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The effect of space charge on bunched beams has been the subject of numerous numerical and
experimental studies in the first decade of 2000. Experimental campaigns performed at the CERN Proton
Synchrotron in 2002 and at the GSI SIS18 in 2008 confirmed the existence of an underlying mechanism in
the beam dynamics of periodic resonance crossing induced by the synchrotron motion and space charge.
In this article we present an extension of the previous studies to describe the effect of space charge on a
controlled coupled (2D) third order resonance. The experimental and simulation results of this latest
campaign shed a new light on the difficulties of the 2D particle dynamics. We find striking experimental
evidence that space charge and the coupled resonance create an unusual coupling in the phase space,
leading to the formation of an asymmetric halo. Moreover, this study demonstrates a clear link between
halo formation and fixed-lines.

DOI: 10.1103/PhysRevAccelBeams.20.081006

I. INTRODUCTION

The effect of space charge in a bunched beam stored
for a time scale of one second has been the subject of
two experimental campaigns, the first at CERN [1], and the
second at GSI [2]. The necessity of those experiments was
motivated by new operational regimes required by the
FAIR project [3], and also by the recent interest of CERN in
using high brightness beams as part of the LIU project [4].
This unprecedented mode of operation in synchrotrons
leads to the interaction of space charge with lattice non-
linearities for large number of machine turns. A lot of
experience in non-linear dynamics has been gained from
projects with colliders and storage rings, in particular
for the LHC (see references in [5]). Also space charge
dominated beams have been studied in-depth [6]. The
accelerator operations experience in this hybrid scientific
regime is, however, a matter of further investigation.
The understanding of the key ingredients for operating

an accelerator in this regime poses a number of challenges.
First, it is conceptually difficult to describe beam loss and
emittance growth mechanisms. Second, one faces problems
in developing adequate computational models that will
be valid despite their unavoidable approximations. Last,
for the understanding of the complex beam dynamics, and
the development and validation of the code modeling, an

experimental verification is required: initially at a qualitative
level, in order to confirm the basic mechanism, and sub-
sequently via simulation codes toverify their predictive power.
At the numerical level, past studies have primarily

addressed the understanding of the effect of the space charge
on a single 1D resonance (nQx ¼ p). This choice allowed a
visualization of the dynamics in terms of Poincaré surfaces of
section, which in this case is two dimensional, making the
discussion of the basic mechanisms easier to understand.
The first experiment at the CERN Proton Synchrotron

(PS) [1] showed that a slow emittance growth takes place
during the timeof storage,when the space charge tune-spread
overlaps an artificially excited 4th order resonance. An
overall emittance growth of ∼80% after a storage time of
one second, was reported. The slow emittance growth was
attributed to the process of periodic resonance crossing
driven by the longitudinal motion of particles along the
bunch in combination with space charge induced detuning.
The experiment was modelled with a simplified lattice, and
the simulation results have approximately reproduced the
emittance growth. The numerical studies have also excluded
a significant contribution of coherent resonances. In fact, it
was found that the coherent effects of space charge [7–9]
are significantly Landau damped by the nonlinear detuning
from space charge itself [10]. This has allowed to limit the
modelling to the incoherent effects of space charge only.
These frozen models have been applied in similar studies of
single crossing of one resonance [11,12]. The conclusion
of the first experimental campaign was that the experiment
itself could not demonstrate the existence of the beam
physics mechanism invoked.
This point was readdressed later by an experimental

campaign at GSI [2], where two beams, one bunched and
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the other one coasting, with equivalent space charge tune
spreads were studied. The large emittance growth (after one
second of storage time) was found for high intensity and
bunched beams only. The experiment also showed that
nonlinear effects from the rf system did not cause sizeable
emittance growth. This experiment suffered from the fact
that one had to develop an approximate model for the
nonlinear errors exciting the natural 3Qx (1D) resonance
under scrutiny.
In this article we report the outcome of a joint CERN-GSI

experimental campaign conducted at the PS, to investigate
the effect of space charge on a coupled, i.e., 2D, 3rd order
resonance. Themotivation for this effort was two-fold: (i) the
necessity of understanding and studyingmitigation strategies
for the SIS100 injection scenario with Uþ28 ions; and (ii) the
LIU project requiring the control of high brightness beams.
The complication is that one cannot find a trivial extension
from 1D to 2D, even the presentation in terms of four
dimensional Poincaré surfaces of section is visually demand-
ing. In fact, a fresh theoretical analysis was required to
highlight and deepen our understanding of the various
aspects of 2D resonance structures [13,14].
We present the details about the experimental conditions

and discuss the methodology of the data treatment and the
associated simulations. This experiment has highlighted a
beam response pattern completely different from previous
observations, emphasizing the role of the coupled nonlinear
dynamics, chromaticity, and space charge on halo forma-
tion and beam core growth. The main experimental high-
light is the study of fixed-lines, and their interaction with
space charge. While in terms of single particle dynamics,
the theory of the fixed-lines is fully developed [13–22], the
interplay of these exotic objects with space charge remains a
subject of further study. Nevertheless, we will address some
aspects of the role of the fixed-lines in creating the observed
beam response.
The paper is structured in the following way: Sec. II

describes the experimental campaign and Sec. III its results.
In Sec. IV we discuss the simulation modeling and code
benchmarking, followed by a discussion of the results in
Sec. V. Section VI discusses the experimental results as a
consequence of the presence of fixed-lines. The conclusion
and an outlook are presented in Sec. VII. The Appendices A
and B provide details about the PS and the treatment of the
experimental data. Appendix C discusses the mathematical
aspects for characterizing the overlapping of the space charge
tune-spread with the resonance.

II. THE MEASUREMENT CAMPAIGN

The purpose of the experimental campaign was to study
the interplay between space charge and coupled 3rd order
resonances. Therefore, an appropriate resonance providing
sufficient separation from other excited resonances had to
be chosen. The resonances naturally excited in the PS were
extensively studied in [23], where strong excitation of the

skew sextupolar resonance 2Qx þQy ¼ 19 was reported.
Figure 1 shows a measured tune diagram at 2 GeV kinetic
energy, where the presence of several other, but weaker,
resonance lines is highlighted as well. Furthermore, the
normal sextupolar resonance Qx þ 2Qy ¼ 19 appears to be
only weakly excited and sufficient free space to accommo-
date the space charge tune spread is available in its vicinity.
Based on these considerations, as well as on the fact that
the resonance can be excited in a controlled way by two
sextupoles installed in the straight section (SS) 39 of the PS
ring, this resonance was selected for the study presented in
this article. Further information about the PS can be found
in Appendix A. As the strength of the line Qx þ 2Qy ¼ 19

appears to weaken close to the horizontal integer resonance,
a vertical tune of Qy ¼ 6.47 in combination with horizontal

FIG. 1. Top: Experimental tune scan at 2 GeV kinetic energy.
The color scale is proportional to the measured normalized beam
loss. The red color indicates maximum beam loss. Solid lines
indicate 2nd order, dashed lines 3rd order, and dash-dotted lines
4th order resonances. The resonance 2Qx þQy ¼ 19was found to
be strongly excited by natural nonlinear errors of the machine.
Grey areas indicate the absence ofmeasurement data [23]. Bottom:
Detail of the tune diagram shown in Fig. 1, with identical colour
scale. The sextupolar resonance Qx þ 2Qy ¼ 19 is shown with a
white solid line and the working points used for the systematic
study are indicated with the white crosses.

