charge that generates the wake-
field. There are several established computer codes that
can solve this problem numerically [14–16]. We, however,
found it more convenient to developed a new, fast computa-
tional code PLEBS (stands for PLasma-Electron Beam
Simulations) [17] implemented in a MATLAB script that
solves the plasma flow behind the driver and can be run on
a desktop computer.

FIG. 2. Orbits of plasma electrons behind a driver bunch. The
center of the driver beam is located at ξ ¼ 0 and the rms driver
length in dimensionless units is equal to 0.5.

FIG. 3. The dimensionless longitudinal electric field on the axis
of the bubble as a function of coordinate ξ.
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In our numerical example, the driver bunch has the
following parameters: the rms bunch length σz ¼ 13 μm,
the rms transverse size σr ¼ 5 μm, the bunch charge 1 nC.
The bunch propagates in plasma with the density
n0 ¼ 4 × 1016 cm−3 (the plasma length parameter is
k−1p ¼ 26 μm). These are parameters representative of
the beam-plasma experiments at FACET-II National User
Facility being constructed at SLAC [18].
The driving beam has a peak current of 9 kA, and is

dense enough to deflect plasma electrons passing through it
to large radii and to form a plasma bubble shown in Fig. 2.
Each line in this plot is a trajectory of a plasma electron.
One can see a well defined boundary of the plasma bubble
formed behind the driver.
Figure 3 shows the longitudinal electric field on the axis

of the bubble. Here, the negative values of Ez correspond to
the deceleration, and the positive values—to acceleration of
electrons moving in the direction of the beam. One unit of
the dimensionless electric field corresponds to the gradient
of 19.2 GeV=m.
Using parameters of the plasma flow in this simulation

we numerically solved Eqs. (20) and (38) for the strength of
the shock wave for different positions ξ of the source of the
wakefield, and calculated the longitudinal and transverse
wakefields. These wakes are shown by solid lines in Fig. 4.
It is interesting to compare the calculated short-range

wakes with their analogs in a round pipe of radius a. It was
already mentioned in Sec. IV that the longitudinal short-
range wake is wl ¼ 4=a2, and it does not depend on the
electrodynamic properties of the material wall of the pipe
[11,12]. Similarly, the short-range transverse wake under
the same conditions is a linear function of the distance z
between the source and the witness charges with the slope
dwt=dz ¼ 8=a4. It was argued in Ref. [4] that these
expressions for the wakes can be used as an approximation
for the wakes in the limit of large charge of the driver when
the pipe radius a is replaced by the bubble radius rbðξÞ at
the location of the source. These approximations are
shown in Fig. 4 by dashed lines—one can see that they

overestimate the wake for our particular example of the
bubble. The discrepancy between the simple formulas and
our calculations can be explained in the following way. The
electromagnetic field of the point charge q penetrates into
the plasma at distance of the order of k−1p from the cavity
boundary, which makes the effective bubble radius larger
than rb. Because rb enters into the formulas for the wake in
the denominator, this makes the analytical estimate larger
than the exact calculations. This explanation also offers
a way to obtain more accurate estimates of the wakes:
replace the pipe radius a by rbðξÞ þ αk−1p , where α is a
numerical coefficient of the order of one.1 Our test of
several cases show that a good approximation for the wakes
is given by the following formulas

wlðξÞ ¼
4

ðrbðξÞ þ 0.8k−1p Þ2 ;

dwt

dz
¼ 8

ðrbðξÞ þ 0.75k−1p Þ4 : ð43Þ

Wakefields calculated using these formulas are also shown
in Fig. 4, by dot-dashed red lines. We also simulated two
more cases with the same dimensions of the bunch as
above, but with different charges of the driver—2 and 4 nC.
The calculated wakefields and the fitting formulas are
shown in Fig. 5. We see that Eq. (43) provide an excellent
approximation for the wakes. Note also that a driver with a
larger charge has smaller wakes—this is explained by the
fact that a larger charge generates a bubble of a larger
radius.
As was already discussed in the Introduction, our

calculation of the wakes is applicable to short witness
bunches with the length smaller than the inverse plasma
scale k−1p . At the same time, we do not require the charge of
the witness bunch to be small—it may well be comparable,

FIG. 4. Longitudinal wake (left panel) and the slope of the transverse wake (right panel) in the plasma bubble shown in Fig. 2. The
dashed lines show the wakes calculated using the simple formulas for the short-range wakes in a cylindrical pipe. The red dot-dashed
lines are plotted using Eq. (43).

