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Effects of nonlinearity in Thomson scattering of a high intensity laser pulse from electrons are analyzed.
Analytic expressions for laser pulse shaping in frequency (chirping) are obtained which control spectrum
broadening for high laser pulse intensities. These analytic solutions allow prediction of the spectral form
and required laser parameters to avoid broadening. Results of analytical and numerical calculations agree
well. The control over the scattered radiation bandwidth allows narrow bandwidth sources to be produced
using high scattering intensities, which in turn greatly improves scattering yield for future x- and
gamma-ray sources.
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I. INTRODUCTION

Scattering of laser light from fast moving electrons is a
widely used source of x- and gamma-ray photons [1–22].
Note that this process is widely known as inverse Compton
scattering, but as the recoil is neglected throughout this
paper, we refer to it as Thomson scattering (TS). Limits of
validity of such a classical approach are discussed in detail
in Sec. II. Applications of TS include photon sources of
percent-level bandwidth for nuclear resonance fluorescence
or photofission ([23–27] and references therein), for radi-
ography [28,29] and for medical applications [30,31].
Thomson sources’ monochromaticity, wide-range tunabil-
ity (depending on the energy of the electrons in the beam)
and directionality provide important advantages over
Bremsstrahlung sources.
Applications of Thomson sources require high photon

fluxes, which is challenging due to the small Thomson
cross section. The total number of electrons, Ne, that can be
accelerated in a bunch is limited for the high quality
bunches required to produce narrow bandwidth sources.
For example, laser plasma accelerators produce typically
near Ne ∼ 108 [32], and conventional linacs are typically in
the same range for low emittances [33]. Scattering laser
performance and geometry are then principal tools for
achieving the required fluxes. The produced photon yield is
proportional to the product of Ne with the scattering laser
intensity and pulse length. The need to match the laser
diffraction range to its pulse length (to keep intensity

constant over the scattering volume) has meant that
increasing yield by increasing laser pulse length costs
quadratically in laser energy. For example, to double yield
at constant intensity, pulse length must double and dif-
fraction range must also double, requiring the spot size to
increase by

ffiffiffi
2

p
, requiring a fourfold increase in scatter laser

energy. This makes it desirable to scatter at high laser
intensity in order to maximize yield at reasonable laser
energy cost.
Scattering laser intensity is strongly limited by the fact

that the generated spectrum can be broadened and a
bandlike structure can appear in the fundamental frequency
as well as its harmonics [34–46] even for rather low values
of laser pulse amplitude a0 ¼ ~e ~AL= ~me ~c2 on the order of
a0 > 0.1, where ~e and ~me are absolute value of charge and
mass of the electron respectively, ~c is the speed of light in
vacuum and ~AL is the laser vector potential amplitude in
Gaussian cgs units. This is a detrimental and limiting effect
in the cases when a narrow bandwidth gamma or x-ray
sources are essential, especially in the case of nuclear
resonance fluorescence for active nuclear interrogation. It
puts a limit on the maximum laser intensity and thus
maximum laser pulse amplitude a0 that can be used for
obtaining a certain full width at half maximum (FWHM)
bandwidth of the photon source. For example, such
moderate laser pulse amplitude as a0 ¼ 0.2 already leads
to broadening on the order of 4%. The limit on intensity is
an important driver of the laser energy and hence cost of a
Thomson source [27]: producing one photon per electron
costs 1.6 Joules of laser energy at a0 ¼ 0.15, but only 0.4 J
at a0 ¼ 0.3.
Limited sets of parameters have been found to minimize

