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Variational quantum algorithms for discovering Hamiltonian spectra
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Calculating the energy spectrum of a quantum system is an important task, for example to analyze reaction
rates in drug discovery and catalysis. There has been significant progress in developing algorithms to calculate the
ground state energy of molecules on near-term quantum computers. However, calculating excited state energies
has attracted comparatively less attention, and it is currently unclear what the optimal method is. We introduce
a low depth, variational quantum algorithm to sequentially calculate the excited states of general Hamiltonians.
Incorporating a recently proposed technique [O. Higgott, D. Wang, and S. Brierley, arXiv:1805.08138], we
employ the low depth swap test to energetically penalize the ground state, and transform excited states into
ground states of modified Hamiltonians. We use variational imaginary time evolution as a subroutine, which
deterministically propagates toward the target eigenstate. We discuss how symmetry measurements can mitigate
errors in the swap test step. We numerically test our algorithm on Hamiltonians which encode 3SAT optimization
problems of up to 18 qubits, and the electronic structure of the lithium hydride molecule. As our algorithm uses
only low depth circuits and variational algorithms, it is suitable for use on near-term quantum hardware.
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I. INTRODUCTION

Many physical properties of a quantum system are deter-
mined primarily by its energy spectrum. Diagonalization of
the Hamiltonian allows one to calculate various expectation
values and correlation functions [1]. For example, the energy
spectra of molecules inform their dynamics and therefore an
understanding of such spectra is vital for molecular design [2].
But diagonalizing the Hamiltonians of quantum systems on a
classical machine is an often intractable task. The exponen-
tially growing cost of storing and operating upon the quantum
system makes diagonalizing large systems prohibitively ex-
pensive. This precludes, for example, the study of complicated
compounds [3].

It is widely believed that quantum computers will make
these classically intractable molecular simulations possible
[4]. This was formalized by Aspuru-Guzik et al., who sug-
gested using the adiabatic state preparation and phase estima-
tion algorithms to find the ground state energy of molecules
[5]. Such a method necessitated deep quantum circuits and
therefore long coherence times. The recently proposed vari-
ational quantum eigensolver (VQE) circumvents these re-
quirements, exchanging them for an increased number of
circuit repetitions [6,7]. To date, there have been several
proof-of-principle experiments which have applied the VQE
to find the ground state energy of small molecules [6,8–11].
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Other variational algorithms have been introduced which can
simulate the real [12] or imaginary [13] time dynamics of
quantum systems. In particular, it was shown that imaginary
time evolution can be used as an alternative to the VQE to find
the ground state of molecular Hamiltonians.

While the ground state problem has received significant
attention, the problem of finding the excited states of molecu-
lar systems has experienced comparatively less development.
This is despite its particular importance in analyzing chemical
reactions, which is a vital ingredient in the quest to discover
new drugs and industrial catalysts [14].

There have thus far been a handful of proposals for cal-
culating excited states, all based on the VQE, such as the
quantum subspace expansion method [15,16] and the von
Neumann entropy method [17]. These methods require either
many measurements, or deep quantum circuits, for instance to
perform quantum phase estimation.

In this work, we propose a variational algorithm which uses
imaginary time evolution to sequentially calculate the energy
levels of a Hamiltonian. The algorithm makes use of the
shallow swap test [18,19] to evaluate the overlap of two input
wave functions [20]. We first use imaginary time evolution to
target the ground state of the Hamiltonian. Using the shallow
swap test, we can energetically penalize the ground state wave
function, then discover the other eigenstates through repeated
evolution and penalization. This method makes use of only
shallow circuits, at the cost of additional measurements.

