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An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal
and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch,
certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series.
The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as
an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the
bunch. The modulations are superimposed on a much larger continuum from CSR emission in the
continuous mode. A given eigenmode is classified by the integermwhich is the ratio of the mode frequency
to the synchrotron frequency. The present measurements extend up to m ¼ 8 and focus on the region near
the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the
mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are
observed to coexist at the boundaries between the modes. An energy-independent correlation is observed
between the threshold current for an instability and the corresponding zero-current bunch length.
Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source.
The CSR was measured in the time domain using an unbiased Schottky diode spanning 50–75 GHz.
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I. INTRODUCTION

Synchrotron radiation emitted by a relativistic electron
bunch circulating in a storage ring is usually incoherent due
to the random phases of the fields from each electron.
However, when the bunch length, or a substructure within
it, is sufficiently short relative to the wavelength of the
radiation, the electron fields are nearly in phase with each
other, resulting in coherent synchrotron radiation (CSR).
Since the coherent fields add linearly with a common
phase, the spectral intensity can be extremely large relative
to the corresponding incoherent synchrotron radiation.
The temporal nature of the CSR is a strong function of

the bunch charge. For a sufficiently low charge, the
longitudinal charge density assumes a static Gaussian-like
profile as defined by the Haissinski equation [1]. The
spectral intensity of the CSR as a function of wavelength is
determined by the Fourier spectrum of the charge density
over the same wavelength region. Since this distribution is
constant on a turn-by-turn basis, the CSR is said to be
emitted in the continuous mode.
With increasing charge, the internal dynamics of the

bunch becomes a complex function of time. A microwave
instability generates rapidly evolving microstructures

within the charge distribution that become sources of
CSR. These microstructures, or microbunches, evolve from
a reaction between the electrons and their own CSR
wakefields, producing a runaway positive feedback mecha-
nism [2,3]. Higher order damping processes eventually
limit the explosive growth of these microbunches and
return the system to its starting point, where the whole
process begins anew. The time interval between these CSR
bursts is irregular and therefore the spectral intensity varies
on a turn by turn basis. This is referred to as CSR in the
bursting mode.
A transition region exists between the continuous and

bursting modes where the CSR intensity oscillates har-
monically in time at frequencies typically in the range
10–100 kHz. The periodic nature of the CSR in this region
is driven by the longitudinal normal modes of oscillation
within the electron bunch. The corresponding eigenmode
frequencies are harmonics of the synchrotron frequency,
and are the focus of the present study. A historic summary
of the observation of bunch instabilities through a study of
CSR is given in [4].
It is useful to picture the longitudinal dynamics in the

transition region within the framework of a Cartesian phase
space ðq; pÞ, where the vertical coordinate p is proportional
to the energy deviation E − E0 of a given electron from its
mean value and the horizontal coordinate q is its longi-
tudinal position within the bunch. With appropriate nor-
malization of the p-axis, the phase-space motion of an
electron below the instability threshold and well within the
rf bucket is a closed circular path rotating at the synchrotron
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frequency Fsyn as defined by the parameters of the rf cavity
and the storage ring. The entire quiescent bunch maps into a
fixed circular pattern in phase space, rotating at Fsyn. The
density of particles within this phase space is best expressed
in circular coordinates ðτ;φÞwhere the azimuthal angle φ is
measured from the q-axis and the “radius” τ is the
synchrotron amplitude of a given particle. The Cartesian
and circular representations are related by q ¼ τ cosðφÞ and
p ¼ τ sinðφÞ. In general, we can write the phase-space
density as a Fourier expansion in φ [5]:

ρðτ;φÞ ¼ e−iωst
X∞

m¼−∞
αmRmðτÞeimφ ð1Þ

which rotates at the synchrotron frequency ωs ¼ 2πFsyn.
The integersm define the periodicity of ρðτ;φÞwith respect
to φ, and are termed azimuthal modes since they correspond
to phase-space distortions in the φ-direction. The constants
αm define the relative contribution of a given mode to the
density, and for a quiescent bunch only the m ¼ 0 term
survives. For a given azimuthal mode m, the functions
RmðτÞ can be further expanded around a set of functions
describing eigenmodes along the radial coordinate τ:
RmðτÞ ¼

P
nβm;nρm;nðτÞ. The radial phase-space distor-

tions ρm;nðτÞ are termed radial modes, and are degenerate
in energy in the absence of wakefield interactions. The
constants βm;n define the contribution of the radial mode n to
the density for a given azimuthal mode m. Each azimuthal
mode, characterized by its unique excitation energy, can be
accompanied by one or more degenerate radial modes.
As we cross the instability threshold, the lowest excited

azimuthal mode is the quadrupole mode defined by m ¼ 2
(we exclude the m ¼ 1 dipole mode corresponding to a
synchrotron oscillation of the entire bunch). The m ¼ 2
phase-space distortion defined by Eq. (1) is proportional to
cosð2φÞ in a simple qualitative picture. This distortion
rotates at the synchrotron frequency so the total pattern
appears to repeat itself at a frequency 2Fsyn. The next
excitation is the m ¼ 3 sextupole mode, described by
cosð3φÞ, and the phase space pattern replicates at a
frequency of 3Fsyn (we are ignoring here the possibility
that different modes might coexist). In general, an excited
azimuthal mode of order m can be crudely visualized in
phase space as a star-shaped configuration with m prongs
described by cosðmφÞ, rotating at the synchrotron fre-
quency so the associated mode frequency becomes mFsyn.
By way of example, in Fig. 1 we show the phase space
density for modes m ¼ 3 and m ¼ 8 in the cosine descrip-
tion with a Gaussian radial dependence. The projection of
the prongs onto the spatial q-axis defines the periodic
density fluctuations within the bunch, analogous to the
microbunches described above [6,7]. The quadrupole
mode, for example, appears as a longitudinal “breathing”
mode of the bunch where the bunch length appears to
oscillate at 2Fsyn and the CSR intensity oscillates
accordingly.