the nonlinear effects, mainly based on shaping of the laser
pulse temporal envelope. Hartemann et al. [38] showed that
a flattop longitudinal intensity profile could reduce the
effects of nonlinearity, but this approach is typically
limited by the diffraction range of the laser pulse. In fact,
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free-electron lasers (FELs) work using undulators with
constant strength parameters a0 on the order of unity for
optimal photon yield. Three-dimensional effects that
appear due to tight laser pulse focusing can be also
detrimental in TS as discussed by Hartemann et al. [36].
Ideally one would need laser pulses having near flattop
distribution in all dimensions. Ghebregziabher et al. [35]
have proposed controlling the shape of the photon spectrum
using laser pulse chirping and demonstrated it using a
single set of numerical simulations. Such simulations have
been extended both numerically and analytically by Terzić
et al. [47]. There is however need for an analytical
framework and solutions for nonlinear broadening, spectral
shape, and compensation of these effects using laser
pulse shaping in frequency (chirping) to obtain narrow
bandwidth.
In this manuscript we derive analytical expressions for

the spectrum of the nonlinear Thomson scattering for both
cases of unchirped and chirped pulses and compare them to
the results of numerical integration. We demonstrate that
proper laser pulse chirping leads to bandwidth narrowing
for large laser pulse amplitudes. This allows design of
sources for narrow bandwidth together with high efficiency,
without scanning of numerical parameters. The paper is
organized as follows. In Sec. II a physical explanation of
the spectrum broadening and appearance of substructures
in the spectrum is provided. Analytical expressions for the
nonlinear Thomson scattering spectrum are derived and
compared with the results of numerical integration. In
Sec. III this analysis is extended to show that the laser
frequency-versus-time dependence, or chirp, can be used to
compensate for nonlinear effects and to narrow the spec-
trum even for high intensity lasers. Finally, discussions and
conclusions are presented in Sec. IV.

II. NONLINEAR BROADENING
AND SPECTRAL SHAPE

Spectral broadening and appearance of substructures due
to the nonlinear effects in Thomson scattering have been
reported in several previous works [34,35,37–40,43–45,47].
The appearance of substructures was identified to be due to
constructive and destructive interference of radiation emitted
from different electron positions within the scattering laser
pulse. Here we begin by reviewing this physical explanation
of the shape of the spectrum, then derive the shape of the
spectrum analytically and compare it to that obtained via
numerical integration. In addition to providing analytic
derivation of the spectrum, this will serve as the basis for
the derivation of compensation techniques required to
produce narrow bandwidth at high intensity.
Let us first describe the limits of validity of the model

that we have used throughout this paper. First, we have
neglected the recoil on the electron due to the emission of a
single photon. This is valid when the recoil parameter
satisfies ζ ¼ 2γ ~Epa0= ~me ~c2 ≪ 1, as discussed in the

pioneering paper by Nikishov and Ritus [48]. Here, γ is
the relativistic Lorentz factor of an electron and ~Ep is the
energy of the incoming photon in the laboratory frame (i.e.,
1.55 eV for 0.8 μm wavelength). For example, for a 1 GeV
electron colliding head-on with a 1.55 eV photon, the recoil
parameter ζ ≈ 0.01a0 and, hence, can be neglected if
a0 ≪ 100. Another effect that has been neglected through-
out this paper is the radiation friction that occurs due to the
energy loss during multiphoton emission. Radiation fric-
tion can be neglected for a0 < ϵ−1=3rad , where ϵrad ¼ 2γ 4π

3
~re
~λL
is

the radiation parameter with ~re the classical electron radius
and ~λL is the laser pulse wavelength [49]. For a 1 GeV
electron interacting with a laser pulse with a wavelength
~λL ¼ 0.8 μm, radiation friction can be neglected for
a0 < 25. The classical electrodynamic model that is used
throughout this paper is valid for a vast parameter range,
especially for the parameters of interest for applications,
which typically require a0 ∼ 1 [27].
We work in the frame of reference where an electron is

initially at rest and the plane electromagnetic laser wave
impinges it. Results presented can be immediately applied
to the case of scattering from the electron moving with high
speed (e.g., a relativistic electron beam) by using a Lorentz
transform. We use a circularly polarized scattering laser
pulse as it allows us to obtain analytical expressions for the
spectrum similar to solutions derived by Hartemann et al.
[38]. In terms of number of generated photons there is no
difference for the case of pulses with different polarizations
with same energy. The case of linear polarization can be
modeled in a straightforward way using numerical inte-
gration [35,39].
Consider the case of a circularly polarized laser pulse

with constant amplitude a0 impinging on an electron
initially at rest. The central frequency of the on-axis
reflected radiation spectrum is given by

