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Optimal control of mirror pulses for cold-atom interferometry
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Atom matterwave interferometry requires mirror and beam splitter pulses that are robust to inhomogeneities in
field intensity, magnetic environment, atom velocity, and Zeeman substate. We present theoretical results which
show that pulse shapes determined using quantum control methods can significantly improve interferometer
performance by allowing broader atom distributions, larger interferometer areas, and higher contrast. We have
applied gradient ascent pulse engineering (GRAPE) to optimize the design of phase-modulated mirror pulses for
a Mach-Zehnder light-pulse atom interferometer, with the aim of increasing fringe contrast when averaged over
atoms with an experimentally relevant range of velocities, beam intensities, and Zeeman states. Pulses were found
to be highly robust to variations in detuning and coupling strength and offer a clear improvement in robustness
over the best established composite pulses. The peak mirror fidelity in a cloud of ∼80 μK 85Rb atoms is predicted
to be improved by a factor of 2 compared with standard rectangular π pulses.
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I. INTRODUCTION

Emerging quantum technologies require the coherent ma-
nipulation of quantum states. For example, ultraprecise cold-
atom-based sensors such as gravimeters, accelerometers, mag-
netometers, and gyroscopes [1–4] use interactions with laser
pulses to form the beam splitters and mirrors of matterwave
interferometers [5], and these “π/2” and “π” pulses must
operate with high fidelity if the best sensitivity is to be achieved
by using pulse sequences to increase the interferometer area
[6] or maximize the entanglement [7].

The fidelity of quantum state manipulation deteriorates
when there are inhomogeneities in the interaction field, mag-
netic environment, atomic velocities, and quantum state distri-
butions [8]. This limits the number of control operations that
can be performed before coherence is lost, so it is common to
filter the atomic sample to restrict the variations experienced
[6,9,10] by fewer atoms. Inhomogeneities thus limit the inter-
ferometer area and sample size, and hence the measurement
contrast and sensitivity [11,12].

Various techniques have been developed in the field of
nuclear magnetic resonance (NMR) spectroscopy to produce
control pulses that are robust to variations in the interaction
strength and detuning, and such techniques should be
applicable to other systems, including the effective two-level
schemes of atom interferometry. Shaped pulses [13–15], rapid
adiabatic pulses [16–18], and composite pulses [19–22] all
use complex time-dependent interactions to reproduce the
desired operation of a single pulse while compensating for the
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effects of inhomogeneities. For atom interferometry, McGuirk
et al. [10] suggested that composite pulses could improve
the augmentation pulses within large momentum transfer
(LMT) arrangements, and Butts et al. [12] demonstrated
that the WALTZ [23] composite inversion pulse doubled the
sensitivity of a cold Cs atom interferometer.

In a feasibility study of the applicability of composite pulses
to cold-atom interferometers, Dunning et al. [8] analyzed the
performance of various established NMR pulse sequences for
inversion or “mirror” operations in a thermal cloud of 85Rb
in a velocity-sensitive Raman arrangement subject to intensity
variations and a distribution over Zeeman sublevels. Although
cold-atom arrangements differ from NMR applications in the
magnitudes of different inhomogeneities and the correlations
between them, most of the schemes tested improved the robust-
ness of the inversion operation to both detuning and coupling
strength variations, and there was excellent agreement between
the observed performance and that predicted computationally,
showing there to be no further significant perturbations or
decoherence.

In this paper, we address the computational design and opti-
mization of mirror pulses specifically for atom interferometry.
Using the well-known optimal control algorithm GRAPE [24]
and the advanced spin dynamics simulation toolbox Spinach
[25], we have derived pulse shapes that we predict will improve
interferometric contrast following a Mach-Zehnder sequence
within a 100 μK cloud of 85Rb atoms by a factor of 1.76
compared with standard rectangular pulses of constant phase
and intensity. Our pulse shapes compensate off-resonance and
pulse-length errors better than established composite pulse
sequences, doubling the peak mirror fidelity when simu-
lated in the σ+ − σ+ Raman polarization arrangement for
a ∼80 μK cloud. It is expected that such optimal pulses
should allow for greater interferometric areas, higher con-
trast, warmer samples, and therefore increased interferometric
sensitivities.
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II. COHERENT PULSE THEORY

A. Two-level representation

The Hamiltonian of a two-level atom interacting with a laser
can be written in the rotating frame as [5]

ĤR = h̄

2

(
δ �Re−iφL

�ReiφL −δ

)
. (1)