1The idea of fitting the plasma wakefields by formulas where rb
is increased by k−1p was proposed to the author by V. Lebedev.
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or larger, than the driver bunch. To illustrate this point, we
numerically calculated the longitudinal wake generated by a
Gaussian witness bunch for two values of the witness bunch
length. In the first case, the rms length was 3 μm, and in the
second case it was 13 μm. In comparison with k−1p ¼ 26 μm
the first bunch can be considered as much shorter than k−1p ,
while for the second one this requirement is barely satisfied.
We used the driver beam and plasma parameters listed at
the beginning of this section. In both cases the charge of the
witness bunch was 1 nC—the same as the charge of the
driver bunch—with the center of the bunches located at
ξc ¼ 106 μm (the dimensionless value of ξ equal to 4). The
longitudinal wake was calculated as a difference between the
electric field Ez on axis (taken with the minus sign) with and
without the witness bunch. For comparison with this numeri-
cally computed wake, we also calculated the bunch gen-
erated Ez by convoluting with the bunch distribution the
point charge wake wlðξÞ ¼ w0hðξÞ [see Eq. (18)] with the
value w0 ¼ 9.65 MV=ðpCmÞ taken at the location ξc from
Fig. 4. In Fig. 6, these calculated profiles of Ez are shown by
dashed lines together with the simulated wake in the regions

�3σz around the center of the bunch. One can see a very
good agreement between the simulated and calculated wakes
for the short bunch, and not as good agreement for the longer
bunch, as one would expect.

VII. SUMMARY

In this paper, we developed a method for calculation of
short-range longitudinal and transverse wakefields in the
blowout regime. This method is valid for short witness
bunches, with the rms bunch length smaller than the inverse
plasma wave number, k−1p . Calculating the Green function
excited by a point charge moving inside a plasma bubble,
we introduced a concept of the electromagnetic shock wave
where the electromagnetic field has a delta-function sin-
gularity in the plane perpendicular to the direction of
motion. We showed that the wakes scale linearly with
the source charge, and they can be calculated from
equations that involve the radial distributions of the plasma
density and energy outside of the plasma bubble. We also
showed on several numerical examples that simple ana-
lytical formulas, Eq. (43), provide a good fitting to both
longitudinal and transverse wakes. These simple formulas
for the wakes can be used for analysis of beam loading in
PWFA and also for a study of the beam breakup instabilities
in the plasma-based acceleration.
We emphasize that for calculation of both the longi-

tudinal and transverse wakes one only needs to solve the
blowout plasma flow behind the driver beam in the absence
of the witness bunch. For an axisymmetric driver (which we
assume in this paper) such a solution can easily be obtained
with the existing simulations codes.
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FIG. 5. Longitudinal wake (left panel) and the slope of the transverse wake (right panel) for 2 nC (label 1) and 4 nC (label 2) driver
bunches. The red dot-dashed lines are plotted using Eq. (43).

FIG. 6. Simulated and analytically computed longitudinal wake
generated by a witness bunch inside a plasma bubble. The solid
black line corresponds to the witness bunch rms length 3 μm, and
the solid blue line is the wake for a witness bunch of 13 μm in
length. The dashed lines of the corresponding color are calculated
by the convolution of the longitudinal wake from Fig. 4 at the
location of the center of the witness bunch.
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APPENDIX: PLASMA FLOW THROUGH
ELECTROMAGNETIC SHOCK WAVE

As is explained in the main text, locally, we can neglect
the transverse variation of the electromagnetic field in the
shock wake. Directing the x-axis of the local coordinate
system along the electric field in the shock, and the y-axis
along the magnetic field, we express the field in the shock
through the vector potential A ¼ ½AðξÞ; 0; 0� such that