The interaction of the bunch with its own wakefields can
induce a shift in the synchrotron frequency and thus cause a
shift in the frequencies of the azimuthal modes relative to
the above simplistic model. Two phenomena dominate, and
tend to act in opposite directions. Potential-well distortion
[8], a static mechanism, causes an increase in the bunch
length and a decrease in the synchrotron frequency.
Consequently, the mode frequencies are shifted down-
wards. The other mechanism is dynamic. In the linear
theory the deviation from the static Haissinski profile is
assumed to vary as ρðzÞe−iΩmt where Ωm ¼ 2πmFsyn and
ρðzÞ represents the longitudinal deviation. The wakefield
produced by this deviation constitutes a time-varying
retarding voltage acting on the bunch. The net result is
an upward shift in the synchrotron frequency in the
presence of an inductive impedance [5], and thus an upward
shift in the mode frequency. Both of these phenomena are
current-dependent. Them ¼ 1 dipole mode, corresponding
to the familiar synchrotron oscillation of the entire bunch, is
the exception here. For this mode, the two mechanisms
completely cancel each other, leaving this frequency
unchanged [5,8]. In the following, we will refer to this
as the “true” synchrotron frequency.
We turn now to the instability thresholds, and consider

the bunch current as the independent parameter. Threshold
calculations generally follow two approaches. For example,
Bane et al. [9] solve the Vlasov-Fokker-Planck equation
and note the onset of instability through a change in the rms
energy spread of the bunch. This leads to a convenient
threshold algorithm which we will consider later. The other
approach is based on a linearization of the Vlasov equation
and uses the concept of mode coupling to describe the
instability. With increasing current, certain mode frequen-
cies converge (azimuthal or radial) and the mode frequency
acquires an imaginary component which describes the
instability growth rate. The recent work of Cai [10]
exemplifies this approach.
Let us now briefly review previous experimental CSR

studies in the transition region in the time domain. We use
the symbol Finst to represent the instability frequency as
defined by the harmonic variation of the CSR intensity,
and Fsyn to represent the true synchrotron frequency. If Finst

FIG. 1. Models of the phase space densities for modes m ¼ 3
(left) and m ¼ 8 (right) assuming a cosðmφÞ azimuthal distortion
with a Gaussian radial dependence. The patterns rotate at the
synchrotron frequency Fsyn and the mode frequencies are mFsyn.
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corresponds to the excitation of the azimuthal modes, a plot
of Finst=Fsyn should exhibit a clustering around the integral
values appropriate to the excited modes. This is indeed
nicely demonstrated in the work of Kuske [11], which
shows a distinct clustering, staircase-fashion, about the
three lowest modes (m ¼ 2–4) when Finst=Fsyn is plotted as
a function of Fsyn. With increasing mode number, the
stairlike platforms develop an upward tilt and the disconti-
nuities are less evident although the measurements extend
up to m ≈ 7. These pioneering measurements were made at
1.7 GeV on the BESSY II synchrotron. Threshold studies
have subsequently been reported by others [12–14], but
they do not focus on excitations above the sextupole
mode (m ¼ 3).
In this paper we present our experimental investigations

of longitudinal bunch dynamics in the transition region
through a study of CSR in the time domain using the
Canadian Light Source storage ring. Data were acquired
with a Schottky diode in the mm region of the CSR
spectrum. Clear evidence of excitations up to the m ¼ 8
azimuthal mode is presented, with lesser evidence of
excitations up to m ¼ 11. The instability threshold currents
are compared with the theories of Bane et al. [9] and Cai
[10]. We investigate these bunch characteristics as a
function of five beam energies between 1.0 and 2.9 GeV.

II. EXPERIMENTAL DETAILS

CSR was produced at the Canadian Light Source (CLS)
in Saskatoon in a single-bunch mode at five beam energies:
2.9, 2.2, 1.5, 1.2, and 1.0 GeV. Starting at a bunch current
of 1–2 mA, the momentum compaction of the lattice was
reduced until CSR emission was signaled by the huge
increase in intensity associated with the transition from
incoherent to coherent radiation. At a fixed synchrotron
frequency, the bunch current was then slowly reduced by
beam scrapers until the CSR transitioned from the stochas-
tic bursting mode to a steady periodic mode. The nominal
threshold current for periodic emission was subjectively
defined when the oscillation amplitude was small relative to
the underlying continuous spectrum but still clearly visible,
which was about 5% or more of the continuum amplitude.
The momentum compaction and synchrotron frequency
were again reduced and the cycle repeated until limited by
the short beam lifetime at small compaction factors. The
true synchrotron frequency Fsyn near threshold was
deduced in the usual manner from the m ¼ 1 synchrotron
sideband on a storage-ring rotation harmonic as measured
by a beam position monitor.
The CSR was detected by an unbiased rf Schottky diode