A recent work by Higgott et al. [20] introduces the use of
the swap test with the VQE to discover the energy eigenstates
of the diatomic hydrogen molecule. Here, we contrast the
performance of methods based on direct descent with our
imaginary time approach, finding that the former is prone to
becoming stuck in nonphysical local minima of the parameter
space [13,21]. This may render them unsuitable for probing
the full spectra of bigger systems. We numerically demon-
strate this for a six-qubit molecular Hamiltonian.
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Conversely, we find that when evolution is restricted to a
submanifold of the full Hilbert space, variational imaginary
time evolution tends to converge to energy eigenstates of
the Hamiltonian, regardless of the initial state. This is a
crucial mechanism exploited by our algorithm to reliably
penalize and discover the physical energy spectrum. We test
our method on Hamiltonians which encode the Boolean satis-
fiability problem (3SAT), and to find the electronic spectrum
of the lithium hydride (LiH) molecule.

II. IMAGINARY TIME EVOLUTION

Our algorithm makes use of variational imaginary time
evolution, to be performed by a hybrid quantum-classical ma-
chine. We briefly outline the procedure below. See Ref. [13]
for a more detailed discussion.

For a time-independent Hamiltonian, H , the normalized
imaginary time evolution is given by

|ψ (τ )〉 = e−Hτ |ψ (0)〉√
〈ψ (0)|e−2Hτ |ψ (0)〉 , (1)

which is the solution of the imaginary time Schrödinger
equation

d|ψ (τ )〉
dτ

= (H − 〈H (τ )〉)|ψ (τ )〉, (2)

where 〈H (τ )〉 = 〈ψ (τ )|H |ψ (τ )〉. Forgoing normalization, a
general state |ψ〉 = ∑

j c j |e j〉 evolves in imaginary time like

|ψ (τ )〉 ∼
∑

j

c je
−Ejτ |e j〉, (3)

where the probability of energy eigenstates |e j〉 decay ex-
ponentially with their energies Ej . Provided that |ψ (τ )〉 has
a nonzero overlap with the ground state |g〉, it can be veri-
fied that limτ→∞ |ψ (τ )〉 = |g〉. While nonunitary imaginary
time evolution cannot be directly implemented on a quan-
tum computer, it can be simulated using a hybrid quantum-
classical algorithm. The state |ψ (τ )〉 is approximated by a
parametrized trial state |ϕ(θ1(τ ), . . . , θM (τ ))〉 := |ϕ(�θ (τ ))〉,
and its evolution determined by the evolution of �θ (τ ). The trial
state is produced by an Ansatz quantum circuit |ϕ(�θ (τ ))〉 =
U (θM )U (θM−1) . . .U (θ1)|0̄〉, where U (θk (τ )) is in practice a
single- or two-qubit gate.

The evolution of the parameters �θ (τ ) under imaginary time
evolution is given by∑

j

Mi j θ̇ j = Vi, (4)

where

Mi j = Re

(
∂〈ϕ(�θ (τ ))|

∂θi

∂|ϕ(�θ (τ ))〉
∂θ j

)
,

Vi = Re

(
〈ϕ(�θ (τ ))|H ∂|ϕ(�θ (τ ))〉

∂θi

)
. (5)

These elements are obtained by the quantum processor using
the shallow quantum circuit shown in Appendix A. The clas-
sical processor can then update the parameters using the Euler
update rule

�θ (τ + δτ ) = �θ (τ ) + δτM−1V . (6)

If the Ansatz is sufficiently powerful, repeatedly constructing
and solving this linear equation will evolve the system to
a state close to the ground, which we denote as |g̃〉. We
monitor convergence by the change in the parameters, and halt
when ‖��θ (τ )‖ = ‖δτM−1V‖ ≈ 0. The expected energy of a
converged state is easily evaluated using a polynomial number
of simple Pauli operators [6].

With a less powerful Ansatz, imaginary time evolution
may fail to reach the ground state, but tends to converge to
a higher excited eigenstate of the Hamiltonian. We do not
presently provide a proof of this, though this behavior is seen
consistently in our numerical simulations.