GIULIANO FRANCHETTI et al. PHYS. REV. ACCEL. BEAMS 20, 081006 (2017)

081006-2



tunes Qx extending from 6.0 to 6.2 were chosen to conduct
the experiment. Moreover, this was motivated by the goal of
staying as far as possible from the resonance 3Qy ¼ 19,
which is also excited by the machine errors.
As a first step during the experimental study, the

resonance was weakly excited by powering the sextupoles
with a current of ISX ≈ 2 A, corresponding to an integrated
sextupolar strength of K2 ¼ 0.0149 m−2 for each of them.
This integrated strength is comparable to that of the natural
errors in the injection scenario for SIS100, where a
significant space charge tune spread will overlap with a
sextupolar resonance of the type Qx þ 2Qy ¼ N.
In order to obtain a space charge tune spread exceeding

the resonance stop band, but remaining small enough to
avoid any overlap with the integer resonance Qx ¼ 6.0 for
all working points under consideration, the bunch intensity
was carefully adjusted. The ten working points selected for

this study are indicated by the white crosses in the bottom
plot of Fig. 1. The working points were chosen in this
specific way to vary the overlap between the tune spread
and the resonance. Since this study depends critically on
a precise knowledge of the machine tunes Qx0; Qy0, the
values were measured applying the base band tune meas-
urement technique (BBQ) [24] and the results are summa-
rized in Table I. Moreover, a list of relevant beam and
accelerator parameters is presented in Table II.
The measurements were conducted on a plateau of 2 GeV

kinetic energy, where the beam was stored for 1.1 s. In order
to characterize the transverse beam profiles, measurements
with the horizontal and vertical wire scanners [26], located in
SS68 and SS64, respectively, were recorded at the beginning
and at the end of the plateau (see Fig. 2). Furthermore, the
beam intensity was recorded using a beam current trans-
former [27] and the longitudinal phase space was recon-
structed applying the tomography technique [28]. In order to
compare the different profiles and to gain statistical signifi-
cance, each measurement was repeated three times.

III. EXPERIMENTAL RESULTS

The interaction between the beam and the 3rd order
coupled resonance was evaluated based on the measured
transverse profiles, and the emittance growth between the
initial and final measurements (ti ¼ 300 ms and tf ¼
1400 ms, respectively) was chosen as a figure of merit.
As set forth in Appendix B, the rms size σ, which

corresponds to either the horizontal or the vertical plane
of the profiles, was determined at the two time settings along
the measurement plateau. Subsequently, the ratio σ2f=σ

2
i was

computed, which is equal to the rms emittance growth ϵf=ϵi
in the vertical plane. This ratio takes a different meaning
when resonant phenomena alter the usual phase space
topology, as may happen in the case of halo formation.
Nevertheless, in this article we will refer to σ2f=σ

2
i as the

emittance growth in each plane.

TABLE I. Measured transverse tunes for the working points
used in the measurement campaign. The average value resulting
from three independent measurements is shown. The vertical tune
is slightly shifted with respect to the constant programmed value.
Δr0 corresponds to the distance of the resonance as defined in
Eq. (1).

Qx0 Qy0 Δr0 Qx0 Qy0 Δr0

6.039 6.479 −0.003 6.152 6.469 0.090
6.060 6.478 0.016 6.175 6.468 0.111
6.082 6.477 0.036 6.198 6.467 0.132
6.104 6.476 0.056 6.221 6.466 0.153
6.129 6.470 0.069 6.244 6.465 0.174

TABLE II. Beam and machine parameters.

Parameter Value

Intensity Np [1010 p] 55
Normalized horizontal rms emittance εnx [mm mrad] 3.6
Normalized vertical rms emittance εny [mm mrad] 2.2
Bunch length σt [ns] 33
Momentum spread Δp

p [10−3] 0.95
Horizontal maximum tune spread ΔQx;max

a −0.05
Vertical maximum tune spread ΔQy;max

a −0.07
Sextupole current ISX [A] 2
Harmonic number h 8
Rf voltage Vrf [kV] 20.5
Natural horizontal chromaticity Q0

x −5.30
Natural vertical chromaticity Q0

y −7.02
Kinetic energy of the stored beam [GeV] 2
Number of stored turns 497646
Storage time [s] 1.1
Relativistic β 0.948
Relativistic γ 3.14
Synchrotron period [turns] 1164
βx at the horizontal wire scanner in SS68 [m] 12.40
βy at the vertical wire scanner in SS64 [m] 21.75

aThe tune spread is calculated according to Ref. [25].

FIG. 2. Magnetic cycle of the PS as used for the measurements.
The first plateau starting at 170 ms corresponds to injection
kinetic energy at 1.4 GeVand the long plateau starting at 250 ms
to 2 GeV. For each working point the evolution of the transverse
profiles was recorded between 300 ms and 1400 ms as indicated
by the dashed lines. The final acceleration is required to extract
the beam towards the beam dump.
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The transverse emittance growth as well as the beam
survival, i.e., the ratio between final and initial intensity
If=Ii, as a function of the measured horizontal tunes is
shown in Fig. 3. The pattern of the emittance increase is
similar to the one obtained in previous experiments [1,2],
and only occurs once the space charge tune spread overlaps
with the resonance.
In contrast to one dimensional resonances the distance

from the resonance for the machine tunes Qx0; Qy0 is
defined as

Δr0 ¼ Qx0 þ 2Qy0 − 19; ð1Þ
and the derivation and related discussion can be found
in [14–16,19–21]. For the working points chosen in the
experiment the distances of the resonance Δr0 are reported
in Table I. The condition of overlapping of the third order
resonance with the space charge tune-spread of the full
bunch is

