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Recently various laser-chirping schemes have been investigated with the goal of reducing or eliminating
ponderomotive line broadening in Compton or Thomson scattering occurring at high laser intensities. As a
next level of detail in the spectrum calculations, we have calculated the line smoothing and broadening
expected due to incident beam energy spread within a one-dimensional plane wave model for the incident
laser pulse, both for compensated (chirped) and unchirped cases. The scattered compensated distributions
are treatable analytically within three models for the envelope of the incident laser pulses: Gaussian,
Lorentzian, or hyperbolic secant. We use the new results to demonstrate that the laser chirping in Compton
sources at high laser intensities: (i) enables the use of higher order harmonics, thereby reducing the required
electron beam energies; and (ii) increases the photon yield in a small frequency band beyond that possible
with the fundamental without chirping. This combination of chirping and higher harmonics can lead to
substantial savings in the design, construction and operational costs of the new Compton sources. This is of
particular importance to the widely popular laser-plasma accelerator based Compton sources, as the
improvement in their beam quality enters the regime where chirping is most effective.
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I. INTRODUCTION

Compton or Thomson sources are increasingly being
considered as potential sources of high energy photons
[1–4]. A principal attraction of such sources is the narrow
bandwidth generated in the output radiation. As a narrow
bandwidth is desired, it is important to understand the
sources of line width [5] in the scattered radiation and to
eliminate them to the extent possible. Ghebregziabher et al.
[6] were first to report compensating the local value of the
frequency in the incident laser pulse against the ponder-
omotive longitudinal velocity change. Their chirping pre-
scription was near-perfect, in the sense that the subsidiary
peaks in the corrected spectrum were still not entirely
suppressed. Analytic expressions for the proper frequency
modulation (FM) to achieve perfect compensation for any

laser pulse shape were later reported in [7] (hereafter
TDHK2014). This was followed up by similar derivation
of the proper frequency modulation for the circular polari-
zation [8] (as opposed to linear as in TDHK2014) and when
electron recoil and spin are taken into consideration [9].
It has been understood for many years in the free-

electron laser (FEL) community [10–12] that harmonic
generation can provide a path to a given radiation wave-
length with a smaller electron energy than is needed for
fundamental emission, or that harmonic generation pro-
vides access to shorter wavelengths for a given electron
beam energy. This idea, as applied to Compton sources,
suffers from the fact that whenever the field strength is low
enough that ponderomotive broadening is negligible,
emission into the harmonics falls off rapidly with harmonic
number. On the other hand, if the field strength is large
enough for substantial harmonic emission, ponderomotive
broadening limits the spectral density of the emission,
increasingly at high harmonic number. The main motiva-
tion for our present work is to point out how important it is
that the new chirping prescriptions remove ponderomotive
broadening from the harmonics, allowing high emitted
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spectral density in the harmonics at high field strength.
Combining laser chirping and the higher harmonics is
particularly beneficial for the Compton sources based on
the laser plasma accelerators, as their improved beam
energy spread enters the range in which the chirping is
most effective [13–16]. Experimental validation of the new
chirping prescriptions should be possible.
In this paper, we report on calculations completed using

a classical formalism valid in the Thomson limit [17]. This
approximation is invalid in situations with highest field
strengths where emission of multiple photons per electron
can occur and in Compton sources where x-rays are
produced from beams of energy greater than 100 MeV,
where Compton recoil is a concern [18,19]. However, many
Compton sources reside in this domain. The field strengths
and laser frequencies of calculations presented in this paper
are safely within the classical Thomson regime. It is known
that similar chirping prescriptions can be developed for
scattering including recoil [9]. It is a highly interesting
question, still open to the best of our knowledge, whether
emission of multiple photons per electron at the highest
field strengths may be similarly controlled.
The paper is organized as follows. In Sec. II, we calculate

spectra in both the compensated and uncompensated cases
in regimes where the normalized vector potential is of order
1, i.e., in a parameter regime where significant ponder-
omotive broadening is expected. In Sec. III, we then use the
new results to demonstrate that the laser chirping in
Compton sources enables them to retain the narrowband
radiation and increase the photon yield in all harmonics at
high laser intensities. The increase in the photon yield
enables the efficient use of higher order harmonics, which
greatly reduces the strain on the electron beam source.
Finally, we discuss the importance of the new results and
conclude in Sec. IV.

