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Weak, rotated magnetic and radio frequency quadrupole fields in electron guns and injectors can couple
the beam’s horizontal with vertical motion, introduce correlations between otherwise orthogonal transverse
momenta, and reduce the beam brightness. This paper discusses two important sources of coupled
transverse dynamics common to most electron injectors. The first is quadrupole focusing followed by beam
rotation in a solenoid, and the second coupling comes from a skewed high-power rf coupler or cavity port
which has a rotated rf quadrupole field. It is shown that a dc quadrupole field can correct for both types of
couplings and exactly cancel their emittance growths. The degree of cancellation of the rf skew quadrupole
emittance is limited by the electron bunch length. Analytic expressions are derived and compared with
emittance simulations and measurements.
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I. INTRODUCTION

Optical aberrations are a major limitation to the beam
quality of modern electron injectors and accelerators. This
is especially true for the low-voltage guns and injectors
required for high-duty factor and high-average current
operation. In these systems, the beam is made large to
mitigate space-charge forces. However, this large beam is
more sensitive to aberrations such as the spherical aberra-
tion, which increases the emittance as the fourth power of
the transverse beam size, and the chromatic aberration,
which is proportional to the beam size squared.
Here we examine the coupled transverse dynamics

aberration, which also strongly depends on the beam size.
Coupled transverse dynamics results when the electrons
have azimuthal momenta and their trajectories are no longer
coplanar with the beam axis. The trajectories are ”coupled”
because the electron’s x coordinate depends not just on x
and x0 but also on y and y0, and similarly for the y
coordinate. This paper assumes the mathematical theory
is linear and applies 4 × 4-matrix algebra to compute the
electron dynamics. We concentrate on the 4D transforma-
tion of a rotated quadrupole which skews the electrons
about the beam axis. Since the 4D rotation is linear, the 4D
emittance does not grow. However, there is emittance
growth in both the x-x0 and y-y0 2D phase spaces due to

skew trajectories. Fortunately, the theory and simulation
show that it can be eliminated with a rotated corrector field,
because the coupling is correlated.
In his 1970 Ph.D. thesis, Ripken described a theory of

the coupled transverse dynamics in electron storage rings
for high-energy physics experiments [1]. His and studies
which followed [2] used 4D-matrix algebra to show that the
beam luminosity could be increased (emittance decreased)
by correcting for transverse plane coupling with a skew
quadrupole. Recent theoretical work describes the coupled
dynamics by generalizing the Courant-Snyder theory with
a 4D symplectic rotation [3]. A useful introduction to
the matrix theory for electron beams can be found in
Wiedemann’s book [4].
This paper concentrates on beam quality degradation due

to quadrupole fields which are themselves rotated or when
the beam has been rotated in a solenoid with respect to
normally aligned quadrupole fields. Herewe study two beam
line components which are common sources of rotated
quadrupole fields. The first is a weak quadrupole field
followed by a solenoid, and the second is the quadrupole
field produced by the coupler which feeds rf power into a
cavity through rotated or unbalanced ports [5,6].
The emittance of quadrupole followed by a solenoid is

simply the emittance growth of the rotated quadrupole
field, with a rotation angle equal to the sum of the
quadrupole’s rotation plus the beam’s Larmor rotation in
the solenoid. Although we assume the weak quadrupole
field is near the solenoid, the field can, in fact, be anywhere
before the solenoid. This includes the quadrupole rf fields
of a rf gun followed by a focusing solenoid.
The transverse coupling due to rf fields can be eliminated

by canceling the on-axis dipole and quadrupole fields with
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a dual rf feed and a racetracklike cavity shape [7]. Such
designs have been implemented into modern rf guns [8] and
upgraded rf couplers for room temperature linacs [9].
However, many accelerator rf cavities are built without
these features, because the designs already exist, and the
redesign, fabrication, and testing costs of new rf structures
are prohibitively expensive, especially for superconducting
rf cavities. Fortunately, as will be shown in this paper, much
of this rework is unnecessary, since the quadrupole rf field
can be exactly canceled with a low-field dc quadrupole.
This paper is organized as follows. The next section

defines the terms rotated, normal, and skew quadrupole
fields and derives the emittance growth produced by a
rotated quadrupole field. Section III gives a general dis-
cussion of the fields of ideal solenoids, with only radial
fields, and realistic solenoids possessing quadrupole fields.
Quadrupole field measurements for a solenoid are pre-
sented. In Sec. IV, expressions for the coupled transverse
dynamics emittance of the beam in a solenoid preceded by
a weak quadrupole field are derived, and the emittance
cancellation with a corrector quadrupole is demonstrated
using analytic and numerical calculations as well as
measurements. Section V discusses the rf quadrupole field,
its induced emittance growth, and emittance cancellation
with a dc corrector quadrupole. Finally, a summary of the
work is presented in Sec. VI.

II. EMITTANCE GROWTH DUE TO ROTATED,
NORMAL, AND SKEW QUADRUPOLE FIELDS

Figure 1 shows the equipotential surfaces for quadrupole
magnetic fields with rotated, normal, and skew Bθ-field
patterns. The normal-quadrupole field (center drawing in
Fig. 1) is aligned to the midplane of symmetry with
Byðx; yÞ ¼ −Byðx;−yÞ and Bxðx; y ¼ 0Þ ¼ 0 along the x
axis. Rotating the field 45° about the þz axis (out of the
page) results in a skew quadrupole field (right drawing in
Fig. 1). The term rotated quadrupole is given to a quadru-
pole field having an arbitrary angle of axial rotation with
respect to the normal-quadrupole field orientation. The

rotated quadrupole field is equal to the vector sum of
normal and skew quadrupole fields. As will be shown, only
the skew component of a rotated quadrupole generates
emittance, and therefore only a skew quadrupole corrector
is necessary to cancel the emittance growth. The normal
component of a rotated quadrupole produces no emittance;
however, including a normal-quadrupole corrector allows
returning the beam to its original transverse shape.
The beam transformation matrix for a quadrupole rotated

about the þz axis is found by first rotating the beam about
the z axis, then transforming through a normal quadrupole,
and lastly rotating the beam back to zero rotation. Using the
matrix and angle conventions of the TRANSPORT and MAD

optics codes [10], the transformation matrix for a rotated
quadrupole is given by