equipped with a 50–75 GHz band pass filter [15]. The
diode was mounted in air at the end of a 50 cm long
forward-viewing pipe fastened near the entrance of the
bending-magnet vacuum chamber (R ¼ 7.143 m, bend
angle θ ¼ 15°, height H ¼ 32 mm). The detector thus
observes backward-propagating fields generated by

reflections from a photon-absorber bar and other compo-
nents situated near the vacuum chamber exit. The layout is
described in more detail in Ref. [16].
A typical time-domain spectrum near the periodic thresh-

old is shown in Fig. 2, spanning 500 μs, or 877 passes
around the storage ring. The modulation frequency here is
10.9 kHz, and is associated with the quadrupole (m ¼ 2)
longitudinal mode. Figure 3 shows the detector response
for a single pass of the bunch. The light from each pass is
comprised of the prompt CSR flash plus contributions from
the trailing wakefields and reflections from other hardware
components, as described in [16].

FIG. 2. Time-domain CSR spectrum showing oscillations due
to the quadrupole (m ¼ 2) eigenmode near threshold. The
oscillation frequency is approximately 10.9 kHz and the syn-
chrotron frequency is 5.4 kHz. The figure represents 877 turns of
the storage ring.

FIG. 3. Detector response for a single pass of the bunch. In this
study we are only interested in the prompt peak. The meaning of
the other structures is described in [16].
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Data were analyzed using a custom procedure written in
Igor 6.3.4.0. For this study we are interested only in the
prompt peak. The analysis software picked the maximum
intensity of this peak for each pass. The DC component was
removed from the resulting multipass set of amplitudes and
a Fast Fourier Transform (FFT) was performed. The FFT
was zero filled [17] to 16384 points and used a Blackman
window function [18]. Peaks in the resulting frequency
spectrum were selected based on their intensity maxima.

III. RESULTS AND DISCUSSION

A. Instability frequency as a function of bunch length

The independent experimental parameters in this study
are the bunch current Ithrb defining an eigenmode threshold,
the true synchrotron frequency Fsyn, and the beam energy.
Note that Ithrb is the eigenmode threshold current for a given
synchrotron frequency, since these two parameters are
correlated. All the data reported herein correspond to
threshold measurements spanning this 2-dimensional
space. We will mainly confine our discussion to two beam
energies, 1.5 and 2.9 GeV. These two energies display a
marked difference in the profile of their respective excita-
tion functions, and we will attempt to address the origin of
this difference. We will comment on the other energies
when appropriate.
In Fig. 4 we plot the excitation function Finst=Fsyn as a

function of the threshold current Ithrb , where Finst is the

instability frequency as determined above. A tight cluster-
ing around integer values is observed, while a downward
drift below integral values is seen with increasing current. It
is also apparent that Finst=Fsyn is not a simple linear
function of the threshold current. On the other hand,
elementary considerations suggest that Finst=Fsyn should
be a linear function of the bunch length, with a slope that is
independent of energy [7]. Let us briefly review the
argument. With reference to the phase-space model in
our introductory remarks, the angle between the prongs of
the phase-space “star” is given by Δφ ¼ 2πFsyn=Finst.
Since the radius of the star is approximately equal to the
bunch length σ, the projection of the star onto the spatial
q-axis defines the maximum spacing λ0 between the
resulting density maxima as λ0 ≈ σΔφ. Combining these
expressions we get

Finst

Fsyn
≈
2πσ

λ0
ð2Þ

A density modulation of wavelength λ0 translates into
CSR of the same wavelength, so we identify λ0 with the
CSR spectral maximum in the THz region. Kuske [19]
came to a similar conclusion as Eq. (2), and suggested
that λ0 be defined as the wavelength corresponding to the
local maximum in the longitudinal radiation impedance
Re½ZðωÞ�, using a broad-band resonance approximation to
the parallel-plate impedance as derived by Warnock [20].
This gives

λ0 ≈
�
3H3

πR

�1
2 ð3Þ

where H is the height of the chamber and R is the bending
radius. For the CLS parameters, we get λ0 ¼ 2.09 mm.
Finally, combining (2) and (3) gives the required expres-
sion. We calculate the zero-current bunch length σ using the
relation

σ ¼ cFsyn

F2
0

·
E

hV0 cosðψÞ
·
ΔE
E

ð4Þ

where F0 is the rotation frequency (1.754 MHz), c is the
speed of light, h is the harmonic number (285), V0 is the
cavity voltage (2.05 MV), ψ is the stable phase, and ΔE=E
is the relative energy spread of the beam as calculated from
the synchrotron radiation integrals.
In Fig. 5 we show Finst=Fsyn plotted as a function of the

zero-current bunch length for 1.5 and 2.9 GeV. The straight
line in the figure is based on Eqs. (2) and (3). The trend of
the data is indeed linear with σ, and the general slope is
consistent with 2π=λ0 as given by Eq. (2), independent of
energy. Of particular note in Fig. 5 is the apparent align-
ment of the line with the start of each mode. This empirical
observation that seemingly ties a given modal threshold to a

FIG. 4. Instability frequency normalized by the true synchro-
tron frequency as a function of the threshold bunch current at 1.5
and 2.9 GeV. A tight clustering around the lower integers is
apparent.
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unique bunch length will be addressed later in the threshold
discussion.