III. EVALUATION OF THE ENERGY SPECTRUM OF THE
HAMILTONIAN USING IMAGINARY TIME EVOLUTION

We now describe how to evaluate the excited states of the
Hamiltonian. Having found an approximate ground state |g̃〉,
we can construct a modified Hamiltonian

H ′ = H + α|g̃〉〈g̃|, (7)

which, for sufficiently large α ∈ R, no longer has ground
state |g〉. Instead, the first excited state |e1〉 of H becomes
the ground state of H ′, and |g̃〉 is now an excited state of H ′
with energy increased by α, which will decay exponentially
faster in imaginary time. The rest of the spectrum, orthogonal
to |g̃〉, is unaffected. A system evolving under H ′ in imaginary
time will then approach |e1〉 instead. This state can in turn be
excited, and the system evolved under Hamiltonian

H ′′ = H + α|g̃〉〈g̃| + α|ẽ1〉〈ẽ1| (8)

to reach the next excited state of the original Hamiltonian. We
can repeat this process by preparing the effective Hamiltonian
H + α|g̃〉〈g̃| + ∑N

j=1 α|ẽ j〉〈ẽ j | to obtain the (N + 1)th excited
state |ẽN+1〉. In principle, we can obtain the complete energy
spectrum, including a count of the degeneracies, so long
as α is kept greater than the gap between ground and the
highest state sought. Note the order of the discovered and
subsequently excited eigenstates is unimportant.

In practice we do not directly modify the Hamiltonian, as
doing so would require full tomography of the state vector,
which is exponentially costly. Instead, we modify the imagi-
nary time evolution equations to describe the evolution under
the modified Hamiltonian, H ′. We replace V by

Vi = Re

(
∂〈ϕ(�θ (τ ))|

∂θi
H |ϕ(�θ (τ ))〉

+ α
∂〈ϕ(�θ (τ ))|

∂θi
|g̃〉〈g̃|ϕ(�θ (τ ))〉

)
,

(9)

and so on to excite all discovered eigenstates by α.
These additional terms to Vi can be evaluated using the

low depth swap test circuit [18,19], outlined in Appendix B.
We use the swap test to evaluate terms |〈ϕ(θi + δθi )|g̃〉|2 and
|〈ϕ|g̃〉|2, and then approximate

Re

(
∂〈ϕ|
∂θi

|g̃〉〈g̃|ϕ〉
)

= 1

2

∂

∂θi
|〈ϕ|g̃〉|2 � 1

2

|〈ϕ(θi + δθi )|g̃〉|2 − |〈ϕ|g̃〉|2
δθi

(10)

for some sufficiently small δθi.
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FIG. 1. Using symmetry measurements to detect and mitigate
errors in the conventional swap test.

There is no requirement that each discovered eigenstate is
excited by the same amount in the modified Hamiltonian. We
may vary α for each excited state. In that scenario, one can
add

N∑
j

α jRe

(
∂〈ϕ(�θ (τ ))|

∂θi
|ẽ j〉〈ẽ j |ϕ(�θ (τ ))〉

)
(11)

to Vi in Eq. (5) to emulate a Hamiltonian with energy eigen-
values {E1 + α1, . . . , EN + αN }. Ideally, the hyperparameter
α should be chosen to be as large as the gap between the
ground and highest excited state sought, so that eigenstates
are not rediscovered. This gap can often be a priori estimated
for quantum chemistry Hamiltonians using efficient classical
methods [22]. Otherwise, one could simply increase α on
the fly: If a new state of energy Ej + α is discovered and
is suspected to be a rediscovery of state Ej , simply discard
this state and enlarge α. If this new state was a legitimate
eigenstate, it will be rediscovered. Since it only appears in the
classical calculations, α can be changed at any stage during
the algorithm.

IV. ERROR MITIGATION

We raise the possibility of applying error mitigation to our
algorithm, through a simple error detection routine. Instead of
using the low depth swap test described above, we can also
use the conventional swap test (Fig. 1 [23]). The depth of this
circuit grows linearly with the number of qubits used. The
conventional swap test calculates the overlap between the two
states by measuring an ancilla. However, no measurements are
performed on the register qubits, and so any information we
gain from them is, in a sense, free. We consider the input states
as |g〉, |e〉. After the conventional swap test circuit, the register
is left in the state

|φ±
r 〉 = 1√

2
(|g〉|e〉 ± |e〉|g〉), (12)

where the sign is determined by the measurement result of
the ancilla qubit. The state |φ±

r 〉 will be invariant under a
symmetry S, if both |g〉 and |e〉 are also invariant under S. If
we make a measurement of this symmetry on the register, we
will be able to detect errors which break this symmetry. We
can then discard those results for which we detect an error.