Rrotquadðα; fÞ ¼ Rrotð−αÞRquadðfÞRrotðαÞ: ð1Þ
Here Rrot and Rquad are the standard 4 × 4matrices which

rotate and quadrupole-focus the beam, respectively. Rrot
rotates the beam clockwise an angle α about the positive z
axis. Therefore, the quadrupole rotation angle α is shown
going counterclockwise in Fig. 1. Rquad is for a thin
quadrupole lens with focal length f. Multiplying the
matrices gives the transformation matrix for a thin quadru-
pole lens with focal length f and rotation angle α as

Rrotquadðα; fÞ ¼

0
BBBBB@

1 0 0 0

− cos 2α
f 1 − sin 2α

f 0

0 0 1 0
− sin 2α

f 0 cos 2α
f 1

1
CCCCCA: ð2Þ

The focal strength depends upon the beam energy and
the integrated quadrupole field gradient:

1

f
¼ e

βγmc
Leff

∂By

∂x
����
x;y¼0

: ð3Þ

FIG. 1. Magnetic equipotential surfaces for rotated, normal, and skew quadrupole fields. The coordinate system is right-handed with
the z axis pointing out of the page. The normal-quadrupole field is focusing in the x plane and defocusing in the y plane for electrons
traveling along the þz axis.
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Here the effective length of the quadrupole field is Leff ,

βγmc is the beam momentum, and ∂By

∂x jx;y¼0
is the quadru-

pole gradient evaluated on the z axis. Defining Q to be the
integrated quadrupole field gradient,

Q≡ Lquad
∂By

∂x
����
x;y¼0

;

allows us to write the focal strength more concisely as the
integrated field divided by the beam’s momentum:

1

f
¼ eQ

βγmc
: ð4Þ

Let Σ represent a 4 × 4 beam matrix whose elements
describe an ellipse in ðx; x0; y; y0Þ space. The diagonal
elements of the Σ matrix are the beam size or divergence
for each dimension squared. Transforming the beam matrix
Σð0Þ through the rotated quadrupole gives the final beam
matrix Σð1Þ:

Σð1Þ ¼ RrotquadΣð0ÞRT
rotquad: ð5Þ

If we assume the initial beam is collimated with perfectly
parallel rays, then the emittance is zero, and Σð0Þ is

Σð0Þ≡

0
BBBBB@

Σxxð0Þ 0 0 0

0 0 0 0

0 0 Σyyð0Þ 0

0 0 0 0

1
CCCCCA: ð6Þ

The nonzero beam matrix elements of Σð0Þ are equal to
the horizontal and vertical beam sizes squared:

Σxxð0Þ ¼ σ2x and Σyyð0Þ ¼ σ2y: ð7Þ
The volume of the beam ellipsoid in four dimensions

gives the normalized 4D-emittance:

ϵn;4D ¼ βγ
ffiffiffiffiffiffiffiffiffiffi
detΣ

p
: ð8Þ

Clearly, there is no 4D-emittance growth for the rotated
quadrupole, since the rotation transformation is symplectic
[3]. However, the emittance does increase for the 2D phase
space distributions in xx0 and yy0. The x-plane emittance
growth is given by the 2 × 2 submatrix in the upper left-
hand corner of the 4D beam matrix. Writing out the
emittance in terms of this submatrix gives

ϵn;x ¼ βγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

���� Σxx Σxx0

Σxx0 Σx0x0

����
s

: ð9Þ

Applying these relations and working through the matrix
algebra leads to the normalized 2D emittance growth
generated by a rotated quadrupole:

ϵn;rotquad ¼ βγ
σxσy
f

j sin 2αj: ð10Þ

The x- and y-plane emittance growths are equal, since
the rotation affects both planes the same. As expected, there
is no emittance growth for a normal quadrupole (α ¼ 0).
Since the skew component of the rotated field strength is
1

fskew
¼ 1

f sin 2α, Eq. (10) shows that the emittance growth of
a rotated quadrupole is due solely to its skew component.
In terms of Q, the rotated quadrupole normalized

emittance becomes

ϵn;rotquad ¼ σxσy
eQ
mc

j sin 2αj: ð11Þ

Thus, the normalized coupled transverse emittance
growth is a simple product of the beam sizes, the integrated
quadrupole field, and the sine function of twice the
quadrupole rotation angle.

III. FIELDS OF THE SOLENOID

A. The ideal solenoid

The fields of the ideal solenoid have axial symmetry
about the z axis in cylindrical coordinates. Therefore, the
fields are independent of the azimuth angle with Bθ ¼ 0.

Radial integration of ∇⃗ · B⃗ ¼ 0 leads to the following well-
known relation for fields with axial symmetry [11]:

Br ¼ − r
2

∂Bz

∂z : ð12Þ

Thus, the slope of the Bz field, ∂Bz∂z , determines the
location and extent of the solenoid’s fringe fields. These
radial fields give the electrons a momentum kick in the θ
direction which begins the beam’s rotation in the solenoid.
An opposite kick at the exit (due to Bz’s opposite slope)
cancels the initial azimuthal kick, so the beam exits with
zero azimuthal momentum.
Using Eq. (12) for the radial field, the focal strength of a

solenoid is found to depend upon the solenoid’s maximum
interior field squared:

1

fsol
¼ e2B2

0Lsol

2ðγβmcÞ2 : ð13Þ

Here the maximum interior field is B0, the effective
length of the solenoid is Lsol, and the beam’s total
momentum is γβmc.
The ideal solenoid generates little emittance growth for

small, low energy spread beams. However, the growth can
be significant for large beams due to spherical aberrations
and for beams with energy spread [12]. Computing the
spherical emittance requires knowing the fields at large
radii either by measurement, by analytic extrapolation, or
with a magnetic field finite element code. These radial
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fields can then be either integrated numerically for the field
integrals or used directly in a beam simulation code to
numerically compute the emittance as a function of the
initial beam size to obtain the spherical emittance growth.