ExðξÞ ¼ ByðξÞ ¼ −A0ðξÞ; ðA1Þ

where the prime denotes the derivative with respect to the
argument. The electric and magnetic fields in the shock
wake are proportional to δðξ − ξ0Þ, which means that A is
the step function, AðξÞ ∝ hðξ − ξ0Þ; however, in the der-
ivation below we treat AðξÞ as an arbitrary function of its
argument.
Consider an electron located in front of the field where

A ¼ 0 with an initial momentum ðpx0; py0; pz0Þ. As the
electron begins to interact with the field its momentum
changes according to the equation of motion,

dp
dt

¼ −E − v × B; ðA2Þ

from which we find that dpy=dt ¼ 0 (we remind the reader
that the negative sign on the right-hand side of this equation
takes into account the negative electron charge). Hence py

is an integral of motion, py ¼ py0 ¼ const. For the motion
in x-direction we have

dpx

dt
¼ −Ex þ vzBy ¼ ð1 − vzÞA0 ¼ d

dt
A; ðA3Þ

where we have used the relation dA=dt ¼ ð∂t þ vz∂zÞA ¼
ð1 − vzÞA0. Hence px − A ¼ const and taking into account
the initial values A ¼ 0 and p ¼ px0, we obtain

px ¼ Aþ px0: ðA4Þ

We now turn to the equation for pz. We have

d
dt

pz ¼ −vxBy ¼ vxA0 ¼ 1

2γ
½ðA2Þ0 þ 2A0px0�; ðA5Þ

where we have used vx ¼ ð1=γÞðAþ px0Þ. It is also useful
to write down the equation for the γ-factor,

d
dt

γ ¼ −vxEx ¼ −vxBy ¼
d
dt

pz ðA6Þ

from which it follows that γ − pz ¼ const ¼ γ0ð1 − vz0Þ,
and

γ−1 ¼ ð1 − vzÞγ−10 ð1 − vz0Þ−1; ðA7Þ

where γ0 is the initial value of γ before the acceleration.
We will now show that the two terms on the right-hand
side of Eq. (A5) are full time derivatives. For the first term,
we have

1

γ
ðA2Þ0 ¼ 1

γ0ð1 − vz0Þ
ð1 − vzÞðA2Þ0

¼ 1

γ0ð1 − vz0Þ
dA2

dt
: ðA8Þ

A similar transformation shows that the second term is
proportional to dA=dt. This allows us to integrate Eq. (A5)
over time:

pz ¼
1

2γ0ð1 − vz0Þ
ðA2 þ 2Apx0Þ þ γ0vz0: ðA9Þ

Having solved a single particle motion through the shock
wave, we will now consider what happens to the plasma
flow when it crosses the shock. Let ne0 be the initial plasma
density. Because we neglect the transverse derivatives, the
continuity equation (5) reduces to ∂ξ½neð1 − vzÞ� ¼ 0, from
which we find

neð1 − vzÞ ¼ ne0ð1 − vz0Þ: ðA10Þ

As was mentioned in Sec. II, there may be a multistream
flow in the plasma—in this case Eq. (A10) is valid for
each stream.
We are also interested in the jump of the transverse flows

nevx and nevy through the shock wave. Using Eq. (A4)
we obtain

nevx ¼
Aþ γ0vx0
γð1 − vzÞ

ne0ð1 − vz0Þ

¼ ne0vx0 þ ne0
1

γ0
A; ðA11Þ

where we have used (A7). We also have

nevy ¼ ne0
1 − vz0
γð1 − vzÞ

γ0vy0 ¼ ne0vy0 ðA12Þ

The last two equations can be combined into a vectorial
one,

nev⊥ − ne0v⊥0 ¼
ne0
γ0

A; ðA13Þ

where v⊥ and A are two-dimensional vectors with A
defined by

AðξÞ ¼ −
Z

ξ

−∞
dξ0E⊥ðξ0Þ; ðA14Þ
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where E⊥ðξÞ is the transverse electric field in the shock
wave. Equation (A13) is valid everywhere inside the
shock—we will use it for calculation of the jump in the
transverse plasma flow through the shock wake taking
the limit ξ → ∞ in Eq. (A14).
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