0 ≤ Δr0 ≤ −Dr;sc; ð2Þ
with Dr;sc ¼ ΔQx;max þ 2ΔQy;max. (see in Appendix C for
the derivation.)
For the space charge tune-shifts shown in Table II

we find Dr;sc ¼ −0.19. The left equality in Eq. (2) is
obtained for Δr0 ¼ 0 and yields one of the two extremes
of the tune-spread overlapping: for our tune scan, at the
tune Qx0 ¼ 6.06 the space charge tune-spread is over-
lapping with the resonance since Δr0 ¼ 0.016, while at
Qx0 ¼ 6.039 it does not overlap as Δr0 ¼ −0.003. This is
approximately confirmed by Fig. 3 as neither beam loss nor
emittance growth is found at Qx0 ¼ 6.039.
The larger Δr0 is to the resonance, the more the machine

tunes are off the resonance, and at some point the equality
on the right side of Eq. (2) will be satisfied. This situation
corresponds to an overlap of particles with the resonance,
which experience the maximum space charge detuning.
In the experiment this condition was never reached. In fact,

a horizontal tune Qx0 > 6.265 would have been required to
avoid any overlap with the resonance (i.e., Δr0 > −Dr;sc).
However, this would have caused the working point to be
set inside the large stop band of the neighboring skew
resonance 2Qx þQy ¼ 19 shown in the bottom of Fig. 1.
Figure 3 shows a large difference in the emittance growth
between the horizontal and the vertical plane. The growth is
most important at Qx0 ¼ 6.104 and Qx0 ¼ 6.129 with a
maximum growth exceeding a factor of three: such a large
value has never been observed in previous measurements.
In order to visualize the situation the beam profiles for these
working points are shown in Fig. 4. In both cases the
horizontal and vertical profiles were found to be very
different. While the horizontal profiles exhibit mainly core
growth, creation of large tails in the vertical plane was
observed. Moreover, a significant change of the vertical
profiles is observed between the two working points. The
evolution of the vertical profiles is very sensitive to minor
changes of the settings of the order of δΔr0 ¼ 0.013.
An explanation of these features as well as of the

asymmetry between the transverse profiles requires a
discussion on the machine induced detuning and on the
effect of the 3rd order resonance. Both topics are addressed
in the next sections.

IV. SIMULATION MODELING

The experiment is modeled with MAD-X and
MICROMAP simulations. In both codes, the tracking is

FIG. 3. Measured emittance growth and beam intensity
as a function of the horizontal tune. Error bars are obtained
from the statistical fluctuation resulting from three consecutive
measurements.

FIG. 4. Comparison between final and initial profiles at
Qx0 ¼ 6.104 for the horizontal (a) and the vertical plane (b).
Figures (c) and (d) show the corresponding pictures for
Qx0 ¼ 6.129.
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performed using symplectic integration. In order to include
the space charge forces, particles are subject to localized
electric kicks. Detailed information about the applied frozen
space charge models in MAD-X and MICROMAP can be
found in [29] and Appendix A of [1], respectively.
In order to compare the results with the experimental

findings, the output data of the simulations are treated
with the same procedure as adopted for the experimen-
tal data.
Simulations and experimental results are presented in

Fig. 5(a) for MAD-X, and in Fig. 5(b) for MICROMAP.
We find a relatively good prediction of the maximum
emittance growth for both codes.
Both codes provide the main features of the emittance

growth. We observe that the prediction of beam loss is
smaller than the experimental finding: beam loss in the
experiment is 35%, but MICROMAP predicts 25%. A
similar uncertainty has been found in all previous simulations
when comparedwith experiments [1,2]. This emphasizes the
difficulty of beam loss prediction in a realistic accelerator

when a high intensity bunched beam is stored. In fact, beam
loss depends on the accurate machine model, the fine details
of beam size growth and the exact geometry of the machine.
All these ingredients are difficult to determine, which
complicates the simulations.
Furthermore, at the horizontal tune closest to the integer,

MAD-X tracking reveals some emittance growth in the
horizontal plane which is not present in the MICROMAP
simulations.
In Fig. 6 the prediction of the two codes against the

measured beam profiles at Qx0 ¼ 6.104 is compared. Both
codes agree on the final profiles.
This means that the physics of frozen space charge,

although obtained with different algorithms, is computa-
tionally correctly modelled for describing the dynamics in
the full PS accelerator structure. The comparison with
respect to the experimental profiles shows that the pre-
diction of the codes yields a less dense halo with respect to
that found in the experiment. This difference most likely
accounts for the limits of the modeling, which neglects the

FIG. 5. (a) Emittance growth and beam survival as com-
puted with MAD-X (adaptive mode). (b) Simulation results
with MICROMAP (frozen mode). The quantities retrieved
from the experimental data are shown with dashed lines in
both cases.

FIG. 6. Comparison between experimental and simulated
final profiles forQx0 ¼ 6.104 in the (a) horizontal and (b) vertical
plane.

SPACE CHARGE EFFECTS ON THE THIRD ORDER … PHYS. REV. ACCEL. BEAMS 20, 081006 (2017)

081006-5



self-consistent physics as it relies on the frozen space
charge model.

V. SPACE CHARGE DETUNING
AND RESONANCE

In the first subsection we address, in absence of chromatic
effects, how the presence of space charge changes the
effective distance from the resonance, hence its effect on
the halo size.
In a second subsection we include the effect of natural

chromaticity in the simulations (see Table II), as chroma-
ticity is kept uncorrected during operation at low energy in
the PS. It will be shown that nonzero chromaticity
importantly impacts the particle dynamics in space charge
dominated machines.

A. In absence of chromaticity

For any particle experiencing the tunes Qx, Qy as
pointed out in Sec. III the resonance condition means
Qx þ 2Qy − 19 ¼ 0. For arbitrary particle tunesQx,Qy the
resonance condition is in general not fulfilled, and we
then consider as distance from the resonance the quantity
Δr ¼ Qx þ 2Qy − 19, which is a generalization of Eq. (1).
In the present case under study the tunes of a particle also
depend on its oscillation amplitude X, Y via the amplitude
dependent tune-shift ΔQsc;xðX; YÞ, ΔQsc;yðX; YÞ. We
approximate the distance from the resonance Δr for a
particle as

Δr ¼ Δr0 þ ΔQsc;xðX; YÞ þ 2ΔQsc;yðX; YÞ; ð3Þ
and the resonance condition becomes Δr ¼ 0. Equation (3)
shows that the quantity ΔQsc;xðX; YÞ þ 2ΔQsc;yðX; YÞ
acts as an effective amplitude dependent detuning,
which has to be included in the resonance condition,
and incorporates the simultaneous effect of space charge
on both planes. For a particle with X¼Y¼0 we have
ΔQsc;xð0;0Þþ2ΔQsc;yð0;0Þ¼Dr;sc. Given the distance from
the resonance Δr0 defined by the machine tunes Qx0; Qy0,
the resonance condition Δr ¼ 0 identifies a set of resonant
amplitudes ðX; YÞ in the weak third order resonance
approximation.
Throughout this article we focus the discussion on the

working point Qx0 ¼ 6.104; Qy0 ¼ 6.476, for which
Δr0 ¼ 0.056 and the largest emittance growth is observed
in Fig. 3. In Fig. 7 we plot the space charge resonance
detuning for particles located at z ¼ z0 ¼ 0 in the longi-
tudinal plane. Particle amplitudes are rescaled to the rms
beam sizes at the location of the vertical wire scanner (SS64).
It is most relevant to determine thewidest tune spreadwith