Here �R is the Rabi frequency, φL is the laser phase, and δ(t )
is the detuning from resonance. The detuning can be expressed
as [5]

δ(t ) = −δAC + ωL(t ) −
(

ω12 + p · kL

m
+ h̄|kL|2

2m

)
. (2)

δAC represents the ac Stark shift, ωL(t ) is the laser frequency,
and ω12 is the separation of the two levels. kL is the laser
wave vector, h̄|kL|2/2m is the recoil shift, and p · kL/m is
the Doppler shift. The two-level system hence consists of the
states |1, p〉 and |2, p + h̄kL〉, where 1 and 2 refer to the two
atomic states and h̄kL is the photon impulse. If the beams are
kept resonant at the center of the velocity distribution, e.g.,
by chirping the frequency to account for acceleration under
gravity [1,14], the detuning can be written as |kL|v, where
v is the relative speed of a given atom along the direction
of the wave vector. Therefore, the detuning of a given atom
will remain approximately fixed throughout the interferometer
sequence, and the range of detunings will be due to the
momentum distribution and hence temperature of the cloud.

In the Bloch sphere representation, the state vector of any
two-level system can be written as [26]

|ψ〉 = cos

(
ϑ

2

)
|1〉 + eiϕ sin

(
ϑ

2

)
|2〉, (3)

where ϑ and ϕ are the polar and azimuthal coordinates of a
point on the surface of a unit sphere. Free and driven evolution
is expressed in terms of rotations about axes through the center
of the Bloch sphere. The propagator,

Û (t1, t2) = T̂ exp

[
− i

h̄

∫ t2

t1

Ĥ (t ′) dt ′
]
, (4)

where T̂ is the time-ordering operator [27], describes the
unitary evolution of the quantum state |ψ〉 from time t1 to
t2. Taking the matrix exponential of the Hamiltonian in the
rotating frame [Eq. (1)], it can be shown that [28]

Û (t, t + dt ) = exp

[
− i�(t ) · σ

2
dt

]
, (5)

where σ is the vector of Pauli matrices. Therefore, the effect
of a pulse of duration dt is to rotate the state on the surface of
the Bloch sphere by an angle of magnitude

θ ≡ �̃R (t ) dt =
√

�2
R + δ2 dt (6)

about an axis defined by the field vector �(t ):

� = �R cos(φL)x + �R sin(φL)y + (δ)z. (7)

Recalling the identity

exp(iαn̂ · σ ) = I cos(α) + in̂ · σ sin(α), (8)

the form of the propagator for a pulse with a constant field
vector and duration �t is given by [14,28]

Û =
(

C∗ −iS∗

−iS C

)
, (9)

where C and S are defined as

C ≡ cos(�̃R�t/2) + i(δ/�̃R ) sin(�̃R�t/2),

S ≡ eiφL (�R/�̃R ) sin(�̃R�t/2). (10)

B. Inhomogeneities and composite pulses

It is common in NMR spectroscopy to refer to off-resonance
and pulse-length errors. An off-resonance error arises when the
detuning δ is nonzero and the field vector does not lie perfectly
in the ϑ = π/2 plane of the Bloch sphere. A pulse-length error
occurs when the desired total rotation angle around the field
vector is incorrect, due to either an error in the pulse duration
or an error in the effective coupling strength �̃R . Detunings
lead to deflection of the atomic state trajectory, and variations
in the coupling strength or Rabi frequency lead to errors in
the rotation angle around the field vector. These errors lead to
dephasing and reductions in the fidelity of state manipulation
[8].

Composite pulses are pulse sequences intended to replace a
desired operation while providing robustness to off-resonance
and pulse-length errors. Composite pulses compensate for such
errors by using concatenated sequences with tailored phases
and durations [19], which are equivalent to series of rotations
on the Bloch sphere; both the combined laser phase (φL)
and pulse duration (�t) may be different for each pulse in
the sequence. The notation θφ is used to specify a particular
rotation element, so that a composite pulse can be written as
the sequence

θ
(1)
φ1

θ
(2)
φ2

θ
(3)
φ3

· · · . (11)

Such pulses can be placed into two categories: “point-to-point”
(PP) rotations, and “universal rotations” (URs). The first are
designed to only perform the correct rotations for specific
starting states, whereas UR pulses are intended to perform
the correct rotation for all starting points. The type of pulse
required depends on the role in the application.