In the case of molecular Hamiltonians, we are often inter-
ested in ground and excited states which conserve the number
of electrons in the molecule. If we use an Ansatz which
conserves the number of electrons (such as the unitary coupled
cluster Ansatz [24]), then a measurement of the electron
number operator, N̂e, on the output state of the swap test
should give the total number of electrons. If it does not, then
an error has occurred, and we can discard the measurement.
This method can thus mitigate the effect of single-qubit bit-
flip errors, and certain combinations of two-qubit errors. This
error mitigation method can also be applied to the method
developed in Ref. [20].

Moreover, our algorithm is compatible with the other error
mitigation techniques proposed in Refs. [25,26]. We do not
test these strategies in the present work.

V. NUMERICAL SIMULATIONS

We numerically simulate our algorithm with several
Hamiltonians and several Ansätze. Each time, our initial pa-
rameter values are random, and parameters are rerandom-
ized when we excite states in the Hamiltonian. We employ
Tikhonov regularization when updating the parameters to
ensure smoothness. We elaborate on these details and further
describe our numerical methods in Appendix D.

The choice of Ansatz is very important in variational sim-
ulation, and in this work, we explore the use of two. We try
the recently proposed low depth circuit Ansatz [27] which is
chemically motivated and was found to outperform the unitary
coupled cluster ansatz for the molecule cyclobutadiene. We
also employ the Ansatz recently used in Ref. [13] to find the
ground state with imaginary time, which we refer to as the
compact Ansatz. Both Ansätze scale linearly with the number
of qubits, and can be considered hardware efficient [13,27].

We task our algorithm with finding the spectra of simple
Hamiltonians which encode the 3SAT optimization problem,
and more complicated Hamiltonians which encode the elec-
tronic structure of LiH. We describe their structure below (see
Appendix C for a detailed description of their construction).
The 3SAT Hamiltonians are diagonal in the classical basis:

H =
∑

j

n j | j〉〈 j|, (13)

where n j is the number of 3SAT clauses violated by the
jth classical state when treated as a Boolean assignment.
This yields equally spaced, highly degenerate spectra. This
Hamiltonian can be decomposed into a number of terms
polynomial in the number of 3SAT clauses and efficiently
measured on a quantum computer, as outlined in Appendix C.
We stress, however, that we do not present our method as an
efficient 3SAT solver, and in general, the spectra of 3SATs
are uninteresting. Instead, we merely use 3SATs to construct
diagonal Hamiltonians of up to 18 qubits with structured
spectra, to be discovered by our method as a preliminary test.

The LiH spectrum, however, is interesting, and its Hamilto-
nian can be simplified by employing various physical approx-
imations; we do this to reduce the full 12-qubit Hamiltonian
to 10- and 6-qubit representations.
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FIG. 2. The expected energy as variational imaginary time evo-
lution discovers some low-lying states of 18 Boolean (left) and 16
Boolean (right) 3SAT Hamiltonians, using the compact Ansatz (with
126 and 112 parameters, respectively). Vertical dashed lines indicate
iterations when the Hamiltonian was excited and the parameters
rerandomized. Horizontal dashed and colored lines indicate the true
eigenvalues and those found by our method, respectively. Labels
indicate the degeneracies of the states.

Molecular Hamiltonians can be written as a linear combi-
nation of products of local Pauli operators,

H =
M∑
j

h j

∏
i

σ
j

i , (14)

where σ
j

i represents one of I, σ x, σ y or σ z, i denotes which
qubit the operator acts on, and j denotes which term in the
Hamiltonian we apply. For example,

H = h0I + h1X0Y1Z5 + h2Z0Y3Y5 + · · · . (15)

We compare the spectrum reported by our simulated method
with the eigenvalues of these Hamiltonians as found by exact
numerical diagonalization.

