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Fano absorption spectrum with the complex spectral analysis
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An approach to understanding the Fano absorption spectrum is presented in terms of the complex spectral
analysis. The absorption spectrum of an impurity embedded in semi-infinite superlattice is investigated. The
boundary condition on the continuum results in a self-energy function with strong energy dependence which
enhances the nonlinearity of the eigenvalue problem of the effective Hamiltonian, yielding several resonance states
with a nonanalytic dependence on the coupling constants. The overall spectral features are perfectly reproduced
by the direct transitions to these discrete resonance states. Even with a single optical transition path the spectrum
exhibits the asymmetric Fano profile, which is enhanced for the transition to the nonanalytic resonance states.
The spectral change around the exceptional point can also be well understood when we extract the resonant state
component.
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I. INTRODUCTION

The Fano effect is a ubiquitous phenomena in quantum
mechanics, recognized as a manifestation of quantum in-
terference [1]. In his seminal paper, Fano revealed that the
absorption spectrum in the photoionization process of an
inner-shell electron shows a characteristic asymmetric spectral
profile known as the Fano profile [2–4], as a result of the
interference between the direct photoionization transition and
the ionization transition mediated by a resonance state. Since
then, a growing number of works have been devoted to study
the Fano resonance in various physical systems. However,
it has been realized that there are cases that cannot be fit so
simply to the original interpretation in terms of the interference
between multiple transition pathways to a common continuum.
As an example, the absorption spectrum in a quantum well
shows a distinct Fano resonance, even though there is no direct
transition to the continuum [5].

To explain the Fano profile for a broader range of physical
situations, the phenomenological effective Hamiltonian has
been proposed [6], which is represented by a finite non-
Hermitian matrix of complex constants. The discrete reso-
nance eigenstates are identified as eigenstates of the effective
Hamiltonian with complex eigenvalues whose imaginary part
represents the decay rate of the corresponding resonance state.
While the idea of the resonance state may go back to the early
days of the study of nuclear reactions where the resonance state
was obtained by the Feshbach projection method [7,8], there
has recently been much focus on expanding the horizon of
quantum mechanics so as to incorporate the irreversible decay
process directly into quantum theory [9–15]. In these studies,
the starting Hamiltonian itself is taken as a non-Hermitian
or a parity-time-symmetry (PT-symmetry) Hamiltonian at the
beginning [10,11].

Even though the non-Hermitian effective Hamiltonian is
useful to reproduce the Fano spectral profile, it is not clear how
these matrix elements were derived from the time-reversible
microscopic dynamics. Indeed, since the derivation of the
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effective Hamiltonian usually relies on the Weisskopf–Wigner
approximation [16], i.e., the Markovian approximation, the
validity of the effective Hamiltonian should be reexamined. In
addition, the microscopic information of the interaction with
the continuum is missing because the effect of the interaction is
rewritten into complex constants that are phenomenologically
determined.

On the other hand, there have been efforts to derive
a non-Hermitian effective Hamiltonian from the micro-
scopic total (Hermitian) Hamiltonian by using the Brillouin–
Wigner–Feshbach projection operator method (BWF method)
[7,13,14,17–19], where the effect of the microscopic inter-
action with the continuum is represented by the energy-
dependent self-energy function. Petrosky et al. have shown
that the spectrum of the effective Hamiltonian coincides
with that of the total Hamiltonian, revealing that the total
Hermitian Hamiltonian may have complex eigenvalues due
to the resonance singularity if we extend the eigenvector
space from the ordinary Hilbert space to the extended Hilbert
space, where the Hilbert norm of the eigenvector vanishes
[20–22]. It should be emphasized that the complex eigenvalue
problem of the effective Hamiltonian becomes nonlinear in
this approach in the sense that the effective Hamiltonian
depends on its own eigenvalue. It has been revealed recently
that this nonlinearity of the eigenvalue problem of the
effective Hamiltonian causes interesting phenomena, such as
the dynamical phase transition [23], bound states in the con-
tinuum (BIC) [24,25], as well as nonanalytic spectral features
[26–28] and modified time evolution [29] near exceptional
points.

Our aim in this paper is to show that the Fano absorption
profile is well explained in terms of the complex spectral
analysis. As a typical system, we consider the core-level
absorption of an impurity atom embedded in a semi-infinite
superlattice, where the charge-transfer decay following the
optical excitation is reflected in the absorption spectrum (see
Fig. 1). The existence of the boundary with an infinite potential
wall at the end of the chain causes striking effects on the
resonance states in contrast with the infinite-chain case: The
self-energy has a strong energy dependence over the entire en-
ergy range of the continuum, which enhances the nonlinearity
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FIG. 1. The semi-infinite tight-binding chain with a two-level
impurity atom at the nd th site from the boundary.

of the eigenvalue problem of the effective Hamiltonian. As a
result, even with a single impurity state, there appear several
discrete resonance states that are nonanalytic in terms of the
coupling constant.