respect to the horizontal and vertical planes. To this end we
verify the two directions of amplitudes in the space ðX; YÞ:
along fð0; YÞ∶0 < Y=σy < 7.5g for the black curve,
and along fðX; 0Þ∶0 < X=σx < 7.5g for the red curve. As
expectedwe find thatΔQsc;x þ 2ΔQsc;y is approximately the

same in both curves for amplitudes in the core of the beam,
but starts to deviate at larger amplitudes. This is the typical
behavior to be expected from detuning with amplitude due
to space charge and stems from the different average beam
size ratio rx=ry ¼ 1.87, and because of the specific reso-
nance under study. From Fig. 7 we find the resonant
amplitudes to be at X ¼ 0; Y ≃ 3.9σy, and at X ≃ 4.6σx;
Y ¼ 0 (indicated by the intercepts with the line at Δr ¼ 0).
These resonant amplitudes are computed for the longi-

tudinal position z ¼ 0, where the space charge is strongest.
At any other longitudinal section of the bunch the space
charge is weaker, and resonant amplitudes will be smaller.
This suggests that the maximum extension of the halo is
equal to the largest of these resonant positions as deter-
mined from Fig. 7. The argument is similar to the one
presented in [2].
This interpretation can be directly verified by comparing

the beam profiles obtained from simulations in which the
chromaticity was set to zero. In Figs. 8(a) and (b) we plot
the horizontal and vertical beam profiles, respectively, at the
location of the wire scanner in SS64 normalized with the
transverse rms beam sizes. The blue curves are the initial
profiles, and the black curves are the final profiles after 1.1 s
of storage time. We find that the edge of the halo formed in
the vertical plane is at ≃3.5σy, a value consistent with the
analysis of the amplitude dependent detuning, which yields
≃3.9σy. The small difference in amplitude can be attributed
to the resonance strength, which changes the locations
satisfying the resonant condition. The horizontal beam
profile, however, does not exhibit any trace of halo, contrarily
to the expected halo reachingX ≃ 4.6σx according to Fig. 7.
This shows that a more complex mechanism is at work than
the one we have described up to now.

B. Effect of the chromaticity

In the previous section the effect of the chromaticity
was neglected, and the maximum halo size in the vertical

FIG. 7. Resonance detuning ΔQsc;x þ 2ΔQsc;y and Δr as a
function of amplitudes ð0; YÞ (black curve), and ðX; 0Þ (red
curve). The amplitudes are computed at the location of the
vertical wire scanner (SS64).
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plane was found to be 3.5σy (see Fig. 8(b)). However,
in Figs. 8(c) and (d) the results of the same simulations
including natural chromaticity show a different halo size
extending to Y ≃ 5.5σy, again present mostly in the y plane.
The full comparison of the beam response to the presence
of natural chromaticity is shown in Fig. 9.

The dashed curves show simulations including natural
chromaticity, while the solid curves correspond to the
results of simulation with zero chromaticity. The presence
of chromaticity creates a dramatic enhancement of the
emittance growth combined with a shift of theQx0 at which
the maximum emittance blow-up occurs.
We attempt to evaluate the change in the halo size, hence

of emittance, by using the resonance detuning including
space charge and the effect of the natural chromaticity. The
chromaticity on one particle with off-momentum δp=p
yields a tune-shift of δQx;y ¼ Q0

x;yδp=p and the contribu-
tion of this tune-shift to the distance from the resonance Δr

is δQx þ 2δQy ¼ ðQ0
x þ 2Q0

yÞδp=p. Therefore, we obtain
jδQx þ 2δQyj ≤ 0.038 considering the natural chromaticity
for any particle in a longitudinal parabolic distribution. This
means that a particle with the maximum chromatic tune
shift will experience a shift in resonance detuning of 0.038.
This is equivalent to shifting the Δr axis as shown in
Fig. 10, and the halo size becomes Y ∼ 9σy as indicated by
the interception of the “continuation” of the black curve to
Δr ¼ 0. For the sake of the argument the curves had to be
smoothly extended beyond the regime that is accessible via
the simulations.
This does not agree with the result shown in Figs. 8(c)

and (d) in which the final beam profiles (red curves) are
obtained from simulations including the effect of natural
chromaticity, yielding a maximum halo located at ≃5.5σy.
We have to conclude that the analysis is still not sufficient
to fully explain the experimental results with simulations
and in particular the asymmetry of the halos between the
transverse planes. In the following section we will present
an in-depth inspection of the 2D dynamics of the coupled
sextupole resonance that will allow us to overcome the
remaining discrepancies.

FIG. 9. Simulated growth of horizontal and vertical emittance
with the chromaticity set to zero (solid lines), and including
natural chromaticity (dashed lines). The simulations are done
with MICROMAP.

FIG. 10. Resonance detuning ΔQsc;x þ 2ΔQsc;y, and Δr as a
function of amplitudes ð0; YÞ (black curve), and ðX; 0Þ (red
curve) including chromaticity. The working point isQx0 ¼ 6.104;
the vertical line corresponds to the halo edge of Y ∼ 9σy. The
amplitudes are computed at the location of the vertical wire
scanner (SS64).

FIG. 8. Pictures (a) and (b) show the horizontal and vertical
beam profiles in simulations with the chromaticity set to zero.
The working point isQx0 ¼ 6.104; Qy0 ¼ 6.476. The blue curves
are the initial profiles while the black curves are the final profiles.
Pictures (c) and (d) represent the same settings, but including the
chromatic effect. These beam distributions are computed at the
location of the vertical wire scanner. In this case the final profiles
are shown in red.
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VI. ROLE OF THE FIXED-LINES

For 1D resonances the phenomena of trapping/scattering
is caused by the migration of instantaneous islands due to
synchrotron motion and space charge [1,2,30].
In the case of a 2D resonance the full discussion on

trapping/scattering is more complex and goes beyond the
purpose of this paper. Nevertheless, we discuss here the
origin of the asymmetric halo with respect to the transverse
planes, and address the discrepancies found in the previous
section.