ωc ¼
1

1þ a20
; ð1Þ

where ωc ¼ ~ωc= ~ωL with ~ωc and ~ωL being the reflected
radiation and laser frequencies, respectively. Here and
further in the paper, quantities with a tilde are given in
the Gaussian cgs units, and quantities without a tilde are
dimensionless. In these dimensionless units, frequency ω is
measured in terms of laser pulse frequency ~ωL. Equation (1)
can be understood by calculating the frequency generated
on axis by an electron with large γ, which is then given by
the well-known formula ωc ¼ 4γ2=ð1þ a20Þ. Performing
the Lorentz transformation to the frame where the electron
is at rest, one obtains Eq. (1). The convention used in this
paper is that a circularly polarized laser pulse has twice the
energy of a linearly polarized laser pulse with the same a0,
so that in the case of linear polarization the frequency is
given by ωc ¼ 1

1þa2
0
=2. The a20 term in the denominator

comes from the fact that an electron is pushed by the
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electromagnetic wave in the direction of its propagation by
the v ×B force, and thus moves away from the laser pulse
redshifting the reflected light.
Movement of the electron through the focus of the laser

and/or pulsing of the laser beam means that the electron
does not always experience the peak value of the laser pulse
a0. Hence, in Eq. (1), a0 must be multiplied by a function of
running time gðηÞ describing the laser pulse envelope.
Here, η ¼ ~ωLð~t − ~z=~cÞ and z ¼ ~ωL

~c ~z with ~t and ~z being time
and longitudinal coordinate, respectively, and it is assumed
that the laser pulse impinges the electron from the left side.
The laser pulse vector potential envelope is then described
by a function of time aðηÞ ¼ a0gðηÞ. This leads to the
following equation for the reflected radiation central
frequency:

ωcðηÞ ¼
1

1þ aðηÞ2 : ð2Þ

Therefore, during the laser pulse interaction with an
electron, different frequencies are generated at different
times and different electron positions within the envelope.
As a result, the reflected radiation spectrum is considerably
broadened in the case of a strong laser pulse with a varying
laser envelope. Additionally, a bandlike structure appears in
the reflected spectrum as shown in Fig. 1 (left) for a0 ¼ 0.4,
as compared with the linear case a0 ≪ 1 (in this case
a0 ¼ 0.05). For this calculation, we have used a laser pulse
with an envelope described by Eq. (12). Qualitatively,
broadening and band-structure appearance for strong laser
pulses is illustrated in Fig. 1 (right), where the laser pulse
envelope aðηÞ, generated frequency ωcðηÞ and electron
longitudinal electron coordinate zðηÞ are schematically
shown as functions of running time η. One can see that
certain frequencies are generated twice during the inter-
action. For example, the frequency ω1 is generated at two
different longitudinal positions of the electron z1 and z2 as
shown with black color in Fig. 1 (right). Depending on the

value of ω1 and the separation between the emission points
this leads to either constructive or destructive interference
in the generated spectrum. These interference patterns lead
to the appearance of bands in the spectrum.
The number of oscillations in the spectrum can be

approximately established as a ratio of maximum frequency
broadening due to laser intensity derived from Eq. (2) and
given by Δ ~ω ¼ ~ωL − ~ωL

1þa2
0

and the bandwidth of the laser
pulse. Thus, the number of oscillations is roughly given by