B. Instability frequency as a function of synchrotron
frequency—1.5 GeV

In Fig. 6 we show Finst=Fsyn at threshold as a function of
the synchrotron frequency for beam energies 2.9, 2.2, and
1.5 GeV, while Fig. 7 shows the corresponding plots at 1.2
and 1.0 GeV. All the frequency ratios fall close to, or below,
the integer mode numbers m and the downward shifts are
seen to increase with increasing m, a trend that is seen to
continue at the lower beam energies as well. We also note
that the 2.9 and 1.5 GeV excitation functions differ in their
profiles across each mode. The 1.5 GeV (and lower energy)
data form a staircase-like pattern with horizontal steps for
each mode, while the 2.9 GeV data show a distinct upward
slope across each step. The 2.2 GeV data hint at a transition
between the two. Let us comment first on the 1.5 GeV
measurements in Fig. 6.
Bunch instabilities are often described in terms of mode

coupling between the radial modes or the azimuthal modes
[8]. The resulting eigenmode frequencies change with
increasing current, and if they eventually overlap then
the resulting frequency acquires an imaginary component
that defines the instability threshold and the growth rate. In
general, the growth rate is much smaller for radial-mode
coupling than azimuthal-mode coupling, but both predict a

FIG. 5. Instability frequency normalized by the true synchro-
tron frequency as a function of the zero-current bunch length at
the same synchrotron frequency. Beam energies are 1.5 and
2.9 GeV. A linear dependence on the bunch length is evident,
supporting the elementary argument in the text. The straight line
is the corresponding prediction based on Eqs. (2) and (3).

FIG. 6. Instability frequency normalized by the true synchro-
tron frequency as a function of the true synchrotron frequency for
beam energies 2.9, 2.2 and 1.5 GeV. Excitation of eigenmodes up
to m ¼ 11 is evident in the 1.5 GeV data.

FIG. 7. Instability frequency normalized by the true synchro-
tron frequency as a function of the true synchrotron frequency for
beam energies 1.2 and 1.0 GeV.
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very rapid increase in growth rate with increasing current
above threshold.
The frequencies of the unperturbed radial modes are

identical to those of the associated azimuthal modes, so
radial-mode coupling for a given azimuthal mode produces
a relatively small shift in the eigenmode frequencies. In
contrast, coupling between azimuthal modes (for a fixed
radial mode) produces a large shift, comparable to Fsyn
[8,10,21]. Inspection of the 1.5 GeV data in Fig. 6 shows
negligible or small shifts from integral values up to m ¼ 5,
suggesting that coupling between radial modes plays the
dominant role here. This conjecture is supported by
detailed calculations, with as few as two radial modes
participating [10].
The normalized frequencies in Fig. 6 gradually slip

below integral values with increasingm. We associate these
downward shifts with a reduction in the synchrotron
frequency caused by potential-well distortion (PWD).
Denoting this frequency shift by ΔFpwd, the frequency
of a given mode becomes Finst ¼ mðFsyn þ ΔFpwdÞ where
Fsyn is the true synchrotron frequency. The PWD-induced
frequency shift is a negative quantity in the presence of an
inductive impedance [8], therefore Finst=Fsyn should shift
below integer values with increasing m, in agreement with
the general trend of the 1.5 GeV data.
We have made a rough estimate of the PWD correction to

the synchrotron frequency using the approximation [8]:

Δωs ≈
αc2r0
4πωsγC

Z
ρðωÞω

c
Im½ZðωÞ�dω: ð5Þ

Here, α is the momentum compaction, r0 is the classical
electron radius, γ ¼ E=me, C is the storage ring circum-
ference, and Δωs ¼ 2πΔFpwd. The bunch density is
approximated by a Gaussian: ρðωÞ ¼ Nbe−ðωσ=cÞ

2=2, and
the bunch length σ is corrected for PWD using the relation
ðσωsÞ ¼ ðσωsÞ0 where the right side means unmodified
quantities [22]. The impedance ZðωÞ is based on the
parallel-plate model [20] evaluated for the CLS geometry.
Finally, we express the momentum compaction in Eq. (5) in
terms of the cavity voltage, since the voltage and phase are
maintained at fixed values for all beam energies:

α ¼ 2πE ·

�
Fsyn

F0

�
2

·
1

hV0 cosðψÞ
: ð6Þ

Combining Eqs. (5) and (6), we note that the expression for
ΔFpwd=Fsyn now becomes independent of both energy and
synchrotron frequency.
The PWD shift was calculated for the modes m ¼ 5–7

using the bunch parameters associated with the corre-
sponding 1.5 GeV measurements. In all cases we estimate
ΔFpwd=Fsyn ≈ −0.08 while the experimental shifts as
deduced from the data are ðΔFinst=FsynÞexp ≈ −0.035;
−0.048 and −0.060 for m ¼ 5–7, respectively. The

variation in the experimental shifts can be ascribed to
the corresponding differences in the upward shifts asso-
ciated with the so-called dynamic correction to the syn-
chrotron frequency described in the introductory remarks.
The instability frequency corrected for both PWD and the
dynamic term becomes Finst¼mðFsynþΔFpwdþΔFdynÞ.
If we adopt the PWD estimate, it follows that the dynamic
shifts must decrease rapidly in magnitude with increasing
mode number in order to reproduce the experimental shifts,
in accord with theoretical expectations [5,8]. Consequently,
the total synchrotron frequency shift ΔFpwd þ ΔFdyn must
decrease in magnitude with decreasing mode due to a
growing cancellation between the two terms, with complete
cancellation occurring for the dipole (m ¼ 1) mode. This
competing behavior between the static and dynamic cor-
rections accounts for the pattern of frequency shifts dis-
played in Fig. 6 as a function of mode number.

C. Instability frequency as a function of synchrotron
frequency—2.9 GeV

We turn now to the 2.9 GeV measurements and focus on
the upward slopes across each mode. These data are
displayed in an expanded scale in Fig. 8, where the lines
through the data are merely a visual guide. Interestingly, the
frequency ratio Finst=Fsyn at the high-frequency end of each
mode closely matches the corresponding 1.5 GeV fre-
quency ratio for the same mode number (see Fig. 6),
suggesting comparable PWD and dynamic corrections for

FIG. 8. The 2.9 GeV data of Fig. 6 in expanded scale showing
an upward slope across each mode that increases with increasing
mode number, in marked contrast to the behavior at 1.5 GeV. The
lines through the data are merely a visual guide.
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the two sets of measurements. This is plausible since we
have argued that the normalized PWD shift ΔFpwd=Fsyn is
independent of both energy and synchrotron frequency for
our operating mode, and one can make a similar argument
for the normalized dynamic correction ΔFdyn=Fsyn. On the
other hand, at the low-frequency end of each 2.9 GeV
mode, we see that Finst=Fsyn falls well below the 1.5 GeV
results (see Fig. 6). Figure 6 clearly suggests some kind of
correlation between the slopes and Fsyn, given the large
difference in frequencies between 1.5 and 2.9 GeV. As
further evidence, we note that the BESSY II data [11],
which also exhibits upward slopes across each mode, was
accumulated at 1.7 GeV, comparable our 1.5 GeV energy.
However, the corresponding synchrotron frequencies of
approximately 1–8 kHz are much closer to the frequencies
2–6 kHz we measured at 2.9 GeV than to the much higher
frequencies measured at 1.5 GeV. In other words, the
BESSY II measurements of Finst=Fsyn vs. Fsyn bear a much
closer resemblance to our 2.9 GeV results than to our
1.5 GeV results, again suggesting a correlation between the
slopes and Fsyn.
We suggest that the apparent correlation between the

upward slopes and Fsyn may be related to radiation
damping within the bunch. The synchrotron period τsyn ¼
1=Fsyn defines the natural time unit for the internal bunch
dynamics. Denoting the longitudinal damping time by τd,
the ratio B ¼ τsyn=τd provides a relative measure of the
damping effect on the bunch dynamics. From the known
damping times and the central frequencies in Fig. 6, we
estimate B ≈ 0.10 at 2.9 GeV and B ≈ 0.004 at 1.5 GeV
which differ by a factor of 25, suggesting that damping is
probably not a factor at the lower energy. For the BESSY II
measurements we estimate B ≈ 0.04 which is much closer
to our 2.9 GeV value than our 1.5 GeV value. Thus, B
provides a mechanism for the observed correlation with
Fsyn. Damping is important when the instability growth
time is comparable to τd, and given that the growth times
are generally many synchrotron periods, the damping
influence should increase with B and therefore should be
most apparent at 2.9 GeV. Each eigenmode “step” in Fig. 6
and Fig. 8 is defined by a threshold current or threshold
synchrotron frequency that marks the initiation of the
mode. Assuming that the instability growth rates increase
rapidly above these thresholds, damping should have a
maximum impact near threshold and its influence should
decrease across the step of a given mode. The dynamic
correction ΔFdyn by its nature will be more sensitive than
the static PWD to radiative damping in the threshold
region. This balance between damping and excitation
means ΔFdyn, which is a positive quantity, will be smaller
near the eigenmode threshold than at the higher currents
where the next higher mode begins, thus contributing to an
upward slope in Finst=Fsyn. Finally, we note that B=π
appears as a coefficient multiplying the damping term in the
Vlasov-Fokker-Planck (VFP) equation. Kuske [23] has

calculated Finst=Fsyn vs. Fsyn for the BESSY II parameters
using the full VFP equation and predicts upward slopes
across the steps similar to the BESSY II measurements (see
also [19]).
We can put the preceding remarks in more quantitative

terms by considering the synchrotron frequency shifts for a
parabolic charge distribution, which is much more tractable
than the Gaussian model while still demonstrating the
essential features. For simplicity, the impedance is taken to
be purely inductive (ZðωÞ ¼ −iωL) and only the most
prominent radial mode is included in the (diagonal)
transition matrix. The mode frequency Finst can be
expressed as follows:

Finst

Fsyn
¼ mþm

�
ΔFpwd þ ΔFdyn

Fsyn

�
ð7Þ

where [8]

ΔFpwd þ ΔFdyn

Fsyn
¼ −Ib

G
σ3

�
1 −

2ffiffiffi
π

p Γðmþ 1=2Þ
m!