We have discovered that the absorption spectrum is es-
sentially determined by a sum of the direct transitions to
these discrete resonance states. The spectral profile due to the
transition takes the asymmetric Fano shape, even when only
a single optical transition channel is present. This is because
the transition strength (oscillator strength), which is ordinarily
real valued [30], becomes complex as a result of the fact
that the resonance state of the total Hamiltonian belongs to
the extended Hilbert space. Because the resonance states are
intrinsic states of the system in the sense that they diagonalize
the total Hamiltonian in the dual space, we may say that
the Fano-type asymmetry represents an intrinsic property of
the unstable state.

We have also found that, because of the nonlinearity in
the effective Hamiltonian, there appears exceptional points
(EPs) where two resonance states coalesce in terms of
not only energies but also their eigenstates [31]. We re-
veal that the absorption spectrum around the EP shows a
broad single-peak structure consisting of absorption tran-
sitions to the nearby degenerate nonanalytic resonance
states.

The paper is organized as follows: We introduce our model
for a semi-infinite chain including a two-level impurity atom
incorporating a single intra-atomic optical transition in Sec. II.
The complex eigenvalue problem of the total Hamiltonian
is solved in Sec. III and we present the characteristic
behavior of the trajectories of the eigenvalues of the effective
Hamiltonian in the complex-energy plane. The absorption
spectrum is studied in terms of complex spectral analysis in
Sec. IV, which is followed by some concluding discussions in
Sec. V.

II. MODEL

Our model consists of a semi-infinite one-dimensional
superlattice with a two-level impurity atom, as shown in Fig. 1,
where the two-level atom is located at a distance nd a from the
boundary. In this work we take the lattice constant a as our
unit length, i.e., a = 1. We first consider a finite chain with the

length N , then the Hamiltonian reads

Ĥ = Ec|c〉〈c| + Ed |d〉〈d| +
N∑

n=1

E0|n〉〈n|

− B

2

N−1∑
n=1

(|n + 1〉〈n| + H.c.) + gV (|nd〉〈d| + H.c.).

(1)

The wave number state for the semi-infinite lattice is defined
by

|kj ) ≡
√

2

N

N∑
n=1

sin(kjn)|n〉, (2)

where kj takes kj = πj/(N + 1), (j = 1, . . . ,N) under the
fixed boundary condition. In the limit N → ∞, the discrete
variable kj becomes continuous in 0 < k < π , and the sum-
mation becomes an integral over k. Applying the transform for
the discrete wave number kj to the continuous k in the limit
N → ∞, defined by [22]

|k〉 ≡
(

N

π

)1/2

|kj ), (3)

the continuous unperturbed basis |k〉 satisfies the orthonormal-
ity according to Dirac’s δ function

〈k|k′〉 = δ(k − k′) (4)

and the completeness relation

1 = |d〉〈d| +
∫ π

0
|k〉〈k|dk. (5)

With use of this basis, the total Hamiltonian is rewritten as

Ĥ = Ĥ0 + gV̂ , (6)

where

Ĥ0 = Ec|c〉〈c| + Ed |d〉〈d| +
∫ π

0
Ek|k〉〈k|dk, (7a)

gV̂ =
∫ π

0
gVk(|k〉〈d| + |d〉〈k|)dk. (7b)

The energy dispersion of the continuum is given by

Ek = E0 − B cos k, (8)

and the interaction potential Vk in terms of the continuous
wave number is given by

Vk ≡
(

2

π

)1/2

V sin(ndk). (9)

Hereafter, we take E0 = 0 and B = 1 as the energy origin and
the energy unit, respectively.

In this paper, we consider a single intra-atomic optical
transition induced by incident light with frequency ω under
the dipole approximation. The transition operator is given by

T̂ ≡ μ(Tdc|d〉〈c| + H.c.), (10)
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with a dimensionless coupling constant μ, where we have
adopted the rotating-wave approximation (RWA) in the weak-
coupling case μ � 1.