B. Solenoid with quadrupole fields

Although the ideal solenoid has only radial and longi-
tudinal fields, its field can excite the surrounding magnetic
material and generate azimuthal fields. In our experience,
these extraneous materials (such as a vacuum pipe with
magnetic welds), which are excited by the solenoid’s field,
often produce the strongest multipole fields and are therefore
the most likely to cause emittance growth.
Once again ∇⃗ · B⃗ ¼ 0, but now there is an extra term for

the azimuthal field:

1

r
∂
∂r ðrBrÞ þ

1

r
∂Bθ

∂θ þ ∂Bz

∂z ¼ 0. ð14Þ

Multiplying by rdr and integrating gives the more
general form of Eq. (12) which includes the azimuth field
gradient:

Br þ
∂Bθ

∂θ ¼ − r
2

∂Bz

∂z : ð15Þ

Thus, the slope of the longitudinal field equals the total
strength of the transverse fields. This is like the focusing by
a dipole magnet, where tilting the poles increases the
vertical focusing but it also lowers the horizontal focal
strength. For a dipole field, the sum of the two transverse
strengths equals the bend angle over the bend radius [13].
Measurements are necessary to determine both the

strength and multipolarity of the Bθ field and if it depends
upon the solenoid’s field or not. If the Bθ field does not
scale with the solenoid field, then these fields are referred to
as stray quadrupole fields. Stray fields are produced
by magnetic materials or devices which are located near
the beam line but are not magnetically connected with the
solenoid’s field. However, if Bθ is proportional to the
solenoid field, then this field is referred to as the solenoid’s
anomalous field. These fields are called anomalous because
they are unexpected irregularities or anomalies of the
solenoid’s field. Anomalous quadrupole fields can be
caused by quadrupolelike features in the solenoid’s coil
or yoke design or by magnetic material placed (uninten-
tionally) within the solenoid’s magnetic circuit. Both
anomalous and stray quadrupole fields can increase the
emittance if they are rotated, as just discussed in Sec. II, or
if they precede a solenoid, as discussed later. The next
section describes magnetic field measurements of the Linac
Coherent Light Source (LCLS) gun solenoid.

C. Multipole field measurements of a solenoid

Figure 2 shows magnetic measurements for the LCLS-I
gun solenoid [14]. The upper plot is the z dependence of the
longitudinal field, as measured using a three-axis Hall
probe. The lower plot is the integrated quadrupole gradient
and rotation angle as a function of z. The integrated
quadrupole field gradient as measured by a short rotating
coil is

Qmeas ≡ Lcoil
B2ðr ¼ rcoilÞ

rcoil
: ð16Þ

Here Lcoil is the axial length of the rotating coil, rcoil is
the radius of the coil, and B2ðr ¼ rcoilÞ is the quadrupole
field at the coil’s radius.
The rotating coil measurements show that quadrupole

fields peak at the ends of the solenoid as expected from the
previous discussion in Sec. III B. The data also show that
the quadrupole angle changes 90° between the ends, which
corresponds to a polarity reversal. In addition, the quadru-
pole fields scale with the solenoid’s field. Therefore, they
qualify as anomalous quadrupole fields of the solenoid.
These properties suggest that there is some magnetic

FIG. 2. Magnetic measurements of the LCLS gun solenoid for
an integrated field of 0.046 T-m. Top: Hall probe measurements
of the solenoid axial field. The transverse location of the
measurement axis (the z axis) was determined by minimizing
the radial field. Bottom: Rotating coil measurements of the
quadrupole field. The rotating coil dimensions were 2.5 cm long
with a 2.8 cm radius. The measured quadrupole field is thus
averaged over these dimensions.
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material which is unintentionally within the solenoid’s
magnetic field or quadrupolar coil winding error.
In our experience, the sources of these low quadrupole

fields were difficult to identify and control even with state-
of-the-art, finite-element-analysis calculations and follow-
ing rigorous fabrication practices with a careful selection of
materials. Therefore, we decided to install weak normal and
skew quadrupole correctors in the LCLS-I solenoid and
optimize their settings with the beam itself. Measurements
of the beam emittance taken while optimizing the quadru-
pole correctors are described later in Sec. IV D.

IV. COUPLED TRANSVERSE DYNAMICS IN
QUADRUPOLE+SOLENOID SYSTEMS

In this section, we develop a simple yet accurate model
for understanding the effects of a quadrupole and solenoid
system with coupled transverse trajectories. These theo-
retical studies and numerical simulations confirm that the
emittance growth is due to well-defined coupled dynamics
between the transverse planes. In addition, the theory,

simulation, and experiments show that the emittance
growth can be canceled with a correcting quadrupole field.
In this theory, the full 4D transverse transport matrix

conserves the 4D emittance, since the transformation is
linear in four dimensions. However, both the 2D subspaces
of xx0 and yy0 can gain emittance because of nonzero cross
terms in the beam matrix. The linear 4D transformation
generates cross terms or correlations between the x and y
planes via nonzero off-diagonal beam matrix elements such
as Σxx0 Σxy , Σx0y, Σx0y0 , etc. Since a rotated quadrupole can
also create these cross terms, it is possible to use a corrector
quadrupole to control them and the emittance they produce.