In Fig. 2, we present a simulation of our method exploring
the simple spectrum of some 3SAT problems. The vertical
axis is the expected energy 〈ϕ(�θ (τ ))|H |ϕ(�θ (τ ))〉 of the Ansatz
state, which we note is not necessary to monitor experi-
mentally. The expected energy monotonically decays under
imaginary time evolution until the system converges into an
eigenstate, which is subsequently excited. It is interesting to
note that the ground state is not necessarily discovered first,
as demonstrated by the 16-qubit (right) simulation in Fig. 2,
where ground is the third state discovered.

For the more complicated reduced six-qubit LiH Hamilto-
nian, we show that the variational imaginary time evolution
successfully discovers eigenstates in Fig. 3(a). In contrast,
Fig. 3(b) reveals gradient descent converging to noneigen-
states which when subsequently excited, modify the Hamilto-
nian in a nontrivial way. This leads to errors in the discovered
spectrum, shown in Fig. 4.
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FIG. 3. Variational simulations discovering then exciting several low-lying energy eigenstates of the reduced six-qubit LiH Hamiltonian,
using the low depth Ansatz with 56 parameters. The top plot shows the expected energy in red, as the states reached at the vertical dashed
lines are excited in the Hamiltonian. Horizontal dashed and colored lines indicate the true and discovered energy eigenvalues, respectively.
The bottom plot shows the population of the eigenstates as found by numerically diagonalizing the Hamiltonian. The spectrum discovered in
the long term is included in Fig. 4. (a) Imaginary time. Regions I, II, and III converge to orthogonal superpositions of the three degenerate
first-excited states, which are themselves eigenstates. (b) Gradient descent. The green (labeled 1, 2, and 3), orange (labeled 6 and 7), and blue
(labeled 8 and 9) states are degenerate. Regions I, II, and III show gradient descent converging to noneigenstates.
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FIG. 4. The 6-qubit LiH spectra discovered by a single process
of parameter evolution using imaginary time and gradient descent,
compared to that found by direct numerical diagonalization of the
Hamiltonian. The low depth and compact Ansätze use 56 and 42
parameters, respectively. The low depth Ansatz simulations extend
those in Figs. 3(a) and 3(b). Energies closer than 5 × 10−3 apart are
combined and their degeneracy labeled.

We next task our method with finding several of the lowest-
lying states of the physical 10-qubit LiH Hamiltonian as a
function of the bond length. The results for both Ansätze are
shown in Fig. 5. The compact Ansatz with 70 parameters
shows reasonable agreement with the true sepctrum, despite
generating only a small submanifold of the full 210 Hilbert
space. The smooth deviation of the lowest discovered energy
with the true ground energy may result from the Ansatz’s in-
ability to generate the ground state. The low depth ansatz with
145 parameters shows a marked improvement in accuracy, and
a better discovery of the degenerate energy eigenvalues.

Both Ansätze show decreased accuracy around bond length
l ≈ 2.5 Å. This was also seen in recent variational eigensolver
experiments [8], and attributed to the insufficient power of
the low depth Ansatz to generate these particularly highly
entangled eigenstates [6].

VI. DISCUSSION

In this article, we have proposed a variational algorithm for
a hybrid quantum-classical computer to discover the spectra
of Hamiltonians. Our algorithm can also offer a route to
enhancing the performance of the ground state solver in
Ref. [13] since it can eliminate low-lying states once found,
thus “clearing the way” for a successful identification of the
true ground state. We tested our method on SAT and LiH
Hamiltonians, using two different Ansätze, and successfully
obtained estimates of the excitation spectra. In our simu-
lations we rarely saw variational imaginary time evolution
converging to noneigenstates. In contrast, gradient descent
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FIG. 5. The lowest-lying states discovered by imaginary time
evolution of the ten-qubit LiH Hamiltonian over varying bond length.
The gray lines indicate the true spectrum as found by diagonalization,
and the line labels indicate degeneracy in both the true and discov-
ered states. The compact Ansatz is used with 70 parameters and for
10 000 iterations at every bond length. The low depth Ansatz uses
145 parameters for 40 000 iterations.

was prone to becoming stuck in local minima which when
excited, caused errors in the reported spectrum.