Although numerous composite pulses have been developed
for NMR applications, most result from a combination of
calculation and intuition, and there is no way to design or
tailor a sequence for a particular application automatically.
Numerical optimization of a control system has become
a promising alternative for broadband pulse generation in
NMR [29] and has been successfully applied to the control
of Bose-Einstein condensates [30–32], the stabilization of
ultracold molecules [33], the optimization of magneto-optical
traps [34], and nitrogen-vacancy center magnetometry [35].
Optimal control theory offers methods to generate optimized
pulse sequences which are tailored to specific systems and
applications.

III. OPTIMAL CONTROL THEORY

Optimal control theory aims to obtain control parameters
that allow a dynamical system to be driven so as to maximize
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some objective function. In quantum mechanics, this objective
function often represents the accuracy with which initial
states may be driven to desired final states by the available
control fields, subject to constraints on the capabilities of the
instruments such as maximum power and frequency.

The total Hamiltonian of a system can be written in the form

Ĥ (t ) = Ĥ (0) +
M∑

n=1

c(n)(t )Ĥ (n), (12)

where the drift Hamiltonian Ĥ (0) represents the free evolution
of the system. The operators Ĥ (n) correspond to the experi-
mental control fields whose amplitudes c(n)(t ) can be set to
form a given composite pulse sequence.

To determine the performance of a given pulse, we consider
an example fidelity measure of the form

F{c(n)(t )} = f

⎧⎪⎪⎪⎨
⎪⎪⎪⎩〈ψD| T̂

[
exp

∫ tf

0
− i

h̄
Ĥ (t )dt

]
|ψ0〉︸ ︷︷ ︸

resultant state

⎫⎪⎪⎪⎬
⎪⎪⎪⎭,

(13)

where |ψD〉 is the desired target state, |ψ0〉 is the initial state,
and f is a differentiable function of the projection of the resul-
tant state onto |ψD〉. The aim is to either minimize or maximize
F for all members of an ensemble with varying drifts. The
choice of |ψ0〉, |ψD〉, and f is application dependent.

A well-known gradient-based optimization method, first
developed by Khaneja et al. [24] for the design of NMR
pulse sequences, is gradient ascent pulse engineering (GRAPE).
GRAPE has computationally efficient gradients using analytical
derivatives [36,37], which can be used to approximate and even
compute the Hessian [38] and allow for Newton-Raphson-type
optimizations.

GRAPE begins by discretizing the M control sequences
c(n)(t ) into N time steps c

(n)
k of duration �t and assuming that

during each time step the control amplitude c
(n)
k is a constant.

The optimization involves finding the vectors {c(n)
k } such that

the chosen functional F is either maximal or minimal. The
form of the time-ordered propagator is then simplified to a
product of k “slices”:

Û =
−→∏
k

exp

[
− i

h̄

(
Ĥ (0) +

M∑
n=1

c
(n)
k Ĥ (n)

)
�tk

]
≡

−→∏
k

Ûk.

(14)

Therefore, F becomes

F = f (〈ψD| ÛN ÛN−1 · · · Ûk · · · Û1Û0 |ψ0〉). (15)

For the optimization, derivatives of F are required with
respect to the set of control coefficients {c(n)

k }. GRAPE computes
these derivatives in an efficient way, which can be seen by
making the observation that the only element in Eq. (15) that
depends on c

(n)
k is Ûk . Therefore, computation of ∂F/∂c

(n)
k for

all time steps k and all control channels n requires just two

simulations:

∂

∂c
(n)
k

(〈ψD| ÛN ÛN−1 · · · Ûk · · · Û1Û0 |ψ0〉)

= 〈ψD| ÛN ÛN−1 · · · Ûk+1︸ ︷︷ ︸
backward propagation

∂Ûk

∂c
(n)
k

forward propagation︷ ︸︸ ︷
Ûk−1 · · · Û1Û0 |ψ0〉 . (16)

The directional derivatives which require computation are

∂

∂c
(n)
k

exp

⎡
⎢⎢⎢⎢⎢⎣− i

h̄

(
Ĥ (0) +

M∑
n=1

c(n)(tk )Ĥ (n)

)
︸ ︷︷ ︸

Ĥk

�t

⎤
⎥⎥⎥⎥⎥⎦. (17)

An approximate expression for this derivative is given
by Khaneja et al. [24]. First-order gradient ascent can then
be used to optimize the fidelity F iteratively. Improvements
were made in the use of propagator derivatives by De
Fouquieres et al. [39], which use the gradient to approximate
a second-order optimization method, called a quasi-Newton
optimization, improving optimization convergence. This work
uses the limited-memory Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton method implemented in Spinach [38,39] with
analytical directional derivatives [37].