A. The fixed-lines in absence of space charge

In the proximity of the resonanceQx þ 2Qy ¼ 19 the 2D
nonlinear dynamics differs from the case of one dimen-
sional resonances. At any location s, the resonant particles
are locked on a curved closed line extending over the 4
dimensions of the transverse phase space. Turn after turn,
resonant particles move along this orbit, which is referred
to as fixed-line.
The theory of the fixed-lines is discussed in Refs. [13,15,

16,19–22,31], and in Ref. [14] the main properties of these
objects have been derived. According to the theory a fixed-
line is parametrized as

x ¼
ffiffiffiffiffiffiffiffiffi
βxax

p
cosð−2t − αþ πMÞ;

y ¼
ffiffiffiffiffiffiffiffiffi
βyay

q
cosðtÞ: ð4Þ

The coordinates x0, y0 are readily derived from Eq. (4). The
fixed-line emittances ax, ay are determined by the distance to
the resonanceΔr0. The variable t parametrizes the fixed-line.
In absence of space charge and of nonlinear detuning, stable
fixed-lines have the largest extension in they direction, and in
particular the ratio of the fixed-line invariants takes the value
ofay=ax ¼ 8whenay ismaximum (seeRef. [14]). Rescaling
this aspect ratio with the rms beam sizes at the section of the
vertical wire scanner in SS64 yields ½Y=σy�=½X=σx�≃ 3.6,
which is our reference for comparing the effect of space
charge on fixed-lines. The coefficientα in Eq. (4) controls the
orientation of the fixed-line. It depends on the location of the
nonlinear errors and therefore on the phase of the driving
term with respect to the 2D Poincaré surface of section. The
integerM is related to the condition of existence of the fixed-
line (see Ref. [14]). In absence of space charge a relevant
result from the theory of the fixed-lines states that there
are infinite fixed-lines in the proximity of the resonance
Qx þ 2Qy ¼ 19. Certainly the presence of space charge
alters the theory via additional nonresonant terms in the
slowly varying Hamiltonian. But the existence of more than
one fixed-line remains unchanged as we will show with the
following numerical study.

B. Resonance stop-band in absence of space charge

We first determine the resonance stop-band. For several
machine tunes starting fromQx0 ¼ 6.104; Qy0 ¼ 6.476 and

along the direction of the space charge tune-spread we
estimate the volume of the 4D nonlinear phase space
acceptance in absence of space charge. We proceed by
filling the PS linear acceptance with uniformly distributed
particles and track this beam for 10’000 turns. The number
of surviving particles is proportional to the stable volume in
phase space. Figure 11 shows the ratio N=N0 (i.e. the
fractional volume of stable initial conditions) as a function
of Δr0. We note that the fraction of beam survival is larger
than N=N0 ¼ 0.35: the fact that the stable phase space
volume does not approach zero for Δr0 → 0 stems from the
detuning created by the nonlinear elements which are not
resonant. These elements, for example octupolar compo-
nents present in the PS lattice, cause a detuning, which
creates a small shift of the resonance also visible in Fig. 11.
From this figure we can quantify the effective resonance
stop-band to be Dr;sb ∼ 0.02 in terms of Δr0. Comparison
with jDr;scj ¼ 0.19 shows that the resonance is weakly
excited. (see Appendix C for a discussion on Dr;sc).

C. Frozen tori and space charge

1. In the absence of chromaticity

In Fig. 12 we plot the overlap of a simulated space charge
tune-spread with the resonance line Qx þ 2Qy ¼ 19, which
is excited by a current of I ¼ 2 A, for the working point
Qx0 ¼ 6.104, Qy0 ¼ 6.476. In this simulation the chroma-
ticity is set to zero and the tunes are computed for test
particles placed on a radial x − y grid with initial coordinates

xij ¼
6i
30

σx cos

�
2πj
40

�

yij ¼
6i
30

σy sin

�
2πj
40

�
; ð5Þ

where the indices extend between 0 ≤ i ≤ 30 and 0 ≤
j ≤ 40. The remaining coordinates for all test particles are
x0ij ¼ y0ij ¼ zij ¼ z0ij ¼ 0. The effect of the resonance on

FIG. 11. Resonance stop-band.
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the single particle tunes clusters them on the resonance
line.
An inspection of the resonant orbits in Fig. 12 reveals

that particles initially located near x ¼ 0 exhibit the
strongest resonance signature. For our discussion we select
the two resonant orbits of largest vertical size and their
tunes are indicated by the two circles. Figure 13(a) shows
the x − y projection of these two resonant orbits (their color
corresponds to the one of the two circles in Fig. 12). The
resonant feature becomes apparent by the figure-of-eight
shapes in the x − y projections, which are consistent with
Eq. (4) for α ∼ π=2 andM ¼ 0. This suggests that the orbits
in Fig. 13(a) are tori enclosing two distinct fixed-lines.
The resonant orbits shown in Fig. 13(a) exhibit the aspect

ratio of ½Y=σy�=½X=σx�≃ 110 for the red dots, and of
½Y=σy�=½X=σx�≃ 60 for the black dots. Both aspect ratios
are different from the expected ratio of 3.6 previously
discussed for the case of a single 3rd order resonance.
Unavoidably, this is the result of the presence of space
charge and other machine nonlinearities.
Figure 13(a) further highlights a very important feature:

the orbit with maximum amplitude (black) has a vertical
amplitude of 3.5σy, which is exactly the edge of the halo
found in Fig. 8(b). However, no final conclusion can be
drawn as the red resonant orbit depicts a different maxi-
mum y amplitude. We will come back to this issue later in
this section.
Due to the synchrotron motion, the position of the

“instantaneous” fixed-line changes. This can be seen in
Fig. 13(b), which is obtained for the same bunch, but with
the grid of test particles now located at z ¼ 1.5σz, hence
with less transverse space charge (for this simulation the
longitudinal motion is kept frozen). The two vertically
largest resonant orbits are now smaller. The different aspect
ratio with respect to the orbits in Fig. 13(a) may be due to
the fact that we used the same grid, but now the space

charge is approximately 3 times smaller, whereas the
machine working point and resonance strength remains
unchanged. Consequently we do not select the “same”
fixed-lines as those at z ¼ 0.
Figures 13(a) and (b) demonstrate that the synchrotron

motion moves particles through transverse sections where
the instantaneous fixed-lines have different spatial exten-
sion (because their size stems from a combination of the
transverse space charge tune-spread and of machine tunes).
In particular, fixed-lines at z ¼ 0 are larger than those
fixed-lines at z ¼ 1.5σz.

2. Effect of the chromaticity

In order to investigate the effect of chromaticity on
the resonant orbits, we have repeated the previous simu-
lations applying the same procedure. The coordinates of the
test particles were initialized according to Eq. (5), with
x0ij ¼ y0ij ¼ zij ¼ 0. However, the momentum of the par-
ticles was artificially shifted by δp=p ¼ 2σδp=p, and the
synchrotron motion was kept frozen.

FIG. 12. Space charge tune-spread. The solid line is the third
order coupled resonance Qx þ 2Qy ¼ 19. The circles enclose the
tunes of the two resonant orbits shown in Fig. 13(a).

FIG. 13. (a) Resonant orbits of two particles (black & red) at the
longitudinal position z ¼ z0 ¼ 0. (b) Resonant orbits for two
particles (black & red) at longitudinal position z ¼ 1.5σz and
z0 ¼ 0. The synchrotron motion is kept frozen.
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Among all particles, those two following the resonant
orbits with the largest vertical size are shown in Fig. 14.
They exhibit different aspect ratios compared to the results
shown in Fig. 13(a), as they move around two different
fixed-lines. It has to be noted that the maximum vertical
amplitude of the red orbit agrees with the extent of the halo
size found in the profile of Fig. 8(d). This result shows that
the chromaticity plays a fundamental role in increasing the
size of resonant orbits.