A. Emittance due to a quadrupole field
near the entrance of a solenoid

The emittance growth of a normal quadrupole followed
by a solenoid is computed assuming a normal-quadrupole
field followed by a solenoid. The ðx; x0; y; y0Þ transforma-
tion of a beam ray through a thin quadrupole lens followed
by a solenoid can be written as [15]

RsolRquad ¼

0
BBBBB@

cos2KL sinKL
K sinKL cosKL sin2KL

K

−K sinKL cosKL cos2KL −Ksin2KL sinKL cosKL

− sinKL cosKL − sin2KL
K cos2KL sinKL cosKL

K

Ksin2KL − sinKL cosKL −K sinKL cosKL cos2KL

1
CCCCCA

0
BBBBB@

1 0 0 0

− 1
f 1 0 0

0 0 1 0

0 0 þ 1
f 1

1
CCCCCA: ð17Þ

Here L is the effective length of the solenoid, K ≡ eB0

2βγmc,
B0 is the maximum interior magnetic field of the solenoid,
and f is the focal length of the quadrupole field before the
solenoid. The beam is rotated through the angle KL by the
solenoid.
As shown earlier, an initial 4 × 4 beam matrix Σð0Þ can

be transported through the quadrupole and solenoid pro-
ducing the exit beam matrix Σð1Þ:

Σð1Þ ¼ RsolRquadΣð0ÞðRsolRquadÞT: ð18Þ

Using the same Σð0Þ for a perfectly parallel beam as
before and working through tedious matrix algebra gives
the expected result for the transverse-plane emittance
growth of a normal quadrupole followed by a solenoid as

ϵn;quadþsol ¼ βγ
σx;solσy;sol

f
jsin 2KLj: ð19Þ

In other words, the emittance growth of a normal
quadrupole followed by a solenoid is that of the quadrupole
rotated the Larmor angle of the solenoid. The emittance
growth is the same for both the x and y planes.
Substituting the integrated quadrupole field for 1=f,

one finds the coupled transverse dynamics normalized

emittance growth depending only upon the beam size,
the integrated quadrupole field, and the rotation angle of the
beam in the solenoid:

ϵn;quadþsol ¼ σx;solσy;sol
eQ
mc

jsin 2KLj: ð20Þ

Figure 3 compares this simple formula with a particle
tracking simulation for a solenoid preceded by a normal-
quadrupole field. The initial beam had zero emittance and
zero energy spread and was circular and uniform. No space-
charge forces are included in the simulation. The figure
shows the normalized emittances given by Eq. (19) and the
simulation, plotted as a function of the rms beam size at the
solenoid entrance. The normal-quadrupole focal length is
50 m for a 6 MeV beam energy. This corresponds to an
integrated quadrupole field gradient of 4.3 G, which is
similar to the measured field of the LCLS solenoid (see
Fig. 2). The analytic theory and the simulation assume a
short quadrupole field with this integrated quadrupole field
located at the solenoid’s entrance. The simulation emittance
is slightly larger, since it includes both the coupled trans-
verse dynamics emittance being discussed here and
the geometric aberration. The good agreement verifies
the model’s assumptions and illustrates that even a weak,
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normal-quadrupole field can produce significant emittance
growth when combined with the rotation in a solenoid field.
If the quadrupole field is rotated an angle α, as shown in

Fig. 1, then, by induction, one adds the quadrupole’s rotation
anglewith the solenoid rotation angle to obtain the emittance:

ϵn;quadþsolðαÞ ¼ σx;solσy;sol
eQ
mc

j sin 2ðKLþ αÞj: ð21Þ

In Fig. 4, the emittance growth given by Eq. (21) and
simulations is plotted as a function of the quadrupole angle
of rotation. The integrated quadrupole field is Q ¼ 4.3 G,
followed by a strong solenoid (focal length of 12 cm,
integrated field of 0.046 T m). The beam energy used in the
simulation was 6 MeV. At this beam energy, a 4.3 G
quadrupole field focuses the beam with a 50-m focal length.
In both the analytic theory and the simulation, the emittance
growth becomes zero whenever

KLþ α ¼ π

2
ð22Þ

or every 90°. The slight offset in the emittance and angle
between the theory and simulation could result from the
third-order emittance of the solenoid’s nonlinear radial
fringe fields which are included in the simulation but not in
the model.

B. Cancellation of the emittance due
to transverse coupling in a solenoid

In this subsection, the solenoid and quadrupole fields are
modeled for a quadrupoleþ solenoidþ quadrupole (qsq)
configuration. Figure 5 shows the model layout and the
quadrupole and solenoid parameters used to compare the
analytic theory with numerical simulations. The quadru-
pole corrector, or quad corrector, used to cancel the
transverse coupled emittance is located after the solenoid.
If the solenoid is a thick lens, then the beam size will be

smaller at the exit than the entrance. However, the previous
discussion showed that the coupled dynamics emittance
depends upon the square of the beam size. Therefore, it is
important to use different beam sizes for the solenoid and
quadrupole and the quad corrector. For the case considered
here, simulations give the beam size at the corrector as
0.55 mm rms when the beam is 1 mm rms at the solenoid
entrance.
This effect is easily added to the theoretical model by

defining the x- and y-rms beam sizes at the quadrupole as
σx;quad and σy;quad, respectively, and revising the expression
for the coupled transverse emittance gives

ϵn;qsq ¼ βγ

����σx;solσy;solf1
sin2ðKLþα1Þþ

σx;corσy;cor
fcor

sin2αcor

����:
ð23Þ

The focal length for the rotated-quadrupole field preced-
ing the solenoid is f1, and its rotation angle is α1. The

FIG. 3. Normalized emittance due to the quadrupole-solenoid
coupling given by Eq. (19) (solid line) and by a particle tracking
simulation (dashed line) for the case of the LCLS solenoid. For a
beam energy of 6 MeV, the quadrupole focal length was 50 m.
This corresponds to an integrated quadrupole field of 4.3 G. The
solenoid had an integrated field of 0.046 T-m, giving a focal
length of ∼12 cm. The simulation is done with the GPT
code [16].