II. ANALYTIC EXPRESSIONS FOR THE
ENERGY SPECTRA

Ponderomotive line broadening is due to the variable
redshifting of the emitted radiation because the longitudinal
velocity of the electrons changes within the incident laser
pulse. Here, as in our previous efforts, calculations are
completed using the formalism developed in K2004 for
Thomson back scattering. In this reference the far-field
spectral distribution of photons Thomson-scattered by a
single electron are derived. The incident laser pulse is
described by a plane wave. The treatment is fully
relativistic and includes the classical electron motion
without approximation. We assume a linearly polarized
incident plane wave described by a single component for
the normalized vector potential ~AðξÞ ¼ eAðξÞ=mc ¼
aðξÞ cosð2πξfðξÞ=λÞ [20] where aðξÞ describes the
envelope of the oscillation, ξ ¼ zþ ct is the coordinate
along the laser pulse, fðξÞ specifies the laser FM, and λ is a
normalizing wavelength for the incident plane wave.

Expressions for backscattered radiation spectra in high
intensity Compton sources emitted by a beam with an
energy spread are derived from the corresponding equa-
tions for scattering off a single electron. K2004 derives
expressions for the constant-frequency laser pulses, while
TDHK2014 provides the spectra for FM laser pulses.
Both derivations for the backscattered radiation spectrum

ðd2E=dωdΩÞbeam start with the integral

�
d2EðωÞ
dωdΩ

�
beam

¼
Z

∞

1

NðγÞ d
2Eðγ;ωÞ
dωdΩ

dγ; ð1Þ

where ω is the frequency of the scattered radiation, Ω is the
solid angle of the radiation, γ is the relativistic factor, NðγÞ
is the beam’s energy distribution and d2E=dωdΩ is the
energy emitted per unit frequency per unit solid angle
produced by a single electron. The single-electron scatter-
ing spectrum can be expressed as in TDHK2014

d2Eðγ;ωÞ
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where ω0ðγÞ ¼ ð1þ βÞ2γ22πc=λ is the normalizing fre-
quency, ½d2EðγÞ=dωdΩ�n ¼ ð1þ βÞ2γreEbeam=c is the nor-
malization factor and c the speed of light. We recast the
frequency content form Dx from their Eq. (7)
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where ~ZðξÞ ¼ ξþ R
ξ
−∞

~A2ðξ0Þdξ0 and the FM function

fðξÞ ¼ 1

1þ að0Þ2=2
�
1þ

R ξ
0 aðξ0Þ2dξ0

2ξ

�
: ð4Þ

Therefore, the beam energy only scales the spectrum in
both frequency (independent variable) and amplitude
(dependent variable):

d2Eðγ;ωÞ
dωdΩ
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�
d2EðγÞ
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�
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�
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�
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���� ~Dx
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�����
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This means that for a set of laser pulse parameters—
amplitude a0 of the normalized vector potential, envelope
shape, wavelength λ, width σ—it is necessary to compute
only one scale-free spectrum, ~Dxðω=ω0Þ, generated from
the pulse’s backscattering off a single electron, as in K2004
and TDHK2014. The computation of Eq. (1) is then
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reduced to integration of that scale-free spectrum, properly
shifted and scaled. This treatment applies to both constant
frequency scattering of K2004 and FM scattering in
TDHK2014, and to all harmonics [9].
Figure 2(b) in TDHK2014 compares the frequency

bandwidth (Fourier transform) of the incoming laser pulse
and the backscattered radiation after the FM and demon-
strates a perfect agreement of the two in bandwidth and a
near-perfect agreement (to within a couple of percent) in the
maximum amplitude. Therefore, to first order, one can
approximate the first harmonic of the backscattered radi-
ation spectrum for a properly FM laser pulse by its Fourier
transform:

~Dx

�
ω

ω0ðγÞ
�

¼ 1

2
FfaðξÞg

� ω
ω0ðγÞ − ~wf

~wf

�
; ð6Þ

where the scaling of the peak width by ~wf ¼ 1=ð1þ a20=2Þ
is due to the first-order expansion of ~ZðξÞ around ξ ¼ 0 in
Eq. (3). For the three laser pulse shapes considered here—
Gaussian, Lorentzian and hyperbolic secant, defined in
Table I—they are

~Dx;G

�
ω
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�
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ffiffiffi
π
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�
−
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�
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�
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�
ω

ω0
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where Σ ¼ 1=2πσ, Σ̄ ¼ Σ ~wf and σ̄ ¼ σ ~wf. These are
achieved by FM given in TDHK2014 and our Eq. (4),
which for the three laser pulse shapes are

fGðξ̄Þ ¼ ~wf

�
1þ

ffiffiffi
π

p
σa20
4ξ̄
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�
; ð8aÞ
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fSðξ̄Þ ¼ ~wf

�
1þ a20

2ξ̄σ
tanhðσξ̄Þ

�
; ð8cÞ

with ξ̄ ¼ ξ=λ.