The Hamiltonian of our system [Eq. (1)] can be expressed
as

ĤR = δ

2
σ̂z + 1

2
�R (t ){cos[φL(t )]σ̂x + sin[φL(t )]σ̂y}, (18)

where the drift Hamiltonian is Ĥ (0) = (δ/2)σ̂z and the two
control operators Ĥ (1) and Ĥ (2) can be identified with Pauli
matrices σ̂x and σ̂y , respectively. The two control coef-
ficients c(1)(t ), c(2)(t ) are given by �R (t ) cos[φL(t )] and
�R (t ) sin[φL(t )], respectively. This form is directly analogous
to the case of a spin system interacting with an applied rf field
given appropriate parameter scaling of the magnitudes of each
term [40].

Optimal control can be used to obtain optimal waveforms
�R (t ) and φL(t ), or the amplitude may be fixed and an optimal
phase profile obtained. Initial guesses for the pulse waveform
[�R (t ) and φL(t )] are provided, and the derivatives of the
relevant fidelity measure are calculated, returned, and fed into
the optimization module of Spinach [38]. The control pulses
are made robust to variations in detuning (off-resonance errors)
by providing Spinach with an ensemble of drift Hamiltonians
and maximizing or minimizing the average of individual
fidelities. Robustness to variations in power (pulse-length
errors) is achieved by providing a range of power levels, which
are averaged over in the fidelity calculation [41,42]. We define
the ensemble provided to the optimization as consisting of a
number of offsets in detuning and coupling strength, denoted
by δoff and �off

R , respectively. Finally, penalties can be added
to the objective function to restrict experimentally relevant
quantities such as maximum power or enforce waveform
smoothness [24,38].
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IV. INTERFEROMETER FIDELITY

Although mirror pulses can be optimized individually, we
obtain measures of mirror pulse fidelity by considering the role
of the mirror within a three-pulse Mach-Zehnder sequence. In
addition to the ability of a mirror pulse to transfer as many
atoms from ground to excited state as possible, variations in
the atomic phase of the final state following a mirror pulse must
be minimized to preserve interferometric contrast, as shown by
Luo et al. [14]. The excited state population after a sequential
application of pulse propagators corresponding to the π/2 −
π − π/2 sequence acting on an atom initially in the ground
state can be obtained by following the analytical treatment
given by Stoner et al. [28],

P2 = |Sπ
2
|4|Sπ |2 + |Cπ

2
|4|Sπ |2 + 2|Sπ

2
|2|Cπ |2|Cπ

2
|2

− 2Re[exp(iφi )Cπ
2
Sπ

2
(S∗

π )2C∗
π
2
Sπ

2
], (19)

where C and S are defined in Eq. (10) and refer to elements
of the pulse propagators. We have assumed the initial and
final beam splitters in the Mach-Zehnder sequence to be
identical and the dwell times between pulses to be the same.
The subscripts “π

2 ” and “π” refer to the beam splitters and
mirrors, respectively. φi is an interferometric phase term which
gives information about the inertial forces acting during the
sequence, but which is modified by pulse-dependent phase
shifts. This phase must be preserved when averaging over
an ensemble of atoms with a distribution of velocities and
coupling strengths. The interferometer output can be written
as [14]

P2 = 1
2 {A(δ) − B(δ) cos[φi + φp(δ)]}, (20)

where φp(δ) is a phase shift introduced by the pulses and
A(δ) and B(δ) represent the interferogram offset and contrast,
respectively. In the ideal case A(δ), B(δ), and φp(δ) should
be constant for all detunings present in an atomic sample. For
maximum contrast following thermal averaging, A and B must
be unity for all atoms. These requirements can be used to obtain
a measure of fidelity for the mirror pulse, which we can use to
numerically optimize pulse shapes with these properties across
an ensemble. The phase shift due to the pulses can be expanded
as

φp(δ) = 2φSπ
2

− 2φSπ

= 2φ(i 〈2|Û π
2
|1〉) − 2φ(i 〈2|Ûπ |1〉), (21)

and the contrast can be written as

B(δ) = 4|Cπ
2
|2|Sπ |2|Sπ

2
|2

= 4|〈1|Û π
2
|2〉|2|〈1|Ûπ |2〉|2|〈1|Û π

2
|1〉|2. (22)

Assuming rectangular and perfectly resonant beam-splitter
pulses across the atomic ensemble (|Cπ

2
|2|Sπ

2
|2 → 1/4) im-

plies that the following constraints on the mirror pulse for
an ensemble of atoms will maximize contrast of the Mach-
Zehnder output after thermal averaging:

Ûπ

⎧⎪⎪⎨
⎪⎪⎩

|〈1|Ûπ |1〉|2 = 0

|〈2|Ûπ |1〉|2 = 1

φ(〈2|Ûπ |1〉) const.