FIG. 4. The emittance growth for a quadrupole-solenoid system (shown on the left) as a function of the quadrupole rotation angle. The
theory (solid line) is computed using Eq. (21) and the simulation (dashed line) is done with the GPT code. The initial beam size at the
solenoid is 1 mm-rms for both the x and y planes. The quadrupole and solenoid fields are the same as Fig. 3.
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quadrupole after the solenoid is a quad corrector with focal
length fcor and rotation angle αcor.
The layout and parameters for this q1solqcor system given

in Fig. 5 are used to compare Eq. (23) with numerical
simulations. As shown in the figure, the beam size at the
quad corrector is approximately half its size at quad1, as
determined from the simulation.
Figure 6 shows normalized emittance growths of the

analytic theory and numerical simulation for the q1solqcor
configuration with the parameters given in Fig. 5. The plots
show the normalized x-plane emittance for a 6 MeV beam
as a function of the quad-corrector rotation for the theory
(left) and simulation (right). In all cases, quad1 is a normal
quadrupole with a 50-m focal length. The emittance is
plotted for quad-corrector focal lengths of 15, 20, 40, and
infinite meters. The 50-m focal length corresponds to an
integrated quadrupole gradient of 4.3 G, and the 15-, 20-,
and 40-m focal lengths correspond to Q values of 21.5,
14.3, and 5.4 G, respectively.
It is important to point out that the quad corrector can be

located almost anywhere, even before the solenoid. This is
because the quadrupole fields have very long focal lengths

and, within the thin lens approximation, the spacing
between and location of the elements becomes irrelevant.
Therefore, the focal strengths simply add. However, since
the quad-corrector focal strength scales with the inverse
beam size squared, it should be located where the beam is
large. This will minimize the quad-corrector strength
needed to cancel the anomalous quadrupole fields.

C. Simulation and measurements of an injector
with a quadrupole field in a solenoid

The effectiveness of the quadrupole correction has been
validated with the simulations of the LCLS injector. The
LCLS injector includes 5.5-MeV rf gun, a main solenoid
for emittance compensation, and two linac sections to boost
energy to 135 MeV [17]. The ASTRA code [18] including
3D space-charge forces is used to simulation the LCLS
injector. Figure 7 shows the emittance vs z for no quadru-
pole fields with only the solenoid field (blue line), the
emittance due to a weak normal quadrupole (focal length
11.5 m) at the entrance of the solenoid (green line), and the
weak quadrupole emittance corrected by a quadrupole with
a focal length of 28.6 m and rotation angle of 11.5° after the
solenoid (red line). These results show that the emittance
grows about 20% if there is a weak quadrupole field
situated at the entrance of the solenoid. The red curve
shows this emittance growth can be completely corrected
by a weak, rotated quadrupole in the region downstream of
the solenoid. Therefore, the simulations verify the analyses
of the previous sections.
Two long quadrupole correctors, one normal and one

skew, are installed inside of the solenoid for the LCLS-I
injector [14]. Figure 8 shows one example of the exper-
imental data of the injector emittance measured at 135 MeV
vs the skew quadrupole corrector field strength. Shown are
typical measurements made during LCLS-I operations to
optimize the beam emittance.

FIG. 5. Quadrupole-solenoid-quadrupole configuration and
parameters used to compare emittance growth computed with
the analytic model and numerical simulations shown in Fig. 6.
The beam energy is 6 MeV.

FIG. 6. Comparison of the transverse coupled emittance for a q1solqcor configuration as a function of the quad-corrector rotation angle
as computed by Eq. (23) (left) and a numerical simulation (right). The configuration and parameters are given in Fig. 5. The emittance
growth is for quad1 with a fixed focal length of 50 m and quad-corrector focal lengths of 15, 20, 40, and infinite meters. The beam
energy is 6 MeV. The 15-, 20-, and 40-m focal lengths correspond to 21.5, 14.3, and 5.4 G, respectively, integrated fields.
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The data in Fig. 8 have been fit with the quadratic sum of
the quadrupole-solenoid-quadrupole emittance with the
other unknown but constant emittances ϵother, using the
following expression:

ϵexpt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵother

2 þ
�
ϵcoupled þ

e
mc

σx;corσy;corQcor

�
2

r
: ð24Þ

Here ϵcoupled is the emittance growth due to the uncor-
rected coupled transverse dynamics of the injector, andQcor
is the integrated quadrupole field gradient of the quadru-
pole corrector. The x-rms and y-rms beam sizes at the quad
corrector are σx;cor and σy;cor, respectively. The fit to the
data assumes that these are the same and equal to 0.6 mm-
rms. Since the data were taken using the skew quadrupole
corrector, the sin 2α factor in Eq. (23) is equal to one.
A single curve has been fit to both the x- and y-plane
emittances. However, the offset in emittance between the x
and y planes suggests that the other-effects emittance for
the y plane is approximately 25 nm larger than the x plane’s
other emittance. The data are shown with 5% error bars.
The fit (dashed line) shows that the emittance is mini-

mized when the integrated field of the skew quad corrector
is 7 G, corresponding to a 31-m focal length for a 6 MeV
beam. The emittance due to other effects is ϵother ¼
0.46 μm (solid line). The fit is the quadrature sum of this
emittance and the total coupled transverse dynamics
emittance growth given inside the second set of brackets
of Eq. (24). The total coupled transverse dynamics emit-
tance growth is the sum of the unwanted coupled emittance,
ϵcoupled, and the quad corrector’s emittance. Since the quad-
corrector field can be positive or negative, it can have the
opposite sign of the unwanted coupled emittance and cancel
it. The fit gives ϵcoupled ¼ 0.15 μm for the coupled transverse
dynamics emittance growth. Since the rf cavities of this
injector were designed to have compensated rf quadrupole
fields [14], this emittance ismost likely due to the anomalous
quadrupole fields of the solenoid. These results are consistent
with the measured fields shown in Fig. 2.