D. Periodic crossing of fixed-lines

The above discussed numerical simulation results show
particle trajectories that periodically cross fixed-lines. As
in the case of 1D resonances this mechanism is created by
the coexistence of space charge detuning and synchrotron
motion.
In each transverse section located at position z in

the bunch frame, the “resonance detuning” Dr;scðzÞ is
obtained by scaling the maximum resonance detuning
Dr;sc ¼ −0.19 with the respective local line-charge density
ρðzÞ, according to

Dr;scðzÞ ¼ Dr;sc
ρðzÞ
ρð0Þ : ð6Þ

The quantity Dr;scðzÞ allows to discuss the periodic
crossing of fixed-lines. Considering, for example, a
Gaussian longitudinal profile and a particle located at
z ¼ 2σz, the space charge tune-spread is Dr;scð2σzÞ ¼
−0.0257. At the beginning of motion this particle is
therefore not resonant as Δr ¼ Δr0 þDr;scð2σzÞ ¼
0.0303 > 0 [see also Eq. (3)]. As the particle moves toward
the longitudinal centre of the bunch, the space charge
increases and the particle will encounter a threshold
longitudinal position z� satisfying Δr0 þDr;scðz�Þ ¼ 0.

At that longitudinal position, the third order resonance
acts on the transverse plane, and fixed-lines emerge from
the transverse beam center. Continuing the motion, the
amplitudes of the fixed-lines will increase reaching the
maximum at z=σz ¼ 0 (where space charge is maximum).
At the longitudinal position z ¼ −z�, the fixed-lines will
again collapse to the transverse origin as the relation
Δr0 þDr;scð−z�Þ ¼ 0 is again satisfied. Therefore, fixed-
lines emerge or collapse from the transverse plane four
times per synchrotron oscillation.
Depending on the speed of resonance crossing (adiabatic

or non-adiabatic), particles can be trapped or scattered by
the fixed-lines. For a fixed-line crossing the particle orbit
adiabatically, the particle is trapped by the resonance and
follows the fixed-line. In the case of nonadiabatic crossing,
the particle invariant experiences a kick due to the
resonance. This process is referred to as scattering.

1. Scattering processes

In order to discuss scattering phenomena, we select
one test particle from the simulations presented in
Fig. 8(a) and 8(b), with initial coordinates such that
εx=εx;rms ¼ 2.8, εy=εy;rms ¼ 2, and z=σz ¼ −2, z0 ¼ 0.
Figures 15(a) and 16(a) show the time evolution of the
normalized single particle Courant-Snyder invariants.
A diffusional process is clearly visible, which is caused
by the scattering due to the periodic resonance crossing.
We observe that these two curves are correlated. From this
we conclude that the same diffusion process is active in
both planes.
Figures 15(b) and 16(b) show a detailed view of the

invariant during one synchrotron oscillation: the resonance
crossing due to space charge and synchrotron motion
appears as a jump of the Courant-Snyder invariant four
times per synchrotron oscillation. For the parameters used
in simulations we obtain z�=σz ¼ 1.563, and the four points
at which fixed-lines emerge or collapse are indicated by the
blue vertical lines. The correlation of the jumps is due to the
simultaneous action of the fixed-line in both x − x0 and
y − y0 planes.
The asymmetric form of the x − y projection of the

resonant orbits readily explains the asymmetry of the beam
profiles shown in the simulations of Fig. 8(a) and (b). Very
likely this is also the explanation of the asymmetry of the
measured halo shown Fig. 4(b) and (d).

2. Trapping processes

Considering the above discussed simulations, the
adiabatic trapping process does not occur naturally. In
order to study this regime, additional simulations with
an artificially long synchrotron oscillation period of 107

turns were performed. We consider one test particle
at z ¼ −2σz inside the bunch, with the other initial
conditions being y≃ 0.5σy and x ¼ x0 ¼ y0 ¼ z0 ¼ 0.

FIG. 14. Resonant orbits for particles having longitudinal
momentum δp=p ¼ 2σδp=p, and z ¼ 0. In the simulation the
longitudinal motion is kept frozen.

GIULIANO FRANCHETTI et al. PHYS. REV. ACCEL. BEAMS 20, 081006 (2017)

081006-10



This particle is tracked over one quarter of a synchro-
tron oscillation (including space charge) and the results
of adiabatic resonance crossing are shown in Fig. 17.
In Fig. 17(a) 10 snapshots of the horizontal and vertical

particle coordinates, each corresponding to 1000 consecu-
tive turns, are shown. The time interval in between the
different snapshots has been equally spaced. For five of
these 10 sets, i.e., for those with z > z�, the motion is
apparently locked on fixed-line structures (the instanta-
neous fixed-line) with approximately the same horizontal to
vertical aspect ratio. The closer the particle is to the bunch
center, the larger the fixed-line becomes and its maximum
size is reached at z ¼ 0. The red lines are obtained from
Eq. (4) by computing ax, ay from the machine optics and
particle coordinates. The value of α for all curves is
1.6645 rad.
In Fig. 17(b) the simulation is repeated, but including the

natural chromaticity. The simulation is prepared so that
the particle reaches the off-momentum of δp=p¼2σδp=p,
the maximum off-momentum in the bunch, at z¼0. We now
obtain six fixed-line structures in the set of 10 snapshots. In
order to obtain z� in this case, the effect of the chromaticity
has to be included in Eq. (3).
The aspect ratio of the fixed-lines in Fig. 17 is ∼1.8, the

maximum extension of the y direction is ∼3σy with zero
chromaticity, and up to ∼6σy when including the natural
chromaticity. These results differ significantly from the
values shown in Figs. 13 and 14.

The largest fixed-line of Figs. 17(a) and (b) are consistent
with the halo extension obtained with the multiparticle
simulations shown in Figs. 8(b) and (d): the halo in the
vertical plane and the core growth in the horizontal plane
can therefore be explained by the geometry of the largest
adiabatic fixed-line.
A systematic analysis of the motion of particles starting

at z ¼ −2σz shows that, according to their initial condi-
tions, particles are trapped by different and distinct fixed-
lines. However, as particles approach z ¼ 0 they all
“verge” close to the same largest fixed-line. Therefore
this fixed-line, the largest in Figs. 17(a) and 17(b), defines
an adiabatic limit.