Using the first-order time-dependent perturbation method
for the interaction between light and matter, the absorption
spectrum is given by [32,33]

F (ω) = 1

π
Re

∫ ∞

0
dt ei(ω+Ec)t−εt 〈c|T̂ e−iĤ t T̂ |c〉

= −μ2T 2
dc

π
Im〈d| 1

� − Ĥ + iε
|d〉, (11)

where we denote � ≡ ω + Ec, and we have used Eq. (10).1

Even though the Green’s-function method yields an analyt-
ical formula for F (�) for this system as shown in Appendix A,
we shall present an alternative way to interpret the absorption
profile in terms of resonance states, which are considered to be
decaying elementary excitations inherent to a given system.

III. COMPLEX EIGENVALUE PROBLEM

We begin our analysis by solving the complex eigenvalue
problem of Ĥ [21]:

Ĥ |φξ 〉 = zξ |φξ 〉, 〈φ̃ξ |Ĥ = zξ 〈φ̃ξ |, (12)

where the right- and the left-eigenstates,|φξ 〉 and 〈φ̃ξ |, respec-
tively, share the same eigenvalue zξ ; we use a greek index
for the (anti-)resonance states with complex eigenvalues and
a roman index for the eigenstates (bound or continuum) with
real eigenvalues. These eigenstates satisfy bi-orthonormality
and bi-completeness:

δξ,ξ ′ = 〈φ̃ξ |φξ ′ 〉, 1 =
∑

ξ

|φξ 〉〈φ̃ξ |. (13)

In the present model, just as in the case that we studied in
Ref. [33], the bi-complete basis set of the total Hamiltonian
is composed of the discrete resonance states, the continuous
state, as well as the stable bound states:

∑
i∈RI

|φi〉〈φi | +
n0−1∑
α=1

|φα〉〈φ̃α| +
∫ π

0
dk|φk〉〈φ̃k| = 1, (14)

where the first, second, and third terms represent the bound
states in the first Riemann sheet, the resonance states, and
the continuous states, respectively. Since this decomposition
of the identity is represented by the eigenstates of the total
Hamiltonian, it is essential to understand the absorption spectra
in terms of the irreversible decay process emerging from the
time-reversible microscopic dynamics.

To obtain the discrete resonance states, we remove the
infinite number of degrees from the problem by using the
Brillouin–Wigner–Feshbach projection method via the pro-

1In Eq. (11), we have dropped the factor 2π/h̄ for convenience.

jection operators [7]2

P̂ (d) ≡ |d〉〈d|, Q̂(d) ≡ 1 − P̂ (d) =
∫ π

0
|k〉〈k|dk, (15)

where P̂ (d) is the projection for the impurity state and Q̂(d) is
its complement.

We apply the projection operators to the right-eigenvalue
problem [the first equation of Eq. (12)], which then reads

P̂ (d)Ĥ0P̂
(d)|φα〉 + P̂ (d)gV̂ Q̂(d)|φα〉 = zdP̂

(d)|φα〉, (16a)

Q̂(d)gV̂ P̂ (d)|φα〉 + Q̂(d)Ĥ Q̂(d)|φα〉 = zdQ̂
(d)|φα〉. (16b)

The Q̂(d)|φα〉 component is solved in Eq. (16b) as

Q̂(d)|φα〉 = 1

zα − Q̂(d)Ĥ Q̂(d)
Q̂(d)Ĥ P̂ (d)|φα〉, (17)

which, after substitution into Eq. (16a), gives the right-
eigenvalue problem of the effective Hamiltonian,

Ĥeff(zξ )P̂ (d)|φξ 〉 = zξ P̂
(d)|φξ 〉, (18)

where the effective Hamiltonian Ĥeff(z) is defined by

Ĥeff(z) = P̂ (d)Ĥ0P
(d) + P (d)V̂ Q̂(d) g2

z − Q̂(d)Ĥ Q̂(d)
Q̂(d)V̂ P (d)

(19a)

= [Ed + g2
+(z)]P̂ (d), (19b)

and the self-energy 
+(z) is given by


+(z) =
∫ π

0
dk

V 2
k

(z − Ek)+
= 2

π

∫ π

0
dk

V 2 sin2(ndk)

(z − Ek)+

= V 2

√
z2 − 1

[1 − (z −
√

z2 − 1)2nd ]. (20)

Note that 
+(z) is defined by the Cauchy integral with the
branch cut from −1 to 1 in the energy plane; we define 
+(z)
by taking the analytic continuation from the upper half energy
plane as denoted by the + superscript [21]. This is the same
self-energy that brings about the bound state in continuum
(BIC) as studied in Ref. [24] [see Eq. (4) in Ref. [24] ]. In
general, the self-energy exhibits a strong energy dependence
near the lower-energy bound of the continuum, which results
in nonexponential quantum decay [34,35]. In addition, when
the potential Vk changes with the wave number k, the self-
energy depends on the energy. In the present system, the latter
yields oscillations in 
+(z) with energy as shown in Fig. 2 in
Ref. [24], in contrast with the infinite-chain case [33] (see also
Ref. [36]). In fact, with the change of variables z = − cos θ ,
the self-energy is written as