V. COUPLED TRANSVERSE DYNAMICS DUE
TO THE ROTATED FIELDS OF RF COUPLERS

This section discusses the quadrupole fields of an rf
coupler. These fields are linear in x and y near the beam
axis but rotated about the beam axis due to the mechanical
constraints of the coupler design. It is shown by calculation
and simulation that the emittance generated by these coupler
fields can be cancelled with a dc corrector quadrupole field.

A. Analysis of the rf coupler field

Maxwell’s equations show that the transverse electric
fields over a small region near the beam axis can be
specified as a linear expansion obeying the following
relations between the field gradients [19]:

Ex ¼ Ex;0 þ
∂Ex

∂x xþ ∂Ex

∂y y; ð25Þ

Ey ¼ Ey;0 þ
∂Ex

∂y x − ∂Ex

∂x y: ð26Þ

A coupler gives the beam an instantaneous kick in
voltage along the x, y, and z directions. Each component

FIG. 7. Simulations of emittance cancellation with a quadru-
pole corrector: The emittance without a quadrupole field at the
solenoid entrance (blue line), the emittance with a normal
quadrupole at the entrance of the solenoid (green line), and
emittance correction with a quadrupole corrector downstream of
the solenoid (red line).

FIG. 8. LCLS injector emittance at 100 pC for the x and y
planes vs the skew quadrupole corrector integrated field strength
Qcor. The emittance (points w/error bars) was measured at a beam
energy of 135 MeV. The dashed curve shows the fit to the data
with Eq. (24). The other-effects emittance ϵother is shown by the
solid line at 0.46 μm. The fit indicates that the coupled transverse
dynamics emittance growth ϵcoupled is 0.15 μm.
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of the kick gives the beam an instantaneous jump in voltage
when the beam transits the coupler. Following the literature
[20], the complex voltage kick factor is defined as

v⃗ðx; yÞ≡ V⃗ðx; yÞ
Vzð0; 0Þ

≅

0
B@

vx0 þ vxxxþ vxyy

vy0 þ vyxxþ vyyy

1þ � � �

1
CA; ð27Þ

where the complex voltage kick V⃗ðx; yÞ is given by
integrals of the coupler fields along lines parallel to the
z axis (beam’s optical axis):

V⃗ðx; yÞ ¼
Z

½E⃗ðr⃗Þ þ icβ⃗ × B⃗ðr⃗Þ�eiωz=cdz: ð28Þ

The B⃗ term is imaginary to account for its π=2 rf phase
shift in time with respect to the electric field. The complex
voltage kick factor gives the electrons a momentum
impulse of [20]

p⃗ ¼ Refv⃗ðx; yÞeiϕsg eVacc

c
: ð29Þ

Here ω is the rf frequency and c is the speed of light.
Equation (29) is the transverse momentum of an electron at
a distance s behind the head electron and having phase
ϕs ¼ ωs

c þ ϕhead with respect to the coupler’s rf waveform.
This phase relation assumes that the beam is relativistic.
Writing out the components of the coupler’s x-y plane
momentum kick shows that the spatial and phase depend-
ences can be separated into a complex voltage amplitude
and phase, whose real part gives the transverse momentum
kick of the coupler:

�
px

py

�
coupler

¼ eVacc

c
Re

��
v0x þ vxxxþ vxyy

v0y þ vyxxþ vyyy

�
eiϕs

	
:

ð30Þ

Dividing by the total momentum converts this to the
coupler’s angle kick vector:

�
x0

y0

�
coupler

¼ eVacc

βγmc2
Re

��
v0x þ vxxxþ vxyy

v0y þ vyxxþ vyyy

�
eiϕs

	
:

ð31Þ

Applying the relation between the field gradients shown
in Eqs. (25) and (26) reduces the number of independent
elements of the kick matrix from four to two:

�
x0

y0

�
coupler

¼ eVacc

βγmc2
Re

��
v0x þ vxxxþ vxyy

v0y þ vxyx − vxxy

�
eiϕs

	
:

ð32Þ

Absorbing the various factors and phase (time) depend-
ence into a renormalized voltage kick matrix given by ~v
allows one to write

�
x0

y0

�
coupler

¼
�
~v0x þ ~vxxxþ ~vxyy

~v0y þ ~vxyx − ~vxxy

�
: ð33Þ

The ~v0x;0y terms are the coupler’s dipole kicks which can
be canceled with nearby steering dipoles. Simulations show
that dipole steering is very effective at mitigating the dipole-
kick emittance produced when the beam goes through the
coupler at the wrong angle and/or transverse position.
The ~vxx terms indicate uncoupled x-plane focusing,

because the final angle kick is proportional to x, and
similarly for the y plane. Thus, ~vxx is the focal strength of
the normal-quadrupole component of the rf field. This
focusing does not produce any emittance growth, except
that due to the time dependence of the rf fields. The cross
term ~vxy is related to the skew component of the rf’s
quadrupole field and does generate emittance growth. As
will be shown later, this is similar to the growth generated
by the beam’s rotation in a solenoid and can be canceled
using a rotated quadrupole.