�
: ð8Þ

Here Ib is the average bunch current, σ is the bunch length,
andG is a constant which, for our constant-voltage mode, is
independent of Fsyn and energy. The first term in the square
brackets in Eq. (8) corresponds to the PWD correction
while the second term represents the dynamic correction.
The latter decreases monotonically with increasing m
roughly as 1=

ffiffiffiffi
m

p
. (A hypothetical decrease in the dynamic

correction with increasing m was noted earlier). The total
correction vanishes identically for m ¼ 1, as required. Let
us calibrate the constant G against the experimental value
Finst=Fsyn ≈ 7.5 for m ¼ 8. Then from Eqs. (7)–(8) we
calculate Finst=Fsyn ≈ 4.7; 5.7; 6.6, and 7.5 for m ¼ 5–8,
respectively, which are comparable to the 1.5 GeV ratios in
Fig. 6 and the upper ends of the 2.9 GeV ratios in Fig. 8.
Focusing solely on the 2.9 GeV results, let us suppose that
the dynamic correction ΔFdyn is completely suppressed by
damping at the initiation of each eigenmode step. Then we
calculate Finst=Fsyn ≈ 4.5; 5.4; 6.3, and 7.2 for m ¼ 5–8,
respectively, which are comparable to the ratios at the
beginning of the steps in Fig. 8. While encouraging, we
emphasize that this discussion is merely intended to
demonstrate that the slopes across the higher modes may
be a consequence of radiation damping. The argument
obviously cannot be extended down to m ¼ 1 without
disturbing the necessary balance between the PWD and
dynamic corrections.

D. Instability thresholds

As noted earlier, calculations of the instability thresholds
have developed along two lines. We begin with the work of
Bane et al. [9] which solves the Vlasov-Fokker-Planck
(VFP) equation. This leads to a parametrization that
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depends on the two dimensionless parameters Π and Scsr
defined by

Π ¼ σR1=2

ðH=2Þ3=2 Scsr ¼
InR1=3

σ4=3
ð9Þ

where σ is the zero-current bunch length, R is the orbital
radius, and H is the height of the vacuum chamber as
defined by two parallel plates (H ¼ 32 mm). The normal-
ized bunch current is defined by

In ¼
r0Nb

2πνsoγðΔE=EÞ
ð10Þ

where Nb is the bunch population, νso is the unmodified
synchrotron tune, and ΔE=E is the rms relative energy
spread. At threshold the quantities in Eq. (9) are related by
the linear approximation

ðScsrÞthr ≈ 0.5þ 0.12Π: ð11Þ

GivenΠ, we solve for ðScsrÞthr and from Eqs. (9) and (10)
deduce the theoretical threshold currents Itheo. The exper-
imental thresholds Ithrb were determined empirically as
described earlier. Theory is compared with experiment at
1.5 and 2.9 GeV in Fig. 9, where we plot the ratio Ithrb =Itheo
as a function of Π. The rapid rise below Π ≈ 1.5 indicates a
breakdown of the linear relationship described by Eq. (11)

(The results at 1.0, 1.2, and 2.2 GeV show a similar trend).
The theory behind Eq. (11) assumes a so-called “strong”
instability, one driven by azimuthal mode coupling [9].
However, we have suggested that the present measurements
are more indicative of radial coupling, which fall under the
category of so-called “weak” instabilities. We will continue
this discussion of Fig. 9 following the introduction of
Fig. 10 below.
The second approach to instability theory is based on

linearization of the Vlasov equation, and here we focus on
the recent study by Cai [10]. Near threshold, the bunch
density is modeled as a static Haissinski distribution plus a
small time-dependent perturbation which is expanded in
terms of azimuthal modes. These are further decomposed
into radial-like modes. This construct resembles Sacherer’s
original formalism [21] and presents a more intuitive
approach to instability theory than portrayed by a direct
attack on the VFP equation. Mode mixing, for example,
becomes the driving force behind the onset of an instability.
Bunch distortion is driven by the CSR wakefield as defined
by the radiation impedance. In [10], the unshielded free-
space radiation impedance is employed while Bane et al.
[9] use the more realistic parallel-plate model.
From the formula for the free-space CSR wakefield and

other considerations, Cai [10] argues that the instability

FIG. 9. Ratio of the experimental to theoretical threshold
currents at 2.9 and 1.5 GeV plotted against the shielding
parameter Π from the theory of Bane et al. [9]. The rapid
rise below Π ≈ 1.5 indicates a breakdown of the linear relation-
ship Eq. (11).