Our results suggest a number of directions for fruitful
future research. For instance, how should the necessary abil-
ity to accurately generate the energy eigenstates inform the
design of the Ansatz? And, how faithfully must the variational
evolution simulate the true imaginary time evolution in order
to converge to the lowest-lying states?

There are also questions concerning the classical compo-
nent of the hybrid algorithm. For example, we might seek a
fuller understanding of the relationship between the numerical
solving algorithm employed by the classical processor and
the consequential convergence of variational imaginary time
evolution. We elaborate upon this in Appendix D.

A final topic to mention is the challenge of predicting the
number of iterations necessary to converge to an eigenstate;
Fig. 6 demonstrates an anomalous simulation where, despite
the energy stabilizing to an eigenvalue, the parameters contin-
ued to change.

Our method is not limited to exciting eigenstates; we can
excite states for which the generating parameters are a priori
known. This could be applied to eliminate unwanted sub-
spaces from the searched spectrum, such as those which break
symmetries or indicate error. Furthermore, our algorithm can
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FIG. 6. An example of variational imaginary time evolution
whereby energy plateaued during a stage of continued parame-
ter change. This is the low depth Ansatz of 56 parameters ex-
ploring the reduced six-qubit LiH Hamiltonian, without parameter
rerandomization.

be adapted to modify Hamiltonians in real-time variational
simulation [12]. Discovered eigenstates can be excited by
different amounts to modulate their new energies, for instance
to create or remove energy degeneracies, or create time de-
pendence in the spectrum. Updating the linear equations in
variational simulation by the procedure outlined in this work
will then effectively simulate the real-time dynamics under the
modified Hamiltonian. We leave exploring these extensions
for a future work.
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APPENDIX A: QUANTUM CIRCUITS TO OBTAIN
THE ELEMENTS OF M AND V

Here we denote the full Ansatz unitary as U :=
UM (θM )UM−1(θM−1) . . .U1(θ1), where Uj is the Ansatz’s jth
parametrized gate. Let Uk,i denote a modification of U where

(|0 + eiφ |1 )/
√

2 • H

|0 V

FIG. 7. A quantum circuit which evaluates Re(eiφ〈0̄|V |0̄〉). H is
the Hadamard gate. The first qubit is measured in the computational
{|0〉, |1〉} basis, and the average value 〈Z〉 (Pauli) of the second qubit
equals Re(eiφ〈0̄|V |0̄〉).

a new gate Gk,i is inserted before the ith gate. That is,

Uk,i := UM (θM ) . . .Ui(θi)Gk,iUi−1(θi−1) . . .U1(θ1). (A1)

We then assume that the derivative ∂|ϕ(�θ (τ ))〉
∂θi

can be expressed
as

∂|ϕ(�θ (τ ))〉
∂θi

=
∑

k

hk,i Uk,i|0̄〉 (A2)

for some family of complex scalars hk,i. We can then express

Mi, j = Re

⎛
⎝∑

k,l

h∗
k,ihl, j〈0̄|U†

l,iUl, j |0̄〉
⎞
⎠, (A3)

Vi = Re

⎛
⎝∑

k,α

h∗
k,i fα〈0̄|U†

k,iPαU |0̄〉
⎞
⎠, (A4)

where we have expanded the Hamiltonian as a sum of Pauli
operators, H = ∑

α fαPα . Each term in Eq. (A4) can be
expressed in the form c Re(〈0̄|eiφV |0̄〉) where V is a unitary
operator which can be evaluated by using the quantum circuit
in Fig. 7.

In reality, far simpler circuits than this controlled V circuit
need be implemented. For more detail, refer to Ref. [13].