Obtaining an analytic approximation for the shape
of the higher-order harmonics in the FM spectrum
requires a derivation similar to that in Brau [21]. After
substituting Eq. (4) into Eq. (3), integrating by parts,
using expðiα sin θÞ ¼ P∞

n¼−∞ JnðαÞ expðinθÞ, where Jn
is the Bessel function of the nth order, and expand-
ing around the stationary phase point, we find the con-
tribution of the nth harmonic to the scale-free spectrum
~Dx ¼

P
n
~Dn
x

~Dn
x ¼

Z
∞

0

aðξÞKn½gðξÞ� cos ½2πZðξÞω̄n�dξ; ð9Þ

with KnðαÞ ¼ ð−1Þn½JnðαÞ − Jn−1ðαÞ�, gðξÞ ¼
a2ðξÞðn − 1=2Þ=f2½1þ 1=2a2ðξÞ�g, ω̄n ¼ ω=ω0−
2ðn − 1=2Þ ~wf and ZðξÞ ¼ ξþ ð1=2Þ R ξ

0 a
2ðξ0Þdξ0.

Examining the KnðgðξÞÞ term, an implicit function
of ξ, reveals that the explicit function ~KnðξÞ is well-
approximated by a Gaussian ~KnðξÞ ≈ An exp ð−ξ2=2ΣnÞ
for n > 1 and a shifted Gaussian ~K1ðξÞ≈
1þ A1 exp ð−ξ2=2Σ1Þ for n ¼ 1 [because J0ð0Þ ¼ 1,
Jnð0Þ ¼ 0 for n > 1; only K1 contains J0],
where A1 ¼ K1½gð0Þ� − 1, An ¼ Kn½gð0Þ�, Σ1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−B2

1=2 log½ðB1 − 1Þ=A1�
p

, Σn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−B2

n=2 logðBn=AnÞ
p

Bn ¼ Kn½gðσÞ�. Keeping only the linear term in ZðξÞ, we
obtain analytic approximation for all harmonics:

~D1
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1

2
F
�
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If one neglects a correction due to the small parameter A1,
the previous result for the leading-order harmonic in Eq. (6)
is recovered. An excellent agreement between this approxi-
mation and the exact scale-free solution is shown in Fig. 1.
For the higher-order harmonics, only Gaussian pulse yields
an analytic approximation, which is shown in Fig. 2. The
agreement is nearly perfect. The Eq. (10) suggests, and
Fig. 3 corroborates, that only for the Gaussian laser pulse is
the shape of all the harmonics the same (Gaussian in this
case). The higher-order harmonics of the Lorentzian and
hyperbolic secant pulse are different from their respective
first harmonics.
The height of the harmonics is computed from Eq. (10)

by substituting
R∞
−∞ dξ for Ffg:

j ~D1;n
x jmax;G ¼ a0

ffiffiffi
π

2

r
ðσ þ A1s1G; AnsnGÞ; ð11aÞ

j ~D1;n
x jmax;L ¼ a0ðπ

ffiffiffi
σ

p þ A1s1L; AnsnLÞ; ð11bÞ

TABLE I. Laser pulse shapes considered here.

Gaussian aGðξÞ ¼ a0 exp ½−ξ2=ð2ðσλÞ2Þ�
Lorentzian aLðξÞ ¼ a0σ=½ðξ=λÞ2 þ σ�
Hyperbolic secant aSðξÞ ¼ a0sechðσξ=λÞ
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where snG ¼ σΣn=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2
n þ σ2

p
, snL ¼ ðπ=2 ffiffiffi

σ
p Þ expðβ2nÞ×

½1 − erfðβnÞ� and βn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ=2Σ2

n

p
. The width of the har-

monics for the Gaussian pulse are

W1
G ≈

~wf

2πσ
; Wn

G ¼ ~wf

2πsnG
: ð12Þ

For FWHM in eV, these are multiplied by 2.35ℏω0.
For the Gaussian electron beam distribution and the case

with FM, substituting Eqs. (7) into Eq. (5) and the integral

in Eq. (1) leads to analytic solutions after invoking a well-
justified approximation that the narrowband backscattered
radiation off a single electron d2Eðγ;ωÞ=dωdΩ is highly
peaked around γ̄ðωÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λω=2πc ~wf

p
over which range

FIG. 1. Integration of a single scale-free spectrum ~Dx and an
electron beam with a 34% energy spread versus the approxima-
tion from Eq. (13a) (red line). The inset shows the absolute
difference ε between the two results. Spectra are computed from
scattering a FM Gaussian laser pulse with λ ¼ 800 nm, a0 ¼
0.587 off a Gaussian electron beam with Q ¼ 100 pC and
Ebeam ¼ 51.1 MeV.