+(z) = V 2

i sin θ
(1 − ei2ndθ ), (21)

2Since the core level is decoupled from the |d〉 and |k〉 states in Ĥ ,
we focus here on the terms other than the first term in Ĥ0 given by
Eq. (7a).
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g = 0.16(a) Re[zα]Im[zα]

g = 0.1728(b) Re[zα]

Im[zα]g = 0.2(c) Re[zα]

Im[zα]

(i)
(ii)

(iii)

(i)
(ii)

(iii)

(i)

(ii)

(iii)

FIG. 2. Resonance state solutions zα of Eq. (23) for (a) g = 0.16,
(b) g = 0.1728 � gEP, and (c) g = 0.2 for nd = 4 in the complex
energy plane, where the horizontal and the vertical axes denote the real
and the imaginary parts of the eigenvalues. The filled (red) circles and
(blue) squares denote the discrete resonance states for Ed = −0.5 and
Ed = −0.4 � E−

EP, respectively, while the open circles and squares
denote the corresponding bare impurity energies Ed . The dotted lines
are the trajectory of the resonance state solutions with the change
of Ed . The arrows indicate the direction of the trajectories as Ed

increases as shown by the double arrows, and thick arrows indicate
the entry at Ed = −1.

leading to the BIC points

EBIC
k = − cos

(
πk

nd

)
(k = 1, . . . ,nd − 1), (22)

where the wave function is confined in between the boundary
and the impurity atom [24].

Note that Eq. (18) is nonlinear in the sense that the
operator itself depends on its own eigenvalue due to the energy
dependance of the self-energy as pointed out in the Intro-
duction [21,23,28]. It is only when taking into account this
nonlinearity that the spectrum of the effective Hamiltonian

Ĥeff coincides with that of the total Hamiltonian Ĥ , and the
effective problem is dynamically justified. Thus, the dispersion
equation for Ĥeff(z) reads

η+(z) ≡ z − Ed − g2
+(z)

= z − Ed − g2 V 2

√
z2 − 1

{1 − (z −
√

z2 − 1)2nd } = 0,

(23)

yielding nd + 1 discrete solutions, among which there are
nd − 1 resonance state solutions with a negative imaginary
part of the eigenvalues and the two real-valued eigenvalues.
Here the boundary condition of the infinite potential wall at
the one end induces strong wave-number dependence, which
allows several discrete resonance states to appear such that the
number of resonance states increases as nd increases.

As an illustration, we show the discrete resonance state
solutions of Eq. (23) for the case nd = 4 in the complex energy
plane in Fig. 2, where the results are shown for g = 0.16
[Fig. 2(a)], g = 0.1728 [Fig. 2(b)], and g = 0.2 [Fig. 2(c)].
There are three BIC points at Ed = ±1/

√
2 and 0, irrespective

of the values of g, as seen from Eq. (22).
We show the three resonance states for Ed = −0.5 and

those for Ed = −0.4 by the filled circles and squares,
respectively, while the corresponding bare impurity energies
are also plotted by the open circles and squares on the real axis,
respectively. Hereafter we use the index α to distinguish the
discrete resonance states. The position of the three resonance
states change with Ed as depicted by the dotted lines, which
we shall call the trajectories of the resonance states. In Fig. 2,
we show the three trajectories as Ed changes from −1 to
1. The arrows indicate the directions of the trajectories with
increasing of Ed , where the entries of the three trajectories
from Ed < −1 are indicated by the thick arrows.

It is found that the feature of the trajectories are char-
acteristically different for the three cases, distinguished at
the critical value gEP = 0.1728 . . . , which corresponds to the
exceptional point. The exceptional point is a special point
in parameter space where not only the complex eigenvalues
but also the wave functions coalesce [31]. The exceptional
points are obtained by looking for parameter values satisfying
the double root condition for the dispersion equation [15,26],
which requires in addition to Eq. (23) that

d

dz
η+(z; Ed,g) = 1 − g2 d

dz

+(z) = 0. (24)

As shown in Fig. 2(b), we numerically obtained an exceptional
point at E±

EP = ±0.3981 . . . for gEP � 0.1728 . . . , which is
in between the BIC points for Ed : EBIC