APPENDIX B: OVERLAP CALCULATION BY USING
SHALLOW QUANTUM CIRCUIT

Reference [19] introduces an algorithm for calculating the
overlap of two wave functions using shallow, constant depth
circuits. Interestingly, this algorithm was rediscovered using
machine learning [18]. We briefly outline the algorithm below,
which is visualized in Fig. 8. Let ρ and σ denote the two input
states, each of L qubits. We pair each qubit of ρ with one of
σ , applying a controlled-NOT gate between them; controlled
on ρ and targeting σ . Next, Hadamard gates are applied
transversally to the qubits of ρ. We then measure observable

H

H

H

FIG. 8. Schematic of the shallow swap test circuit from Ref. [19].
This circuit evaluates the overlap of two input density matrices ρ

and σ .
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⊗L
n=1 Cn where

Cn = |0〉〈0|nρ ⊗ |0〉〈0|nσ + |1〉〈1|nρ ⊗ |0〉〈0|nσ
+ |0〉〈0|nρ ⊗ |1〉〈1|nσ − |1〉〈1|nρ ⊗ |1〉〈1|nσ . (B1)

Here, |0〉〈0|nρ projects the nth qubit of ρ onto the classical 0
state, and similarly for σ and the 1 state.

Measuring
⊗L

n=1 Cn is accomplished with post processing,
by first measuring each of Cn. If Cn is measured as |1〉〈1|nρ ⊗
|1〉〈1|nσ , we assign cn = −1, assigning cn = 1 for all other
outcomes. The result of observable

⊗L
n=1 Cn is then L

n=1cn.
By repeating this process and averaging over the results, we
can evaluate the overlap function Tr(ρσ ).

APPENDIX C: HAMILTONIAN CONSTRUCTION

1. 3SAT

The Boolean satisfiability problem involves finding a satis-
fying assignment of variables constrained in a propositional
formula. For 3SAT, this formula is a set of clauses, each
consisting of three terms, which are variables with or without
negation. A clause is satisfied by containing at least one true
term, and every clause must be simultaneously satisfied to
satisfy the formula. Finding a satisfying assignment is NP-
complete [28]. We restrict ourselves to 3SAT problems with
a single satisfying solution, and map each Boolean variable
to one qubit; the qubit’s 1 and 0 classical states correspond to
true and false assignments of the variable. We build a diagonal
Hamiltonian from a 3SAT formula by treating each computa-
tional basis state as a Boolean assignment and energetically
penalizing it by the number of clauses it fails to satisfy. In
this Hamiltonian, the ground state is the unique solution with
zero energy, and the highly degenerate excited spectrum has
integer energies.

This Hamiltonian can be efficiently realized on a quan-
tum computer using a number of operators which grows
linearly with the number of clauses in the 3SAT problem.
Notate a given 3SAT clause featuring Boolean variables a, b, c
(mapped to qubits qa, qb, qc) as (naa ∨ nbb ∨ ncc), where
n j = −1 indicates the jth variable is presented in negated
form (otherwise n j = 1). The unique Boolean assignment
which fails this clause is a = (1 − na)/2 (and similarly for
b and c), corresponding to the state

⊗
j∈{a,b,c} |(1 − n j )/2〉q j

.
The Hamiltonian terms corresponding to this clause are

Hj =
⊗

j∈{a,b,c}
|(1 − n j )/2〉〈(1 − n j )/2|q j

(C1)

= 1

23

⎛
⎝1 +

∑
j

n jZ j +
∑

j,k

nkZ jZk +
∏

j

n jZ j

⎞
⎠, (C2)

where all sums and products iterate {a, b, c} and Zj notates
Pauli-Z acting on qubit q j .

2. LiH

We consider the LiH molecule in both a reduced and full
spin-orbital basis. We work in the STO-3G basis in which
LiH has 12 spin orbitals: 2 × ({1S}H + {1S, 2Px, 2Py, 2Pz}Li).
These 12 orbitals can be mapped to 10 qubits by restriction

to nonionic states with four electrons. For some tests, we
additionally reduce LiH to six qubits in a reduced-spin orbital
basis which has a qualitatively different (and nonphysical)
spectrum to that in the full basis, though remains interesting
for testing our method.