(23)

We therefore consider the following two mirror pulse
fidelities:

Fπ
real = Re〈2|Ûπ |1〉, (24)

Fπ
imag = Im〈2|Ûπ |1〉. (25)

Maximizing fidelity Fπ
real or Fπ

imag constrains the phase of the

overlap 〈2|Ûπ |1〉. All the conditions of the optimal inversion
pulse [Eqs. (23)] are satisfied. Further, it can be shown that
these performance functions [Eqs. (24) and (25)] are equivalent
to obtaining the universal 180◦ rotations explored by Kobzar
et al. [42].

Previous work by Dunning et al. [8] defined the following
fidelity for composite mirror pulses:

Fπ
square = |〈ψF |2〉|2

= |c2|2, (26)

where c2 is the final excited state amplitude of the two-level
system and |ψF 〉 is the final state. The fidelity in Eq. (26) does
not constrain the phase of the final state and yields pulses which
are PP rotations between the ground and excited states. Since
the mirror pulse in the Mach-Zehnder sequence is to be applied
to atoms which ideally lie at a range of points on the equator
of the Bloch sphere, we expect that pulses which maximize
fidelity Fπ

square will lead to poor interferometric contrast when
averaging over an ensemble. Our approach is to use GRAPE to
generate pulses which maximize a given mirror fidelity, Fπ

real,
Fπ

imag, or Fπ
square for ensembles with experimentally relevant

ranges of detunings and coupling strengths. We then determine
through simulation the effect of the cloud temperature alone
upon the fringe contrast that these pulses could yield in an
interferometric application.

V. SYSTEM AND MODEL PARAMETERS

Although our approach may be applied to any spin system,
we evaluate it for a cold-atom light-pulse interferometer such
as that in Ref. [8], wherein a thermal cloud of several million
atoms of 85Rb at a temperature of order 10–100 μK is ad-
dressed by counterpropagating 780 nm laser beams tuned to a
Raman transition between the hyperfine levels |52S1/2, F = 2〉
and |52S1/2, F = 3〉 (levels 1 and 2, respectively). The Raman
beams are detuned far from single-photon resonance with
the intermediate |52P3/2〉 state, which may theoretically be
adiabatically eliminated so that each atom can be described
as an effective two-level system [5]. A description of our
experimental arrangement is given elsewhere [8]. Our effective
two-state system evolves under the Hamiltonian in Eq. (1),
with �R replaced by an effective two-photon Rabi frequency
�1�2/(2�), where �1 and �2 represent the coupling of each
laser to levels 1 and 2, respectively, and � represents the single
photon detuning of both lasers from the intermediate level.
The laser frequency becomes ωL = ωL1 − ωL2, where ωL1,L2

are the frequencies of the counterpropagating Raman beams
formed by lasers 1 and 2, φL becomes an effective combined
laser phase φL1 + φL2, and kL is the effective wave vector
kL1 − kL2.

In our atom cloud, there is Zeeman degeneracy over
substates distinguished by the quantum number mF , which
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TABLE I. Performance of GRAPE pulses compared with composite mirror pulses. Detuning tolerance is measured in units of the effective
Rabi frequency �eff and represents the range of detuning for which the final excited state probability is >0.5 and >0.9 after application to
atoms in the ground state. The maximum phase response variation is taken over a range of ± �eff in δ. Optimization parameters are provided
for GRAPE pulses including the offsets optimized for pulse-length and off-resonance errors and the number of offsets used. In each optimization,
ensembles were weighted by eight additional detuning offsets near resonance. The best values for the standard composite sequences tested and
GRAPE sequences are in bold.