FIG. 2. Single-electron scattering approximation in Eq. (10)
against the exact solution of TDHK2014. Spectra are computed
from scattering a FM Gaussian laser pulse with λ ¼ 800 nm,
a0 ¼ 0.587 off a Gaussian electron beam with Q ¼ 100 pC
and Ebeam ¼ 51.1 MeV.

FIG. 3. Backscattered radiation of a laser pulse with λ ¼ 1 μm,
a0 ¼ 0.707 off a Gaussian electron beam with Q ¼ 100 pC,
Ebeam ¼ 163 MeV, and 1% FWHM energy spread: FM (red),
non-FM (green), and the single electron FM case (normalized to
FM) (blue). Top: Gaussian pulse. Middle: Lorentzian pulse.
Bottom: Hyperbolic secant pulse.
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1=γ2 can be considered constant. Then the single-electron
spectra are well-approximated by a Gaussian, which ex-
actly integrates into analytic expressions for the leading-
order harmonic:

�
d2EðωÞ
dωdΩ
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beam;FM;G

¼ Qerea20σ
2λ ~wf

4qec2
SGðωÞωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~σ2E þ SGðωÞ2
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where SGðωÞ ¼ γ̄ðωÞΣ=ð2 ffiffiffi
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2

p
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1.12841 is the normalization factor, erfi the complex error
function erfiðxÞ ¼ ierfðixÞ and
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exp ½ −γ2
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2ð ~σ2E�S2LÞ
∓2

ffiffiffiffiffi
2σ

p
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s� ¼ γ̄ ~σ2E � S2Lðγ̄ − γ0Þffiffiffi
2

p
~σESL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The solutions for a single-electron scattering are easily
recovered when ~σE → 0 and Q ¼ qe are substituted. There
is an excellent agreement between the analytic approxi-
mation Eq. (13a) and the numerical integration of Eq. (1)
with a single scale-free spectrum ~Dx given in Eq. (3), as
shown in Fig. 1. The accuracy for other laser pulse
distributions is similarly high. Clearly, one can confidently
use either of these methods for the case with FM—direct
numerical integration of the electron distribution with a
single scale-free spectrum or the analytic approximation—
with the latter being preferred for its simplicity and ease
of implementation. However, for the case of constant-
frequency laser pulse for which the single-electron scatter-
ing d2Eðγ;ωÞ=dωdΩ can only be numerically computed as
in K2004, the integration of a single scale-free spectrum is
the sole option.

III. COMBINING HIGHER HARMONICS
AND LASER CHIRPING

Figure 3 shows the spectrum of the backscattered
radiation from a electron beam with a 1% energy spread,
with and without FM, and compares it to the spectrum of a
single-electron scattering. It is evident that the FM for all
three pulse shapes, computed from TDHK2014 as in
Eq. (8), is still quite effective in restoring the narrowband
spectrum for all harmonics simultaneously.
The bandwidth of the backscattered radiation—for both

the FM and constant-frequency laser pulse—is affected by
two components: (1) the intrinsic bandwidth of the single-
electron scattering (which depends on the length of the
laser pulse σ); and (2) the energy spread of the electron
beam distribution, σE. The first component provides the
absolute theoretical lower limit of a monochromatic beam
(σE ¼ 0). When the electron beam energy spread is small,
the bandwidth is dominated by the intrinsic single-electron
scattering bandwidth (monochromatic limit σE → 0).
When the electron beam energy spread is high, the
bandwidth is dominated by the bandwidth of the electron
beam, thereby diminishing the effects of the FM. This is
illustrated in Fig. 4.