FIG. 10. Normalized instability frequencies at 2.9 and 1.5 GeV
as a function of the dimensionless parameter ξ as defined by Cai
[10] and Eq. (12) in the text. The data generally fall within the
interval ξ ≈ 0.7–1.0 in marked contrast to the threshold value
ξthr ¼ 0.50 as predicted when shielding of the CSR impedance is
ignored. Note the tendency to curve to the right with increasing
mode number, equivalent here to increasing bunch length.
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theory should be characterized by the single dimensionless
parameter ξ defined by

ξ ¼ InR1=3

σ4=3
ð12Þ

where the normalized bunch current is given by Eq. (10)
above. In Fig. 10 we plot Finst=Fsyn as a function of ξ, and
observe that most of the data fall within the interval
ξ ≈ 0.7–1.0. From a comparison of the instability thresh-
olds for coasting beams versus bunched beams, Cai [24]
deduced the relation F ¼ 4πξthr=31=3 where F ¼ 7.456 is a
theoretical constant and ξthr is the threshold value of ξ. This
gives ξthr ¼ 0.856, which is consistent with the results
plotted in Fig. 10. We note that generally the bunch
eigenmodes are simultaneously excited with respect to ξ,
in agreement with theory, and furthermore the pattern in
Fig. 10 bears a close resemblance to the corresponding
pattern in [10], aside from the threshold at ξthr ¼ 0.482 for
the unshielded impedance. That pattern is based on a radial-
coupling model, further supporting our hypothesis that the
present observations are driven by radial coupling. Note
that ξ is identical to the quantity Scsr as defined by Eq. (9).
The free-space impedance corresponds to the limit H → ∞
in the parallel-plate model, and with this limit in Eqs. (9)
and (11), we would conclude that ξthr ¼ 0.5 in the
unshielded limit.
We now return to a discussion of Fig. 9 and Eq. (11),

noting again that Scsr ≡ ξ. From Fig. 10 we see that
experimental results are observed for values of ξ between
approximately 0.7 and 2.0. For values of Π < 1.5, the
theoretical predictions for ξ given by Eq. (11) are lower
than the observed values. Therefore, the theoretical thresh-
old currents given by Eq. (12) and the observed ξ will
exceed the thresholds given by Eqs. (9)–(11) for Π < 1.5.
This leads to the calculated rise in Fig. 9. However, as Π
increases above 1.5 the predictions made using Eq. (11)
become consistent with the observed values in Fig. 10 and
therefore the ratios plotted in Fig. 9 approach unity. As a
final comment, we note that the VFP calculations by Kuske
[25] show thresholds higher than predicted by Eq. (11) for
Π < 1, while roughly following it for Π > 1.
Given that all modes have a similar threshold in ξ, how

then do we understand the sequential nature of the
excitations as displayed in Figs. 5–8? Earlier, with respect
to Fig. 5, we noted the approximate alignment of the line
defined by Eqs. (2)–(4) with the start of each mode when
plotted as a function of the zero-current bunch length. Let
us pursue this and express Eq. (2) at the start of mode m as

Finst

Fsyn
¼ m ¼ 2πσm

λ0
ð13Þ

where σm is the zero-current bunch length at the initiation
of the mode and λ0 defined by Eq. (3) is the wavelength

marking the peak of the CSR spectral distribution. [In
writing Eq. (13) we are ignoring the frequency shifts due to
PWD, etc.]. Treating the bunch length as the dependent
variable, we have

σm ¼ m
λ0
2π

: ð14Þ

The relation between σm and λ0 is deeper than the simple
argument that lead to Eq. (2) and thence to Eq. (14).We note
that it is the real part of the radiation impedance that drives
the coupling between radialmodes [5]. It is alsoReZðωÞ that
defines the instability growth rate. It follows that instability
will first occur in that particular azimuthal mode whose
power spectrum peaks near the maximum of ReZðωÞ, i.e.,
near λ0 as we have defined it. Observation of CSR at a
wavelength λ0 means the power spectrum of the azimuthal
mode m must contain wavelengths comparable to λ0. The
power spectrum is generally expressed as a function of the
dimensionless parameter σ=λ where λ is the spectral wave-
length and σ is the unperturbed bunch length [5]. The peak in
the power spectrum is a strong function of the mathematical
model describing the azimuthal mode of interest. We
illustrate with two examples, classified according to their
unperturbed bunch distributions, and give the bunch length
that places the peak of the power spectrum at thewavelength
λ0. (i) Gaussian model: σm ¼ ffiffiffiffi

m
p λ0

2π (ii) Parabolic model:

σm ≈m0.7 λ0
2π. These are distinguished from each other, and

fromEq. (14), solely by the exponential power ofmwhich is
clearly model-dependent. Experiment seems to favor an
exponential power closer to unity.
Let us now see how the relation Eq. (14) ties in with

the bunch current, which is the usual threshold-defining
parameter. Using Eq. (4), we note that the normalized bunch
current as defined by Eq. (10) can be expressed in the form

In ¼ A
Ib
σ

ð15Þ

whereA is a constant that depends on the cavity voltage, etc.,
but is independent of energy and energy spread, and Ib is the
average bunch current. Thus, the parameter ξ in Eq. (12)
takes the form

ξ ∝
Ib
σ7=3

: ð16Þ

Denoting the threshold value of ξ common to all modes by
ξthr (ignoring the dispersal in Fig. 10) we solve for the bunch
current at the initiation of mode m:

Ithrb ðmÞ ∝ ξthrσ
7=3
m ð17Þ

where σm is defined by Eq. (14). Moving now across the
mode expressed as a function of σ, as in Fig. 5, we write in
general
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Ithrb ∝ ξthrσ
7=3 ð18Þ

where the current and bunch length share the same synchro-
tron frequency.We compare this relation with experiment in
Fig. 11, where we show the threshold currents plotted as a
function of σ7=3 for all five energies. A linear dependence is
expected if ξthr is a common constant for all modes, and
indeed the results are fairly linear out to a bunch length of
σ ≈ 2 mm. The subsequent upward slant can be traced to the
curvature in ξwith increasingFinst (i.e., with increasing σ) as
evident in Fig. 10. In any event, Fig. 11 demonstrates an
energy-independent correlation between the threshold cur-
rent and the associated zero-current bunch length (at the
same Fsyn) over a wide range of the parameters.