Length Detuning tolerance (δ/�eff) Max �φ(S )
Pulse (t/tπ ) Sequence θ

(1)
φ1

θ
(2)
φ2

θ
(3)
φ3

· · · >0.5 >0.9 (radians)

Rectangular π 1 1800 1.597 0.645 0
Levitt [50] 2 909018009090 2.637 2.112 0.953
WALTZ [23] 3 9001801802700 2.878 2.434 1.974
KNILL [46] 5 180240180210180300180210180240 2.082 1.693 0.528
CORPSE [21] 4.333 6003001804200 1.438 1.004 2.717
SCROFULOUS [51] 3 1806018030018060 1.347 0.334 0.834
BB1 [52] 5 180104.5360313.4180104.51800 1.685 1.106 1.778

GRAPE fidelity δoff (number, range) �R
off(number, range)

Fπ
real Fig. 1 8 20, ±1.5�eff 5, ±0.1�eff 4.194 3.470 0.269

Fπ
square 8 20, ±1.5�eff 5, ±0.1�eff 3.968 3.376 1.562

Fπ
imag 8 20, ±1.5�eff 5, ±0.1�eff 3.904 3.259 0.137

Fπ
real 16 30, ±2�eff 5, ±0.1�eff 4.302 4.128 0.096

Fπ
real 32 40, ±2.5�eff 5, ±0.1�eff 5.513 5.109 0.216

give rise to multiple coupling strengths, and both the laser
intensity and residual magnetic field vary across the atom
cloud. The counterpropagating Raman beams give the in-
teraction a Doppler sensitivity, which we use elsewhere for
velocimetry and inertial measurement [43]. Different atoms
thus see different coupling strengths and Doppler, Zeeman,
and ac Stark shifts according to their internal and external
states. Both pulse-length and off-resonance errors are present
in our system. For an experimentally measured Rabi frequency
of �eff ≈ 2π × 360 kHz we find coupling strength variations
of approximately 0.3 �eff and off-resonance errors due to
a Gaussian velocity distribution with a full width at half
maximum of approximately 1.5 �eff in a ∼ 80 μK cloud [44].

VI. RESULTS

All pulse optimizations were carried out using GRAPE

and Spinach, constraining the effective Rabi frequency to
correspond to a limited laser power and fixed single-photon
detuning, and with a discretization time step of 100 ns.
Optimizations were carried out for ensembles with various
ranges of detunings and coupling strengths (see Table I), using
fidelities Fπ

real, Fπ
imag, and Fπ

square. Longer pulses can excite
atoms from the ground to excited states for larger detunings
than shorter pulses. Mirror pulses are compared based on
their ability to transfer atoms from state to state and the
magnitude of the atomic phase variations over the simulated
ensemble of atoms. The mirror pulse is characterized by a
time-varying phase, initially set to be flat, and optimization
was continued until convergence. Different initial pulse shapes
were often found to lead to the same optimal pulse, and pulses
often exhibited symmetry about the midpoint, a phenomenon
also seen in NMR [41,42,45]. We begin by presenting the
results obtained by considering a general ensemble of pulse-
length and off-resonance errors in our optimization, before
applying our chosen optimal control method to an ensemble

representing the experimental inhomogeneities present in a
particular Raman polarization arrangement.

A. Mirror pulse optimization

Figure 1 shows the phase profile of a constant-amplitude
mirror pulse obtained by maximizing Fπ

real subject to a con-
strained duration of 20 μs, for a detuning range of ±1.5 �eff

and a power range of ±0.1 in �eff. If the duration of the
pulse and the ensemble detuning range are increased, further
variations in phase appear symmetrically around the center of
the pulse shape. In practice, a balance must be struck between
pulse duration and performance, dependent on the required
application and capabilities of the experimental apparatus to
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Time (μs)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

L
as

er
P

h
as

e
φ

L
(t

)
(r

ad
ia

n
s)

FIG. 1. Phase profile φL(t ) for GRAPE inversion pulse optimizing
Fπ

real subject to constrained total duration of 20 μs and fixed effective
Rabi frequency of 2π × 200 kHz. The fidelity after 100 iterations was
0.99.
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FIG. 2. Excited state probability and phase profiles plotted against
detuning for various composite inversion pulses and GRAPE pulse
of Fig. 1. The simulation assumes a single Rabi frequency of
2π × 200 kHz.

produce complex waveforms. Table I summarizes the perfor-
mance of composite mirror pulses and GRAPE optimizations
carried out for different ensembles and fidelities.

The response purely as a function of the detuning from
resonance is shown in Fig. 2. The detuning here would be
experimentally due to Doppler and Zeeman shifts. Both the
excited state probability after application of the pulse to atoms
in the ground state and the phase response of the S element of
the propagator are shown. GRAPE maintains a transition proba-
bility >0.976 over the optimized range of offsets (±1.5 �eff).
For comparison, we show the corresponding results for the
rectangular π pulse and for WALTZ and KNILL pulses [23,46]
of the same intensity. The WALTZ pulse is highly robust to
detunings but is designed as a “point-to-point” operation for
a particular starting state and hence shows large variations in
the atomic phase as the detuning is varied; the GRAPE pulse,
in contrast, shows smaller phase variations over the range of
detunings. The conventional π pulse shows an ideal, flat phase
response but very narrow range of detunings over which it is
efficient.