Increasing the photon yield

Figure 5 illustrates the increase in the maximum photon
yield ðd2N=dωdΩÞmax after using FM, defined as

RFM ≡ ðd2N=dωdΩÞmax
FM

ðd2N=dωdΩÞmax
nonFM

; ð15Þ

as a function of the amplitude of the normalized vector
potential a0 and intensity. [The relationship between the
two quantities is given by I ¼ 2π2m2

ec3a20=ðλ2e2μ0Þ]. Here
d2E=dωdΩ ¼ ℏωd2N=dωdΩ. As discussed above, the
smaller the beam energy spread, the larger the improvement
in photon yield after using FM.
When employing FM, the restored narrow harmonics

peak near E ¼ 4γ2Epn=ð1þ ð1=2Þa20Þ, where Ep is the
energy of the laser pulse and n the order of the harmonic.
This means that the same desired radiation can be achieved
either by using the first harmonic from a backscattering off
an electron beam with the energy γmec2, or the nth
harmonic from a backscattering off an electron beam with
energy γmec2=

ffiffiffi
n

p
. An example is shown in Fig. 6: at 0.1%

FWHM electron beam energy spread, the maximum photon
yield in the third harmonic at 163 MeVequals that of in the
first peak in the 282 MeV beam. Such a 1=

ffiffiffi
n

p
reduction in

the required electron beam energy would lead to substantial
cost savings in the design, construction and shielding of the
electron source. A more detailed dependence of the ratio of
the maximum yield of the FM nth harmonic produced by an
electron beam at energy E=

ffiffiffi
n

p
and the non-FM first

harmonic produced by an electron beam at energy E
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R1n ≡ ðd2N=dωdΩÞmax
FM;n

ðd2N=dωdΩÞmax
nonFM;1

; ð16Þ

is shown in Fig. 7 for the third and in Fig. 8 for the
fifth harmonic. Figure 9 shows that even though the red-
shift at large amplitudes of the normalized potential

FIG. 6. Backscattered radiation of a laser pulse with λ ¼ 1 μm,
a0 ¼ 1.6 off a Gaussian electron beam with Q ¼ 100 pC, 0.1%
FWHM energy spread: first harmonic from the collision of the
non-FM Gaussian pulse and the 282 MeV electron beam (blue);
third harmonic from the collision of the FM Gaussian pulse the
163 MeV electron beam (red).

FIG. 4. Maximum amplitude as a function of the energy spread
for a laser pulse with λ ¼ 1 μm, a0 ¼ 0.707 off a Gaussian
electron beam with Q ¼ 100 pC, Ebeam ¼ 163 MeV without FM
(blue dots) and with FM (red dots), along with the theoretical
limit for the FM monochromatic (σE ¼ 0) beam from Eq. (13a)
(solid black line), computed by scale-free integration. Top:
Gaussian laser pulse. Middle: Lorentzian laser pulse. Bottom:
Hyperbolic secant laser pulse.

FIG. 5. Ratio of the maximum photon yield between the FM
and non-FM laser pulse as a function of the intensity (and the
amplitude of the normalized vector potential a0) for a Gaussian
laser pulse with λ ¼ 1 μm off a Gaussian electron beam with
Q ¼ 100 pC, Ebeam ¼ 163 MeV and 0.1% FWHM energy
spread (red dots), 1% (blue) and 10% (green). The leftmost
set of points (a0 ¼ 0.27 or I ¼ 1017 W=cm2) corresponds to the
current upper limit of operation of the laser-plasma
accelerators [16].
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a0 ≳ 10, the FM spectra still feature clearly delineated
peaks. As laser-plasma accelerator performance in the sub-
1% range in energy spread becomes realistic [16], using the
FM higher order harmonics is poised to reap substantial
benefits.

IV. DISCUSSION AND SUMMARY

In this paper a novel calculation prescription is used to
determine the emission characteristics of the scattered
radiation in a Compton back-scatter source. When com-
pensated by laser beam frequency modulation (chirping)
the radiation line heights and widths may be accurately
computed using a stationary phase argument with crisp
functional forms. The calculations accurately account for
detuning of the emitted radiation by beam energy spread.
Our calculations suggest the following main conclusion:

by combining harmonic generation and frequency modu-
lation (chirping) of the incident laser pulse it should be
possible to generate significant fluxes of Compton scattered
radiation on the harmonic frequencies. The beam energy
spread in laser-plasma acceleration schemes are becoming
good enough [16], when they are at the 1% level, that the
energy flux density on the harmonics can even exceed that
possible when an unmodulated incident laser pulse is used.
Using higher harmonics at low laser intensities the

photon yield is substantially smaller than that in the first
harmonic. The yield of the higher harmonics can be
improved—both absolute and relatively compared to the
first harmonic—by increasing the laser intensity. However,
increasing the laser intensity leads to the ponderomotive
broadening which effectively erases any advantages thus
incurred. Frequency modulation and its perfect restoration
of the narrowband emission, becomes crucial: it mitigates
the adverse effects of the ponderomotive broadening,
allowing one to continue increasing the photon yield.
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