B. The emittance due to rotated rf-coupler
quadrupole fields

For simplicity, let us assume that the electron bunch
distribution in the xy plane is uniform inside a square area
having dimensions −R < x < R by −R < y < R. This
trivial distribution simplifies the calculation of the varian-
ces and averages needed for deriving the coupler-induced
emittance while retaining the essential physics. The vari-
ance and standard deviation for this 2R × 2R square uni-
form distribution are, respectively,

hx2i ¼ hy2i ¼ R2

3
and σx ¼

Rffiffiffi
3

p : ð34Þ

The normalized emittance for the x plane is defined as

ϵn ¼ βγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihx02i − hxx02i

q
: ð35Þ

Here it is important to include the correlation hxx0i term
in the emittance definition. After some tedious algebra, the
coupler-induced emittance is found to be solely due to the
cross term vxy of the complex voltage kick:
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ϵn;couplerðsÞ ¼
eVacc

mc2
σ2x

����vrxy cos
�
ωs
c

þ ϕhead

�

þ vixy sin

�
ωs
c

þ ϕhead

�����: ð36Þ

Here vrxy and vixy are the real and imaginary parts,
respectively, of vxy.
Equation (36) gives the transverse emittance of a thin

slice of the bunch, a distance s behind the bunch head. The
rf phase of the bunch head is ϕhead, and the tail is a bunch
length, lbunch, behind it at the rf phase of ωlbunch

c þ ϕhead.
Figure 9 shows as an example the head and tail emittances
vs the rf phase for a head-tail phase difference of 10 degrf.
(Here the unit degrf is defined as one degree of phase at
the rf frequency of interest, which, in this case, is
1.3 GHz.) The head minus the tail emittance is also
plotted and shows that the difference is 20 nm or less,
which is small compared to the uncorrected emittance of
more than 100 nm; confirming the effect is mostly due
to the skewed quadrupole field rather than the phase-
dependent kick.
The emittance over the length of the bunch can be

computed by averaging the slice emittance in Eq. (36)
over the longitudinal distribution of electrons. Assuming
the longitudinal distribution is uniform with full width,
lbunch, then the bunch average emittance can be found
from

hϵn;coupleri ¼
R lbunch
0 ϵn;couplerðsÞdsR lbunch

0 ds
: ð37Þ

Inserting the coupler slice emittance gives

hϵn;coupleri ¼
eVacc

mc2
σ2x

����vrxy


cos

�
ωs
c

þ ϕhead

��

þ vixy



sin

�
ωs
c

þ ϕhead

������: ð38Þ

Taking the averages and expanding in terms of the bunch
length gives the projected emittance of the bunch:

hϵn;coupleri¼
eVacc

mc2
σ2x

���ðvrxy cosϕheadþvixy sinϕheadÞ

− ðvrxy sinϕheadþvixy cosϕheadÞ
Δϕbunch

2

���: ð39Þ

The first term inside the absolute value function gives the
emittance growth due to the rotated transverse quadrupole
field and generates emittance even for infinitesimal bunch
length. The second term depends linearly upon the bunch
length as well as the coupler’s skew field. For the short
bunches considered here Δϕbunch ≪ 1, and the second term
can be ignored, and the rf-coupler emittance growth
becomes

hϵn;coupleri ¼
eVacc

mc2
σ2xjvrxy cosϕhead þ vixy sinϕheadj: ð40Þ

It is important to note that, even if vxy ¼ 0, there remains
emittance growth from the normal-quadrupole term vxx,
due the bunch’s phase length. The phase emittance occurs
because the rf field is time dependent. This changing field
then gives different quadrupole kicks along the bunch
length and generates projected emittance growth. The first
term in Eq. (39) is absent for a normal-quadrupole rf field,
since a normal-quadrupole has no emittance growth.
However, the bunch length dependent term remains with
vxy replaced by vxx. This emittance growth due to bunch
length can be mitigated by shaping the rf cavity [21] or
introducing additional penetrations into the cavity walls
[22] to cancel both normal and skew components of the
quadrupole rf field on the beam axis.

C. Cancellation of coupler kicks with
a rotated quadrupole field

As shown in Sec. II, the kick angle vector in the xy plane
for a quadrupole with focal length f and rotation angle α
can be written as

�
x0

y0

�
rotquad

¼
�− cos 2α

f x − sin 2α
f y

− sin 2α
f xþ cos 2α

f y

�
: ð41Þ

Comparing Eqs. (33) and (41), one can define the normal
and skew components of the coupler’s quadrupole field:

FIG. 9. The head (s ¼ 0, solid line) and tail (ωstailc ¼ 10 degrf,
dashed line) emittances vs phase for σx ¼ 1 mm. The emittance
difference in the head and tail (red line) is a maximum when the
beam is on the crest of the rf waveform. The coupler voltage and
kick are Vacc ¼ 20 MV and vxy ¼ ð3.4þ 0.2iÞ × 10−6=mm,
respectively, which are typical parameters for SRF cavities
[20]. Here the unit degrf is a degree of phase at the rf frequency
of 1.3 GHz.
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~vxx;coupler ¼ − cos2αcoupler
fcoupler

and ~vxy;coupler ¼
sin2αcoupler
fcoupler

:

ð42Þ

Here the subscript ”coupler” has been added to denote
that these are kicks due to the rotated quadrupole field of a
rf coupler. These relations allow us to model the coupler
fields equivalently as a quadrupole with focal length fcoupler
and rotated αcoupler about the z axis. The rotation angle of

the coupler’s quadrupole field in terms of the normalized
voltage kicks is

αcoupler ¼ − 1

2
tan−1

~vxy
~vxx

: ð43Þ

Since the quadrupole fields are weak, we can again apply
the thin lens approximation and add Eqs. (33) and (41) to
give the total kick angle of the coupler and a quad corrector
located near the coupler:

�
x0

y0

�
total

¼
�
x0

y0

�
coupler

þ
�
x0

y0

�
quad

¼

0
BB@

n
~vxx − cos 2αcor

fcor

o
xþ

n
~vxy − sin 2αcor

fcor

o
yn

~vxy − sin 2αcor
fcor

o
x −

n
~vxx − cos 2αcor

fcor

o
y

1
CCA: ð44Þ

The symmetry of Maxwell’s equations, mentioned ear-
lier in this section, can now be appreciated. Equation (44)
proves that the emittance and the focusing effects of the
coupler can be exactly canceled with a rotated dc quadru-
pole corrector. It shows that the following two equations
determine the quad-corrector focal strength and rotation
angle which cancel the coupler quadrupole kick:

~vxx − cos 2αcor
fcor

¼ 0 and ~vxy − sin 2αcor
fcor

¼ 0. ð45Þ

Simultaneously solving these two equations gives paired
values for the quad corrector’s rotation angle and focal
strength which cancel the coupler field’s cross term
(emittance) and the quadrupole-focus term (astigmatism)
for a single slice of the bunch. Solutions for the quad-
corrector rotation angle and focal strength are, respectively,

αcor ¼
1

2
tan−1

~vxy
~vxx

; ð46Þ

1

fcor
¼ eVacc

βγmc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~v2xx þ ~v2xy

q
: ð47Þ

The normalized voltage kick factor ~v, in terms of the
complex voltage kick factor v, is

~vxxðϕsÞ ¼
eVacc

βγmc2
ðvrxx cosϕs − vixx sinϕsÞ ð48Þ

and

~vxyðϕsÞ ¼
eVacc

βγmc2
ðvrxy cosϕs − vixy sinϕsÞ: ð49Þ

Inserting these relations into Eqs. (46) and (47) gives the
quad-corrector rotation angle

αcorðϕsÞ ¼
1

2
tan−1

vrxy cosϕs − vixy sinϕs

vrxx cosϕs − vixx sinϕs
ð50Þ

and focal strength

1

fcorðϕsÞ
¼ eVacc

βγmc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvrxx cosϕs − vixx sinϕsÞ2 þ ðvrxy cosϕs − vixy sinϕsÞ2

q
: ð51Þ

These solutions are for a thin slice of the bunch transiting
the coupler at a bunch-rf phase of ϕs.
As a numerical example, we use the SRF coupler

parameters given in Dohlus’ paper [20] to compute the
corrector quadrupole requirements. His Table 1 gives the
normalized complex voltage kick factors as

vxx ¼ ð1 − 0.7iÞ × 10−6=mm; ð52Þ

vxy ¼ ð3.4 − 0.2iÞ × 10−6=mm: ð53Þ

These coupler kicks correspond to a normalizing voltage
of 20 MV and assume a beam kinetic energy of 800 keV
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such that βγ ¼ 2.5. Figure 10 shows the focal length and
rotation angle required to correct for these complex voltage
kicks as functions of the beam-to-rf phase. The correction
quadrupole rotation angle and focal length are given as
functions of the bunch’s head phase with respect to the
coupler rf waveform. A phase of 90 degrf corresponds to
the bunch head synchronized on the rf waveform crest.

D. Implementing quadrupole correctors
into the LCLS-II injector

The LCLS-II injector consists of a cw rf gun, two
solenoids for beam focusing, an rf buncher for bunch
compression, and one standard eight-cavity cryomodule
(CM) [23]. The standard eight-cavity CM is used to boost
the beam energy to∼100 from<1 MeV. The strong rotated
quadrupole rf field located at the power coupler of the CM
can increase the emittance, especially for a beam at low
energy with a large beam size. Figure 11 shows the
emittance simulations for a 300-pC bunch without coupler
fields (blue line), with 3D coupler fields (green line), and
with 3D coupler fields corrected by a quad corrector (red
line). The coupler fields are computed from the 3D CAD
model of the coupler’s walls, ports, etc. The emittance is
plotted vs z along the length of the injector to where the
emittance reaches its asymptotic value at 100 MeV. The
emittance grows about 20% when the 3D rf coupler fields
are included compared to the no coupler case. The
simulation shows that a quad corrector located near the
CM with 0.9 G integrated quadrupole gradient and −17.2°
rotation angle can eliminate the rf coupler’s emittance
growth (red vs green curves).
Because of these studies, we are planning to use a quad

corrector in the second solenoid for both the anomalous
quadrupole field and rf-coupler field correction in the
LCLS-II injector [24]. We may consider installing another
quad corrector near the entrance of the CM for the

coupler correction if the shared quad corrector is not strong
enough.

VI. SUMMARY AND CONCLUSIONS

This paper discussed two types of emittance growth due
to coupled transverse dynamics. These emittances are
caused by rotated quadrupole fields in combination with
a solenoid field and the rotated rf quadrupole fields of
high power couplers for accelerator linacs. Both effects are
commonly encountered in high brightness guns and
injectors.
The emittance growth caused by aweak quadruple field in

combination with a solenoidal field is analyzed for electron
injectors. And its correctionwith a rotated quadrupole field is
verified through analytical theory, simulations, and experi-
ments. It is also shown that rf couplers in rf cavities can
significantly degrade the emittance. Further theoretical
analysis and simulations show that this rf-coupler emittance
growth can also be completely corrected with a weak rotated
quadrupole. These quadrupole correction techniques for
solenoids and rf couplers have been implemented into the
LCLS-I and LCLS-II injectors as well as in the SwissFEL
injector [25] and the Cornell dc photocathode injector [26].
And finally, there is the potential use of rotated quadru-

pole correctors in highly dispersive systems such as chicane
bunch compressors to correct for a small coupling of the
transverse dynamics between the energy dispersed plane
and the orthogonal, nondispersed plane dynamics due
to slightly rotated dipoles. These and other examples
demonstrate the general applicability of rotated corrector
quadrupoles to uncouple the transverse dynamics of elec-
tron beams.

FIG. 11. LCLS-II injector emittance evolution with a perfect rf
field (blue line), with 3D rf coupler fields (green line), and
emittance cancellation using a weak (0.9 G) rotated (−17.2°)
correction quadrupole (red line) for 300 pC.

FIG. 10. The correction quadrupole rotation angle (dashed line)
and focal length (solid line) vs the beam to coupler rf phase for a
high-power coupler of a SRF linac. The corrector rotation angle is
discontinuous near the coupler phase of ∼125 degrf where the
denominator of Eq. (50) is zero and the 1

2
tan−1 function jumps to

stay within its principal value range of −45° and 45°.
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