GRAPE can be used to optimize a mirror pulse for an ex-
perimental range of off-resonance errors and the pulse-length
errors which arise from the degenerate Zeeman sublevels in the
σ+ − σ+ Raman polarization arrangement. We simulate the
pulse profile of Fig. 1 using a model which accounts for the ac
Stark shift, mF levels, measured atomic momentum distribu-
tion, and experimental parameters in the σ+ − σ+ polarization
arrangement for a cloud with temperature ∼80 μK (see Fig. 3).
Such an arrangement has large off-resonance errors and is
therefore a good choice to compare pulse performance. The
numerical model used in this simulation was shown to have
good agreement with experiment [8,44]. In this simulation,
the final excited state population is calculated numerically
and averaged over a range of atomic momenta from the
measured distribution, and the five Zeeman sublevels. The
GRAPE simulations show an improvement in peak fidelity by
a factor of 1.2 compared with WALTZ, and a factor of 2
compared with the rectangular π pulse. As the laser detuning

−6 −4 −2 0 2 4 6

Laser Detuning δL/Ωeff

0.0

0.2

0.4

0.6

0.8

1.0

P
2

WALTZ

KNILL

Rectangular π

GRAPE

FIG. 3. Simulation of inversion operation for multiple composite
pulses and the GRAPE pulse of Fig. 1 in a σ+ − σ+ Raman arrange-
ment, as the laser detuning δL (defined as ω12 − ωL) is scanned. This
simulation uses an effective Rabi frequency of 2π × 360 kHz, and
accounts for both the coupling strengths of 5 mF sublevels and the
Stark shift. Both the simulation parameters and model are described
elsewhere [8,44]. The offset in peak is due to the Stark shift, and the
magnitude of the peak gives an indication of a pulse’s ability to excite
atoms across the momentum distribution for all mF sublevels, which
we assume are equally populated.

is scanned, the peak excited state population depends on how
well a mirror pulse can excite atoms from the ground to excited
state for the distribution of coupling strengths and velocity
classes in the ensemble. Figure 3 demonstrates GRAPE’s ability
to compensate for the off-resonance and pulse-length errors
present in this system. Contour plots (Fig. 4) demonstrate the
superior robustness to both error classes offered by our chosen
optimal control method.

B. Simulated interferometric contrast

The temperature-dependent contrast resulting from the
Mach-Zehnder interferometer sequence was determined fol-
lowing the procedure outlined by Luo et al. [14] and integrating
over Maxwell-Boltzmann velocity distributions with temper-
atures in the range 10−1 to 103 μK. The results are shown in
Fig. 5. A uniform pulse intensity and single coupling strength,
with no mF -dependent inhomogeneity, were assumed through-
out. The beam-splitter and recombiner pulses were taken to be
rectangular π/2 pulses with a fixed effective Rabi frequency of
2π × 200 kHz and hence limit the achievable fringe contrast
as shown by their combination with a “perfect π” mirror pulse
that is taken to perform an ideal rotation for all atoms. With
a realistic mirror formed by a rectangular π pulse with the
same Rabi frequency as the beam splitter and recombiner, the
interferometer contrast is limited by the imperfections in the
rectangular π pulse to around 0.8 at a temperature of 20 μK.

The GRAPE pulse of Fig. 1 offers an improvement in fringe
contrast by a factor of 1.76 over that with the rectangular π

pulse at 100 μK, and approaches the fidelity predicted with a
perfect π pulse. This limit should be approached more closely
as the GRAPE pulse duration is increased, as longer pulses can
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FIG. 4. Final excited state population shown for a range of off-resonance and pulse-length errors for different mirror pulses: (a) rectangular π

pulse; (b) KNILL pulse; (c) WALTZ pulse; (d) GRAPE pulse from Fig. 1. The simulations were performed at the same effective Rabi frequency
of 2π × 200 kHz. The GRAPE mirror pulse demonstrates a clear improvement in robustness to variations in detuning and pulse amplitude. The
contours are at 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, and 0.95.

compensate for a greater range of off-resonance errors. As
noted by Luo et al. [14,47], the WALTZ pulse performs badly
due to its nonuniform phase response, as it was designed as a
PP pulse whereas the mirror operation must have high fidelity
irrespective of the starting point on the equator of the Bloch
sphere. The PP Fπ

square GRAPE pulse also performs poorly, as
expected. We find the KNILL pulse, designed as a universal
180◦ rotation, offers a slight improvement over the sequence
of rectangular pulses for the simulated range of temperatures
but is outperformed by GRAPE at all temperatures.