Nosc ¼ ~ωL
a20

1þ a20

1

Δ ~ωL
; ð3Þ

whereΔ ~ωL is the FWHM bandwidth of the laser pulse. One
can see that the number of interference fringes in the
spectrum grows with increasing laser amplitude and laser
pulse duration (as laser pulse bandwidth is inversely
proportional to laser duration).
The exact shape of the spectrum depends on the laser

pulse duration and on its envelope shape and intensity, and
can be calculated from the well-known motion of a free
electron in a plane electromagnetic wave [17,50,51]. Here,
we neglect the radiation friction so that the electron
dynamics is governed by the standard Lorentz force. For
an electron initially at rest and for an electromagnetic wave
impinging the electron from the z → −∞, one can immedi-
ately write two integrals of motion:

u⊥ ¼ a⊥ ð4Þ

γ − uz ¼ 1: ð5Þ

The latter equation can be also be written in the following
form:

uz ¼
a2⊥
2
: ð6Þ

FIG. 1. Left: An example of the normalized on-axis spectra of reflected radiation calculated for low a0 ¼ 0.05 (blue line) and high
a0 ¼ 0.4 (red color) scattering lasers, demonstrating the appearance of bandlike structure in the spectrum. Right: Qualitative illustration
of the broadening and band formation mechanism in the nonlinear response of an electron to a strong electromagnetic wave. A laser
pulse impinges the electron from the left side (from z → −∞). As functions of time, the blue line and shaded area represent the laser
pulse envelope, the green line shows the frequency of the reflected wave in accordance with Eq. (2), and the red dashed line shows the
longitudinal coordinate of the electron.
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Here, the dimensionless quantities: u⊥ ¼ ~p⊥
~me ~c

is any elec-
tron momentum component perpendicular to the z-axis, a⊥
is any perpendicular component of the normalized laser
pulse vector potential, and uz ¼ ~pz

~me ~c
is the electron longi-

tudinal momentum component. Similarly, ~p⊥ and ~pz are
perpendicular and longitudinal electron momentum com-
ponents in Gaussian cgs units, respectively.
For the observer looking on axis, the retarded time used

for calculating the spectrum [50,51] does not depend on x
and y coordinates. Hence, to derive the on-axis spectrum
one only needs to know the z coordinate of the electron,
which can be found from the following equation:

dz
dη

¼ uz ð7Þ

or, equivalently,

zðηÞ ¼
Z

η

−∞
uzðη0Þdη0 ¼

Z
η

−∞

a⊥ðη0Þ2
2

dη0: ð8Þ

Since the trajectory of the electron in a plane electro-
magnetic wave is completely known, the on-axis reflected
radiation produced by the electron moving in such a wave
can be found using the well-known formula [50,51]:

d2~I
dωdΩ

����
θ¼0

¼ ~κ
ω2

4π2

����
Z þ∞

−∞
n × ½n × u⊥ðηÞ�eiω½ηþ2zðηÞ�dη

����
2

;

ð9Þ
where ~I is radiated energy in ergs, Ω is the solid angle and
the whole formula is evaluated for the on-axis case (θ ¼ 0),
~κ ¼ ~e2 ~ωL

~c is the normalization coefficient [such that both
parts of Eq. (9) are measured in ergs] and u⊥ is the vector of
perpendicular momentum components. Using Eqs. (4) and
(8) one can rewrite Eq. (9) in terms of the laser pulse vector
potential:

d2~I
dωdΩ

����
θ¼0

¼ ~κ
ω2

4π2

����
Z þ∞

−∞
n×½n×a⊥ðηÞ�eiω½ηþ

R
η

−∞
a2⊥ðη0Þdη0�dη

����
2

:

ð10Þ

For a circularly polarized laser pulse, the laser pulse vector
potential can be expressed as

a⊥ðηÞ ¼
1

2
aðηÞεeiϕðηÞ þ c:c:; ð11Þ

where aðηÞ is the envelope function of the pulse, ε ¼ ex þ
iey is introduced to take into account circular polarization
andϕðηÞ is the time-dependent laser pulse phase.Wewill call
ωiðηÞ ¼ dϕ

dη instantaneous frequency of the pulse. In the case
of a laser pulse with constant frequency ω0, the laser pulse
phase is simply given by ϕðηÞ ¼ ω0η. Due to our choice of
units, ω0 ¼ 1, but we keep it in these equations to facilitate

consideration of cases with chirped laser pulses, or cases,
where laser pulses with different colors are used.
As an illustrative example, expressions for the on-axis

spectrum can be obtained in the fully nonlinear case for a
laser pulse having an envelope in time described by a half-
sine profile:

aðηÞ ¼ a0 sin
�
πη

τL

�
; 0 < η < τL; ð12Þ

with τL being the dimensionless duration of the laser pulse
(such that τL=2π gives the duration of the laser pulse in
terms of laser cycles). We have analytically and numeri-
cally checked that using other laser pulse envelopes leads to
similar results [41,46]. For a pulse, with the envelope given
by Eq. (12), the z coordinate of the electron can be
analytically found from Eq. (8):

zðηÞ ¼ a20
4

�
η −

τL
2π

sin
2πη

τL

�
: ð13Þ

The on-axis spectrum of reflected radiation can then be
rewritten in the following form:

d2~I
dωdΩ

����
θ¼0

¼ ~κ
ω2

ω2
0

a20
2π2

N2
0

×

����
Z

2π

0

sin

�
ξ

2

�
sinðN0ξÞeiρN0ξ−iχ sinξdξ

����
2

; ð14Þ

where

N0 ¼
ω0τL
2π

; χ¼ωa20τL
4π

; ρ¼ ω

ω0

�
1þa20

2

�
: ð15Þ

Numerical integration of these equations can be used to
show the dependence of the spectrum on a0, as illustrated
by a color-coded image of the on-axis spectrum in Fig. 2
(left). The spectra are obtained from numerical integration
of Eq. (14) for different a0 (vertical axis) and for laser pulse
with duration τL ¼ 600. One can see that for low values of
a0 the spectrum is narrow and is limited by the bandwidth
of the incoming electromagnetic wave, whereas for large
values of a0 the spectrum is broad and band substructure is
visible. The main peak of the spectrum is redshifted and its
position is given by Eq. (1) [shown with the dashed line in
the Fig. 2 (left)].
While numerical integration of the nonlinear spectrum

has been conducted previously, analytic solutions are
important to allow understanding of the mechanisms of
broadening and to allow design of techniques to compen-
sate for broadening. Opening the sine functions using
Euler’s formula, one can analytically evaluate the integral
to obtain directly the nonlinear spectrum. Doing so yields
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d2~I
dωdΩ

����
θ¼0

¼ ~κ

�
ω

ω0

�
2 a20
8
N2

0jJnðχÞ − Jn−1ðχÞj2; ð16Þ

where Jn is the Bessel function and

n ¼ N0ðρ − 1Þ þ 1

2
: ð17Þ

Here we have neglected two small terms that are given by
Bessel functions with orders N0ðρþ 1Þ � 1

2
because

N0 ≫ 1 typically for τL ≫ 2π=ω0, and Bessel functions
with such orders are very small in the frequency range of
interest. It is important to note that the solution is valid only
for a subset of all ω where the order n is an integer.1 For
other values of ω, numerical integration of Eq. (14) is
required. Figure 2 (right) displays the spectrum for a0 ¼ 1
and laser pulse with duration τL ¼ 600. Black dots show
the analytical solution from Eq. (16) for the frequencies ω
that make the order n an integer. One can see that analytical
solution fits the numerical integration (blue line) very well.
Although the analytical solution provides only a discrete set
of points, it well outlines the shape of the spectrum and
gives its peak value and width which are the most important
parameters for many applications. This is especially true
because in many Thomson scattering photon source appli-
cations the fine-scale oscillations observable for a single
electron will be washed out by the nonzero energy spread of
the electron beam. In the example shown here, the
oscillations have frequency spacing of ≃2%ω0 which will
be washed out by electron energy spread of ≃1%. The
analytic expressions then allow us to analytically evaluate
broadening, and give us a tool to calculate compensating
terms which can be used to control and narrow the
spectrum.