E. Discussion

In the case of a 1D third order resonance, the maximum
extension of the halo is given by the outer separatrices of the
three instantaneous islands at z ¼ 0, where the space charge
is maximum. The results presented in this article suggest a
more complex scenario in the case of 2D resonances.
The arguments of Sec. VI C suggest that the prefer-

ential plane of larger halo extension is related to the
form of the fixed-line. However, in the same section we
find evidence that several instantaneous fixed-lines exist,
but their sizes are not consistent with the beam halo
from simulations, even including chromaticity. In fact,
the largest instantaneous fixed-line of Fig. 14, obtained
by freezing the synchrotron motion, reaches an

FIG. 15. (a) Evolution of the horizontal Courant-Snyder invari-
ant of a test particle over 430 synchrotron oscillations. (b)
Evolution of the horizontal invariant over a single synchrotron
period, experiencing four resonance-induced kicks.

FIG. 16. (a) Evolution of the vertical Courant-Snyder invariant
of a test particle over 430 synchrotron oscillations. (b) Evolution
of the vertical invariant over a single synchrotron period,
experiencing four resonance-induced kicks.
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amplitude 8σy. This is not consistent with the halo
extension found in the simulation presented in Fig. 8(d),
where the halo extends up to 5.5σy. This is mainly
because those fixed lines where found by freezing the
synchrotron motion, without considering the full dynam-
ics. This suggest that not all fixed-lines participate
equally to the dynamics.
An indication of the fixed-lines participating to the

dynamics is obtained in Sec. VI D 2 via an artificial adiabatic
resonance crossing process. We find that trapped particles
stay on distinct fixed-lines, which converge all to the same
largest fixed-line independently of their initial condition. For
these processes, particles always reach a vertical halo size of
≃6σy, which is consistent with Fig. 8(d).
The details of the various simulation results suggest the

following: (1) The instantaneous fixed-lines found from
the adiabatic crossing identify the main fixed-lines, which
could be responsible for creating the stochastic process
leading to an asymmetric halo during the nonadiabatic

periodic crossing. (2) In the adiabatic limit, the instanta-
neous fixed-lines define the edge of halo particles for the
scattering process. This is visible in Figs. 15 and 16 at the
end of the simulations, where the spatial aspect ratio of
≃1.8 is consistent with the adiabatic crossing.

VII. CONCLUSION AND OPEN QUESTIONS

In this article, experimental and simulation studies of the
beam dynamics of space charge dominated beams close to
the coupled third order resonance Qx þ 2Qy ¼ 19 are
reported. The results of measurements, which were carried
out in the CERN PS, have shown a remarkable asymmetric
beam halo formation.
In order to understand these findings a code benchmarking

between MAD-X and MICROMAP was carried out. Applying a
purely frozen space charge mode, good agreement between
the predictions obtained by the two codes was found.
The agreement between the experimental data and the

simulations at the various working points is very good. In
particular, the beam profiles for the most relevant working
point, i.e., the one exhibiting the largest emittance increase,
were benchmarked.
The presented study leads to the conclusion that halo

formation occurs due to periodic resonance crossings,
which has already been established for 1D resonances.
However, a 2D resonance creates a web of fixed-lines, and
the periodic motion of particles inside the bunch generates
a periodic crossing of some of these fixed-lines. Our study
shows a direct link between fixed-lines and halo formation.
In particular, the x − y projection of the fixed-lines reveals
an aspect ratio consistent with the measured and simulated
asymmetry of the halo.
The phenomenological observation of the existence of an

adiabatic limit, which defines the halo edge in the scattering
regime, remains to be investigated more thoroughly.
On an applied level, our study gives us confidence that

the beam halo formation is predictable for space charge
dominated beams close to coupled resonances as long as
the machine modeling is accurate enough. The discus-
sions on the dynamics as addressed here will become an
essential tool to interpret simulations, and develop
mitigation strategies when full resonance compensation
is not possible.
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FIG. 17. (a) Sequence of fixed-lines constructed by a particle
moving from z ¼ −2σz to z ¼ 0. (b) Same as in (a) but with the
natural chromaticity included in the simulation. In both cases the
red curves are obtained from Eq. (4) with one value of α.
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APPENDIX A: THE CERN PROTON
SYNCHROTRON

The PS [32] has a circumference of 2π × 100 m and is
composed of 100 combined function magnet units (MUs),
which are interleaved by 100 straight sections (SSs). Each
MU consists of a focusing and a defocusing half-unit and
their overall arrangement results in a FOFDOD lattice.
Additional elements, such as devices for injection and
extraction, accelerating cavities and auxiliary magnets, are
located in the different SSs.
In order to control betatron tunes and linear chromatic-

ities additional circuits are placed on top of the magnetic
poles of each MU. These pole face windings (PFW) are
divided into narrow and wide windings for each half-unit
and the naming convention refers to the width of the air gap
at the position of the respective circuit (see Fig. 18).
Furthermore, each MU contains the figure-of-eight loop

(F8L), which is an additional circuit that crosses between the
two half units giving the corresponding shape. In contrast to
these smoothly distributed elements 40 low energy quadru-
poles (LEQ) are installed to control both transverse tunes
from injection kinetic energy at 1.4 GeV up to a kinetic
energy of about 3.5GeV. The individual circuits of the PFW,
the F8L and the LEQ are powered independently, offering
high flexibility during machine operation.

1. Modeling of the PS lattice

In order to model this complex lattice in the most
realistic way in simulations, each MU is made up of two
sector bending magnets (SBENDs) as shown in Fig. 19. In
addition to the dipole component, each SBEND is assigned
with either a focusing or a defocusing quadrupolar com-
ponent to model the combined function magnet. Moreover,
two thin multipoles are inserted in every half-unit [34].
Based on measurements of the machine tunes, linear and
nonlinear chromaticities, these multipolar components are

then used to build an effective nonlinear model of the
accelerator. Below a kinetic energy of 3.5 GeV, i.e., in the
regime where the PFW are not used during operation,
the PS behaves rather linearly and the multipoles are mainly
used to match linear chromaticity. For the simulations
presented in this article the dependency of the transverse
tunes on the relative momentum error was modeled as:
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where Q00
i is the almost negligibly small second order

chromaticity. At higher energy, the thin multipoles allow to
reproduce the nonlinearities of higher order introduced by
the PFW (see also [23]).
The two sextupoles in SS39, which were used to excite

the resonance in a controlled way, are implemented as thin
lenses in the proper locations.
Due to the unavailability of measured magnetic errors

of the MUs, no random components are included in the
simulations. However, magnetic measurements of spare
magnets as well as 3D simulation studies of the MUs have
been started, which will allow further improvement of the
modeled lattice.

APPENDIX B: PREPARATION
OF THE RAW DATA

In order to analyze the transverse profiles in a consistent
manner, a general treatment was required for all raw data

FIG. 18. Cross section of one MU of the PS. The reference
point between the two poles corresponds to the location of the
closed orbit. The circuits of the PFW, which are encapsulated by
an epoxy resin, are situated directly on top of the poles.
Furthermore, the main coils and the F8L are visible [33].