VII. DISCUSSION

Tolerance of “pulse-length” and “off-resonance” errors is
essential for the pulse operations in atom interferometers,
where a range of velocities, beam intensities, and Zeeman
substates may be encountered. We have used the optimal
control technique of gradient ascent pulse engineering (GRAPE)
to obtain robust “mirror” pulses, tailored to accommodate
the inhomogeneities found in cold-atom matterwave inter-
ferometers, and find such pulses to outperform all the other

composite pulses that we have tested. By using a numerical
model which has been shown to agree well with experiment [8],
we have simulated the performance of an atom interferometer
for the σ+ − σ+ polarization Raman arrangement within a
∼80 μK cloud of atomic rubidium subject to realistic intensity
inhomogeneities and Zeeman substate distributions, and we
find that our GRAPE pulses show a peak fidelity twice that
obtained with a basic rectangular π pulse, and 1.2 times that
achieved using the WALTZ sequence, with significantly greater
tolerance of variations in the atom velocity.

The improved fidelity should allow improvements in the
sensitivity of interferometric measurements by permitting
greater use of augmentation pulses for large momentum trans-
fer interferometers [12], while the tolerance to atom velocity
variations will lower measurement noise by allowing the use of
warmer atom clouds, and hence higher atom numbers, without
incurring the losses of further cooling or filtering. Our GRAPE

pulses should provide, for example, transfer efficiencies above
0.9 for a detuning range 1.4 times that tolerated by the WALTZ
sequence, which was otherwise the best pulse tested for this
system [8].
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FIG. 5. Contrast after Mach-Zehnder sequence integrated over
thermal distributions of 85Rb atoms with various temperatures. The
beam splitters in each case are rectangular π/2 pulses. There is a
large increase in contrast due to the GRAPE UR mirror pulse in Fig. 1,
which improves the rectangular π pulse by a factor of 1.76 at 100 μK,
approaching the theoretical limit of a sequence with a “perfect” π

pulse resonant for all atoms in the sample. Comparisons with different
sequences are made at the same Rabi frequency of 2π × 200 kHz.

Replacing the basic rectangular π pulse with a GRAPE mirror
in a Mach-Zehnder arrangement at 100 μK is sufficient to
improve the simulated interferometer contrast by a factor of
1.76, or to achieve the same contrast as a basic π pulse for a
15 μK atom cloud. At higher atom temperatures, we see that
the interferometer fidelity is limited principally by the fidelity
of the beam-splitter operations.

Our optimal control approach depends upon an appropriate
choice of the measure of performance. We find that those
used for broadband UR 180◦ pulses, such as Fπ

real [Eq. (24)]
and equivalents considered by Kobzar et al. [42], are able to
preserve the interferometric phase and increase contrast, and

when our optimization is carried out for small detuning ranges
we produce similar pulse shapes. Measures of performance
more suitable for PP operations, such as Fπ

square [Eq. (26)],
conversely yield lower interferometer contrast, as does the
WALTZ point-to-point composite pulse.

While GRAPE should also be applicable to the design of
beam-splitter pulses, we expect that a more fruitful approach
will be to consider symmetries in the Mach-Zehnder sequence
and compensate in the second beam-splitter operation for er-
rors introduced in the first, so as to optimize the interferometer
as a whole. Such cooperative pulse optimization was investi-
gated by Braun et al. [48,49] for Ramsey-style experiments
in NMR and allows greater freedom in the optimization as
individual beam-splitter pulses are permitted imperfections
provided that they are canceled elsewhere in the interferometer
sequence. This should allow shorter pulse sequences, desirable
for interferometric sensors operating in dynamic environments
[28] and is attractive for optimization of the π/2 − π − π/2
sequence used for inertial sensing applications. Nonetheless,
we expect the mirror optimization described here to suffice for
a large contrast improvement in many current configurations.

Our future work will involve experimental demonstration
of GRAPE mirror pulses in our experiment and analysis of how
features present in pulse profiles from optimal control methods
allow for error compensation. This will involve characterizing
the dynamics and evolution of atomic trajectories on the Bloch
sphere.
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