III. CONTROLLING THE SHAPE OF THE
SPECTRUM BY LASER PULSE CHIRPING

Nonlinear broadening of the spectrum is a result of
redshifting of the Thomson scattered frequency during the
interaction due to the longitudinal motion of the electron, as
given by Eq. (2) with the laser pulse envelope. This
indicates that by compensating the laser frequency by
chirping the laser pulse, one can diminish broadening of
the generated spectrum. This was proposed, and simulation
based on a single set of numerical parameters was provided
in [35], and further examples were provided in [47]. Here
we extend the analytical expressions obtained above to
derive analytical expressions for the radiation spectrum in
the case of proper laser pulse chirping. Using appropriate
laser chirp, spectrum narrowing can be obtained for high
values of laser pulse amplitude a0 > 1. The analytical
results are compared with numerical integration.
We consider again the circularly polarized laser pulse

with the envelope given by Eq. (12). If the frequency of the
laser pulse is constant the generated frequency is given by
Eq. (2), and the resulting spectra are those of Fig. 2.
However, if the instantaneous frequency of the laser pulse
is given by

ωiðηÞ ¼ ½1þ aðηÞ2�; ð18Þ

then the reflected radiation frequency will be constant and
equal to unity independent of the value of a0. This can be
derived from the following considerations. Substituting
Eq. (11) into Eq. (10) and examining the oscillatory term of
the integral eiΦðηÞ, one can write the phase as

ΦðηÞ ¼ −ϕðηÞ þ ωηþ ω

Z
η

−∞
a2⊥ðη0Þdη0: ð19Þ

The time-dependent laser pulse phase ϕðηÞwill compensate
for the redshifting and yield the maximum of the integral at
ω ¼ 1, provided ΦðηÞ is constant at ω ¼ 1. Thus,

FIG. 2. Left: On-axis radiation spectra plotted as a function of laser pulse amplitude a0 (vertical axis). The spectra are in arbitrary
units, from numerical integration of Eq. (14). Laser pulse duration is τL ¼ 600. The dashed black line represents the redshift of the peak
of the spectrum according to Eq. (1). Right: On-axis radiation spectrum for a0 ¼ 1 from the analytical expression of Eq. (16) (black
circles) for such frequencies as make the order of the Bessel function given by Eq. (17) an integer, overplotted with the full spectrum
from numerical integration (blue line).

1In principle the integral in Eq. (14) is one of the Schläfli’s
integrals, but for simplicity we keep Bessel functions instead.
This does not change the results of the paper.

CONTROLLING THE SPECTRAL SHAPE … PHYS. REV. ACCEL. BEAMS 19, 030701 (2016)

030701-5



−ϕðηÞ þ ηþ
Z

η

−∞
a2⊥ðη0Þdη0 ¼ C: ð20Þ

For the phase of the properly chirped laser pulse one can
thus write

ϕðηÞ ¼ ηþ
Z

η

−∞
a2⊥ðη0Þdη0 − C; ð21Þ

and for the instantaneous laser pulse frequency one obtains
the following expression:

ωiðηÞ ¼
dϕðηÞ
dη

¼ 1þ a2⊥ðηÞ: ð22Þ

Note that in the case of the circularly polarized laser pulse,
Eq. (22) coincides with Eq. (18). The case of linear
polarization has been considered in [52] and the results
are similar. For the laser pulse with envelope given by
Eq. (12) and instantaneous frequency given by Eq. (22) one
can derive an analytical solution. Note that the longitudinal
coordinate of the electron is still given by Eq. (13) as the
laser pulse is chosen to be circular. The result of the
spectrum calculation using Eq. (9) yields the same formula
as in Eq. (16), but with n and χ given by