FIG. 19. Modeling of the PS MU. Even though the junction
between the two half-units is included as SBEND, it is actually
just a drift space.
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sets obtained from the wire scanner systems. Every profile
consists of multiple bins, which are spaced by 50 μm and
Fig. 20 shows an example of horizontal and vertical
measurements at the beginning of the plateau at a kinetic
energy of 2 GeV. For all studied working points the initial
beam profiles were found to be Gaussian in both planes.
One notices that the horizontal signals are not centred
around zero due to the nonzero closed orbit. The significant
offsets of the baselines are caused by the electronics of
the wire scanners. To deal with the large “case-by-case”
variation of the measured final beam profiles, it was
necessary to devise a general treatment method.
The profile data returned by the wire scanner systems

have a size of 100 mm in both transverse planes. Usually,
the beam size is small compared to this value and, in order
to extract only relevant information from the measure-
ments, a useful data window had to be defined. Therefore,
an estimate of the location of the peak and of the size of the
beam profiles was obtained by using the following fitting
function and applying a nonlinear least square method:

F 1ðzÞ ¼ αþ βzþ γffiffiffiffiffiffi
2π

p
σ1

e−
1
2
ðz−μ1σ1

Þ2 ; ðB1Þ

where z corresponds to either the horizontal or the vertical
plane. The fitting parameters α and β model the baseline, γ
the amplitude, μ1 the position of the peak, and σ1 the
standard deviation. Using the obtained mean value and
standard deviation, only data points within the interval
½−6σ1 þ μ1; 6σ1 þ μ1� were considered for further analysis.
In order to improve the identification of the baseline,

only data points within the interval ½−6σ1þμ1;−4σ1þμ1�∪
½4σ1þμ1;6σ1þμ1� (see Fig. 21) were taken into account
and an additional linear fit function

F 2ðzÞ ¼ δþ κz; ðB2Þ

was applied. Thereby, the parameters α and β were reeval-
uated using a reduced data set. This approach was chosen to
minimize the impact of baseline noise at large amplitude.
Subsequently, F 2ðzÞ was subtracted from the data set

and another fit using the Gaussian function

F 3ðxÞ ¼
λffiffiffiffiffiffi
2π

p
σ2

e−
1
2
ðx−μ2σ2

Þ2 ; ðB3Þ

was performed in order to determine the location of the
peak of the profile with increased precision and to center
the data by removing the contribution of the nonzero closed
orbit. For the case of clean Gaussian raw data this
procedure is shown in Fig. 22.
Lastly, only data points exceeding a threshold amplitude

of Nthr ¼ 3% of the maximum signal were considered (see
Fig. 23) to remove negative data resulting from baseline
noise. The choice of 3% as an appropriate value was based

FIG. 20. Typical set of initial transverse profiles measured with
the wire scanners. The offset of the baseline is clearly visible in
both planes. The horizontal profile also exhibits a position offset
due to the closed orbit distortion at the location of the wire
scanner. Both offsets were removed prior to further treatment of
the signals.

FIG. 21. This profile corresponds to the horizontal one of
Fig. 20; however, only data points within the restricted interval
½−6σ1 þ μ1; 6σ1 þ μ1� are shown. The shaded areas indicate data
points, which are considered for the evaluation of the baseline
using F 2ðzÞ.

FIG. 22. After removing the contribution of the baseline and the
horizontal offset, the profile depicted in blue is obtained. For
comparison the horizontal raw data is shown as well.
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on the maximum baseline noise that was observed for the
whole set of data.
To characterize the resulting truncated beam profiles in

terms of size and position, the first and second statistical
moment, i.e., the weighted mean

μz ¼
1

W

XN

i¼1

ziwi; ðB4Þ

and the variance

σ2z ¼
1

W

XN

i¼1

ðzi − μzÞ2wi; ðB5Þ

where N is the number of used bins, zi the position of the
ith bin and wi the corresponding signal, were calculated.
The weight W is the sum of the individual weights wi
given by

W ¼
XN

i¼1

wi: ðB6Þ

The procedure set forth above simplifies the comparison
of the measured data to the simulation results.

APPENDIX C: OVERLAPPING OF TUNE-SPREAD
WITH THE RESONANCE

In this section we derive the condition for the overlapping
of the space charge tune-spread with a resonance of type
Qx þ 2Qy ¼ N. We consider two characteristic points in the
tune diagram: 1) the machine bare tunes Qx0; Qy0; 2) the
depressed tunesQx1¼Qx0þΔQx;max;Qy1¼Qy0þΔQy;max,
i.e., the tunes of a particle experiencing the strongest
space charge. According to our definition, the distance
from the resonance of a particle with tunes Qx, Qy is
Δr ¼ Qx þ 2Qy − N. Specialized to the two characteristic
pointswe find that the distance from the resonance of the bare
tunes is Δr0 ¼ Qx0 þ 2Qy0 − N, and the distance from the

resonance of the depressed tunes isΔr1 ¼ Qx1 þ 2Qy1 − N.
It is straightforward to find that Δr1 ¼ Δr0 þDr;sc, with
Dr;sc ¼ ΔQx;max þ 2ΔQy;max. The overlapping of the full
tune-spread of the bunch with the resonance occurs when
the following two conditions happen simultaneously:
(1) ðQx0; Qy0Þ is above the resonance, namely when
0 ≤ Δr0; (2) ðQx1; Qy1Þ is below the resonance, namely
when Δr1 ≤ 0, which implies Δr0 þDr;sc ≤ 0. Both con-
ditions (1) and (2) are satisfied only if

0 ≤ Δr0 ≤ −Dr;sc: ðC1Þ

This equation gives the condition for the overlapping
of the space charge tune-spread with the resonance
Qx þ 2Qy ¼ N. The quantity Dr;sc naturally defines the
width of the space charge tune-spread measured in the
variable Δr, and it incorporates correctly the effect of both
the space charge tune-shiftΔQx;max, andΔQy;max to discuss
resonant phenomena created by the 4D coupled dynamics.
The space charge tune-spread becomes particularly

important when we consider the resonance condition in
an arbitrary longitudinal position z in a bunch. There we
need to use the instantaneous depressed tunes associated to
the freezing of the longitudinal motion. The maximum
space charge detuning will now depend on z, hence we
write ΔQx;maxðzÞ, and ΔQy;maxðzÞ. It becomes therefore
natural to defineDr;scðzÞ ¼ ΔQx;maxðzÞ þ 2ΔQy;maxðzÞ (for
our experiment Dr;scð0Þ ¼ Dr;sc ¼ −0.19). By definition,
for any particle with transverse amplitude X, Y located at z,
ΔQsc;xðX;YÞþ2ΔQsc;xðX;YÞ≥Dr;scðzÞ is valid. Therefore,
the distance from the resonance [Eq. (3)] for a particle
at z can be lower bounded by Δr ≥ Δr0 þDr;scðzÞ. If
Δr0 þDr;scðzÞ > 0, the resonance condition cannot be
fulfilled by any particle having longitudinal position z.
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