We reduce the number of active orbitals by first trans-
forming to the natural molecular orbital basis. These are
the orbitals which diagonalize the single-particle reduced
density matrix (1-RDM). We then consider those orbitals
with occupation close to unity as being filled, and those
orbitals with occupation close to zero as being empty. We
can then remove the corresponding fermionic operators from
the Hamiltonian. This process is described in greater detail
in Refs. [9,13]. We then transform our (optionally reduced)
fermionic Hamiltonian into a qubit Hamiltonian, using the
Bravyi-Kitaev transform [29]. In our six- and ten-qubit sim-
ulations, we have removed two qubits using conservation of
electron number and spin [8,30]. All of these steps were
carried out using OPENFERMION [31], an electronic structure
package for quantum computational chemistry.

APPENDIX D: IMPLEMENTATION
OF NUMERICAL SIMULATIONS

We simulate the variational imaginary time evolution quan-
tum circuits using the Quantum Exact Simulation Toolkit
(QUEST) [32]. Direct diagonalization of the considered Hamil-
tonians is performed with GSL, which employs a complex
form of the symmetric bidiagonalization and QR reduction
method [33,34].

1. Parameter evolution

We first choose initial parameter values �θ0 which produce
a highly excited state in the Ansatz circuit. The choice is
arbitrary, since random parameters are likely to produce a
superposition state with a high expected energy according to
the variational principle; our simulations choose �θ0 uniformly
randomly in [0, 2π ). These are fed to an Ansatz circuit
simulated in QUEST, and the resulting state vector used to
populate M and V matrices, which are then fed to GNU
Scientific Library (GSL) numerical solving routines [33]. We
then update the parameters under the variational imaginary
time evolution described in Eqs. (5) and (6).

In general, Eq. (6) can be ill-posed, and direct inversion
of M is numerically unstable. We instead, after populating
M and V at every time step, update the parameters under
Tikhonov regularization, which minimizes

‖V − M�̇θ‖2 + λ‖�̇θ‖2, (D1)

where the Tikhonov parameter λ can be varied to trade off

accuracy against keeping �̇θ small and the parameter evolution
smooth. Our simulations estimate an ideal λ at each time-
step by selecting the corner of a three-point L-curve [33,34],
though we constrain the value to lie within [10−4, 10−2].
This is because too large a λ over-restricts the change in the
parameters in an iteration and was seen to lead to eventual
convergence to noneigenstates. Meanwhile, no regularization
(λ = 0) saw residuals in M−1 disrupt the monotonic decrease
in energy.
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Still, using Tikhonov regularization affords us a larger
time step than other tested methods, which included lower-
upper (LU) decomposition, least-squares minimization, sin-
gular value decomposition (SVD), and truncated SVD. Our
simulations typically employ a time step of δτ = 10−1. We
suspect the largest stable time step possible relates to the
greatest energy eigenstate with non-negligible probability in
the initial Ansatz state.

We continue simulating in imaginary time until detecting
convergence by a change in the parameters smaller than some
threshold for several iterations, typically ‖��θ‖ < 10−2 for
three. The parametrized state is then assumed an eigenstate
and has its state vector recorded, to be subsequently excited
in the Hamiltonian through modifying V via Eq. (9) every
time step thereafter. At this point, we reset the parameters
to their initial values, restoring the original excited state (or
one now of greater energy), and then resume imaginary time
evolution.

2. Populating M and V
To save time, our code simulates only the ansatz and

Hamiltonian circuits, using several shorcuts to avoid direct
simulation of all circuits involved in populating M and V .
Firstly, we calculate each ∂|ϕ(�θ (τ ))〉/∂θi term by a fourth-
order central finite-difference approximation with a step size
of �θi = 10−5, in lieu of simulating the circuits shown in
Appendix A. Full simulation of these subcircuits is performed
in Ref. [13].

M is then populated by the inner product of these terms,
and V via their inner product with the state vector produced by
simulating the Hamiltonian circuit on the Ansatz. Excitations
in V are introduced merely by the inner product of these
terms and the recorded state vectors of the discovered eigen-
states, in lieu of simulating the swap test circuits described in
Appendix B. Our simulations typically excited the eigenstates
by α ∼ 10, comparable to the gap between the ground and the
highest considered excited state of the system.
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