n ¼ ðω − 1ÞN0

�
1þ a20

2

�
þ 1

2
ð23Þ

χ ¼ 1 − ω

2
N0: ð24Þ

The analytical solutions for the nonlinear spectral band-
width using a laser pulse with the envelope given by
Eq. (12) and instantaneous frequency given by Eq. (18) are
shown in Fig. 3 (left), where normalized spectra are
presented for different values of a0. Markers of different
colors show the analytical solutions using Eqs. (16), (23)
and (24), while solid lines of corresponding colors show the
numerical integration results. Analytical solutions fit with

numerical integration well and predict spectrum narrowing
for properly chirped laser pulses with high values of a0.
The generated frequency stays centered at ω ¼ 1 and the
broadening disappears. In the case of a0 ¼ 0.1 (blue color)
the spectrum width is approximately given by the
unchirped (i.e., with constant frequency, shown on the
figure with black dash-dotted line) laser pulse width, which
is inversely proportional to laser pulse duration τL. One can
see that the spectrum is getting narrower with the increase
of a0. For arbitrary values of a0, the spectrum width scales
approximately as Δω

ω ∝ 1
τLð1þa2

0
Þ, i.e., in the case of a0 ¼ 10

(black color) the spectrum width is approximately a20 ¼
100 times narrower. This is due to the choice of the laser
pulse function. Indeed, changing (increasing compared to
ω ¼ 1) the frequency while keeping the duration τL
constant leads to more periods. This can be seen from
Fig. 5 (left) where normalized laser pulse vector potential is
plotted for the case when the laser pulse is unchirped (blue
color) and for the case of chirped laser pulse with a0 ¼ 0.5
(green color). In this figure the duration of the laser pulse
was set to τL ¼ 60 for illustrative reasons. Because at each
period an electron is forced (by appropriate chirp) to radiate
the same frequency, it effectively radiates pulses with the
same frequency ω ¼ 1 but with longer duration for higher
a0 leading to a narrower emitted spectrum. Numerical
integration of the generated spectra using Eq. (9) is
presented in Fig. 3 (right). The color-coded image is the
normalized on-axis spectrum (in logarithmic scale) as a
function of both the frequency (longitudinal axis) and
normalized laser amplitude a0 (vertical axis) similar to
Fig. 2 (left). Results are normalized to the peak value of
the spectrum for a0 ¼ 10, demonstrating the scaling of the
peak value of the spectrum with a0. Though throughout the
paper classical description has been used, it is interesting to
analyze the scaling of the peak value of the photon on-axis
spectrum, which is given by

d2Nph

dωdΩ

����
θ¼0

¼ α
ω

ω2
0

a20
8
N2

0jJnðχÞ − Jn−1ðχÞj2; ð25Þ

FIG. 3. Left: Normalized on-axis intensity spectra for different values of a0 for the case of a laser pulse with duration τL ¼ 600. Laser
pulse is properly chirped according to Eq. (18). Results obtained with the help of numerical integration are shown with solid lines.
Markers of corresponding color present the analytical solution using Eqs. (16), (23) and (24). Right: Numerically obtained on-axis
radiation spectra for a properly chirped laser pulse for different values of a0 (vertical axis) in the logarithmic scale.
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with the values of n and χ, corresponding to the chirped or
unchirped case. Here, Nph is the number of photons and
α ≈ 1=137 is the fine-structure constant. The peak value of
the on-axis photon spectrum as a function of a0 for the laser
pulse with duration τL ¼ 600 and obtained numerically, is
presented in Fig. 4 for the cases of unchirped pulse (green
line) and properly chirped pulse (blue solid and black
dashed lines). One can see that, in the case of the unchirped
pulse, the peak value of the on-axis photon spectrum
saturates and is independent of a0 for a0 ≫ 1. Contrary,
in the case of the chirped pulse, the peak value of the on-
axis photon spectrum grows proportionally to a20 as shown
by the blue solid line. Black dashed line represents a fit to
the numerically obtained peak value of the on-axis spec-
trum for the case of the chirped pulse, which is given by

�
d2Nph

αdωdΩ

����
θ¼0

�
peak

¼ α
a20τ

2
L

4π4
: ð26Þ

Exact fit coefficients will depend on the pulse shape, but the
a20 scaling will stay the same. In the paper by Seipt et al.