E. Coexisting modes

The excitation functions displayed in Figs. 6–8 suggest
the various eigenmodes are excited sequentially, one mode
at a time. However, a closer examination shows that some
modes coexist, meaning that two modes are simultaneously
active in the same bunch. In other words, the phase-space
expansion Eq. (1) contains both of these azimuthal modes,
replacing the usual single-mode expansion. The coexist-
ence of modes is evident in the time-domain spectra as two
simultaneous oscillations in the CSR spectra at different
frequencies. Generally, coexisting modes are confined to

the transition boundaries between modes m and mþ 1.
This is plausible, since at the boundary the devolution of
one mode is concurrent with the evolution of the sub-
sequent mode, with both coexisting over a small interval
in Fsyn.
An interesting exception to the above rule is found in the

1.5 GeV data in Fig. 6 associated with the m ¼ 2 mode.
Coexisting m ¼ 2 and 3 modes are observed at
Fsyn ¼ 7.2 kHz, not surprising since this marks the boun-
dary between the two steps. What is unusual are the two
strings of m ¼ 2 data following this transition boundary,
from Fsyn ¼ 7.9–10.4 kHz and Fsyn ¼ 13.0–14.6 kHz.
Much of the m ¼ 2 data in the first string is found to
coexist with the m ¼ 3 data directly above, while all the
m ¼ 2 data in the second string coexists with a subset of
data in the m ¼ 5 step above. Finally, we note a gradual
decrease in Finst=Fsyn for the m ¼ 2 mode with increasing
Fsyn. Perhaps these are all symptoms of an increasing
incursion by azimuthal-mode mixing into what we perceive
to be transitions driven by radial-mode mixing.

IV. CONCLUDING REMARKS

The present measurements display clear evidence of
longitudinal bunch excitations up through them ¼ 8mode.
The modes appear to be excited sequentially as a function
of bunch length or synchrotron frequency, although there is
evidence of coexisting modes at the intermodal boundaries.
A given mode crosses a finite span of bunch lengths or
synchrotron frequencies before the next mode is excited. A
systematic downward shift in the mode frequencies below
integral multiples of the synchrotron frequency can be
explained by a balance between the reduction in the
synchrotron frequency from potential-well distortion and
the increase in frequency from the dynamic correction.
Focusing on the 2.9 GeV data, the frequency of a given
mode displays an upward slope when plotted against
synchrotron frequency or bunch length, and the slope
angle increases with mode number. An explanation may
lie within the dynamic correction to the synchrotron
frequency, wherein the correction varies in magnitude
across the mode due to the changing influence of radiation
damping.We observe a strong correlation of the slopes with
synchrotron frequency, as demonstrated by comparing the
2.9 and 1.5 GeV data, and this is consistent with the
damping conjecture.
The excitation of a given mode depends on a number of

parameters, including the synchrotron frequency Fsyn, the
bunch current at threshold, the unperturbed bunch length,
and the beam energy. We have examined the correlations
between these parameters and observe the following. We
find that the mode frequency Finst, normalized by Fsyn,
appears to be a linear function of the bunch length
calculated for the same synchrotron frequency. The thresh-
old current, on the other hand, is a highly nonlinear

FIG. 11. Experimental threshold bunch current at all five
energies plotted as a function of zero-current bunch length raised
to the 7=3 power. A linear description is expected if the threshold
parameter ξthr is a universal constant across all modes, which
Fig. 10 shows is not a rigorous assumption. The synchrotron
frequency, which is common to both parameters, varies from
point to point.
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function of the bunch length. Both correlations are inde-
pendent of the beam energy.
As yet, no theoretical calculations are available to

provide a deeper understanding of the observations
reported here. For reasons not yet understood, the VFP
solvers do not predict excitations above the quadrupole
(m ¼ 2) mode, at least for the particular geometries studied
[3,6], with the exception of [23]. On the other hand, the
linear model [10] exhibits azimuthal modes up to m ¼ 15
for the SLC Damping Ring. This incongruity clearly
demands further theoretical study, especially in the thresh-
old region. Much of the physics behind the longitudinal
excitations is based on the concept of mode mixing,
especially between the radial modes, and this is introduced
explicitly into the linear theory in the course of the theory
development. Cai [10], for example, includes up to 20
azimuthal and 20 radial modes in his model. The VFP
equation, on the other hand, makes no explicit reference to
mode structure since the concept, or its equivalent, is
presumably subsumed within the nonlinear theory. That
might suggest that the existing VFP solvers are not
sufficiently sensitive to this underlying aspect.
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