[52], the off-axis spectrum was also analyzed. Even though
for different observation angles the ponderomotive broad-
ening is not exactly compensated, the total number of
photons in the natural bandwidth, which is equal to the
laser pulse bandwidth Δ ~ωL

~ωL
, was estimated to be

Nph;nat ≈ παa20: ð27Þ

This justifies one more time the benefits of using properly
chirped pulses for obtaining narrow bandwidth photon
sources.
It is worth noting that the spectrum of the incident

chirped pulse extends approximately up to the frequency
ωmax ¼ ð1þ a20Þ, quadratic with a0. Figure 5 (right) shows
the normalized spectra of laser pulses properly chirped
according to Eq. (18) (red color corresponds to a0 ¼ 0.2
and green color corresponds to a0 ¼ 0.5) compared to the
case of the unchirped laser pulse. For low values of a0 < 1
the introduced chirp can be on the order of 10–20 percent
and is achievable with current technology. This already
allows production of narrow bandwidth sources using
significantly higher laser intensity than is conventionally
possible, which in turn reduces the required laser energy.
As noted above, even operation at a0 ¼ 0.3 compared to
a0 ¼ 0.15 can save a factor of 4 in scattering laser energy.
While in principle the technique can be used up to even
higher intensities, practical implementation is limited by
the obtainable bandwidth in the scattering laser. For
example, at a0 ¼ 10 the laser pulse contains the range
of wavelengths from x rays to the laser wavelength, which
is beyond currently foreseeable laser technology.

IV. CONCLUSIONS

In this paper we have presented analytical solutions for
the on-axis spectrum of radiation generated by a free
electron interacting with a plane circularly polarized laser
pulse of nonlinear intensity. Discussion of effects of laser
pulse spatial structure, off-axis spectrum calculations and
simulations using realistic electron beams can be found in

FIG. 4. Peakvalueof theon-axisphotonspectrumasa functionof
a0 for the cases of unchirped (green solid line) andproperly chirped
(blue solid and black dashed lines) pulses. The black dashed line
represents the fit to the numerical data given by Eq. (26).

FIG. 5. Left: Normalized vector potential as a function of time in periods for the case of the unchirped laser pulse (blue color) and
chirped laser pulse with a0 ¼ 0.5 for laser pulse with duration τL ¼ 60. Right: Laser pulse spectra (normalized to the peak value of the
unchirped pulse spectrum) for the case of unchirped laser pulse (blue color) and chirped laser pulses with a0 ¼ 0.2 (red color) and
a0 ¼ 0.5 (green color) for laser pulse with duration τL ¼ 600.
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Ref. [52]. The results presented in this paper are derived for
an electron initially at rest for computational clarity. They
apply also, using a straightforward Lorentz transform into
the beam frame, to Thomson scattering sources of x rays
and gamma rays which scatter laser pulses from relativistic
electron beams. The analytical results agree very well with
results of numerical integration and provide useful insights
and scalings for nonlinear Thomson scattering. We have
shown analytically and numerically that by proper chirping
of the laser pulse the broadening of the radiation spectrum
can be avoided for high values of laser pulse amplitude
a0 > 1. The results predict laser amplitude and pulse shape
parameters to compensate nonlinear broadening and pro-
duce narrow bandwidth sources at high intensity. This
result is important for generation of high flux Thomson
scattering sources of x rays and gamma rays, as it allows
generation of a given photon flux using greatly reduced
laser energy. Moreover, the results presented in this paper
can be used for optimization of experiments as well as
benchmarking of the numerical tools.
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