1 = −1/
√

2 < E−
EP <

EBIC
2 = 0.3

For g = 0.16 (<gEP) in Fig. 2(a), the trajectory numbered
by (i) is continuously close to the real axis (except near
the band edge) which may be identified as the perturbed

3There are several other exceptional points satisfying the double
root conditions of Eqs. (23) and (24). But in this work we focus on
the spectral change when we change Ed from one of the BIC points
to the other: from EBIC

1 = −1/
√

2 to EBIC
2 = 0.
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solution of Eq. (23). On the other hand, the other two
trajectories numbered by (ii) and (iii) are separated from the
trajectory (i). These two solutions are nonanalytic in terms
of g: Indeed, the imaginary part of their complex eigenvalues
are the order �O(g) > O(g2) for g < 1. As Ed increases
from Ed = EBIC

1 = −1/
√

2 the trajectories of (i) and (ii) come
close, and around Ed � E−

EP they repel each other in parallel
to the imaginary axis while moving in opposite directions as
indicated by the arrows. A similar repulsion happens between
the trajectories (i) and (iii) around Ed � E+

EP.
In the case of g = 0.2 (>gEP) shown in Fig. 2(c), the

three trajectories instead repel each other in parallel to the
real axis while traveling in opposite directions, and there is
no continuous trajectory close to the real axis. In this case,
as Ed increases from Ed = EBIC

1 = −1/
√

2, the trajectory
(i) starts from the BIC value and shifts away from the real
axis, and becomes strongly nonanalytic, while the trajectory
(ii) moves in the opposite direction. The case g � gEP shown
in Fig. 2(b) is the boundary between these two cases. The
trajectories (i) and (ii) coalesce at Ed = E−

EP = −0.3981 . . . .
As will be shown in the next section, it is found that the
characteristic difference of these behaviors in the trajectories
are clearly reflected in the absorption spectrum.

Once we have solved the eigenvalue problem of the effective
Hamiltonian, it is straightforward to obtain the complex
eigenstate of the total Hamiltonian by adding the complement
component. The explicit representation of the right-eigenstate
is obtained as

|φα〉 = 〈d|φα〉
(

|d〉 + g

∫ π

0
dk

Vk

(z − Ek)+z=zα

|k〉
)

, (25)

where the + sign in the integrand indicates taking the analytical
continuation from the upper energy plane to the resonance
pole zα as mentioned above. The left-eigenstate is similarly
obtained as

〈φ̃α| = 〈φ̃α|d〉
(

〈d| + g

∫ π

0
dk

Vk

(z − Ek)+z=zα

〈k|
)

. (26)

Note the analytic continuation should be taken in the same
direction as |φα〉, resulting in

(|φα〉)† �= 〈φ̃α|. (27)

The normalization condition for these eigenstates is given
by

〈φ̃α|φα′ 〉 = δα,α′ , (28)

so that

〈φ̃α|d〉〈d|φα〉 =
(

1 − g2 d

dz

+(z)

∣∣∣∣
z=zα

)−1

. (29)

Taking a derivative of zα(Ed ) as a function of Ed in Eq. (23),
we find [23]

d

dEd

zα(Ed ) = 〈φ̃α|d〉〈d|φα〉. (30)

It is clear that the normalization constant can be complex,
which is rigorously determined by the normalization condition
for the eigenstate of the total Hamiltonian. Note that the

normalization constant diverges at the EP [26,28,29]. As
will be seen in the next section, this complex normalization
constant determines the absorption spectral shape, while the
complex eigenvalues determine the peak position and the
spectral width.

By using the projection operator P̂ (k) ≡ |k〉〈k| and its
complement, we have similarly obtained the right-eigenstate
for the continuous state [21] in terms of the continuous wave
number as

|φk〉 = |k〉 + gVk

η+
d (Ek)

(
|d〉 + g

∫ π

0
dk′ Vk′

Ek − Ek′ + iε
|k′〉

)
,

(31)

where we have defined the delayed analytic continuation of
the Green’s function as [21]

1

η+
d (Ek)

≡ 1

η+(Ek)

∏
α

Ek − zα

(Ek − z)+z=zα

, (32)

with the inverse of the Green’s function η+(z) given by
Eq. (23). The left-eigenstate for the continuous state is also
given by

〈φ̃k| = 〈k| + gVk

η−(Ek)

(
〈d| + g

∫ π

0
dk′ Vk′

Ek − Ek′ − iε
〈k′|

)
.

(33)

In Eqs. (31) and (33), ε is a positive infinitesimal. Together
with the two bound eigenstates with real eigenvalues, we come
to the decomposition of the identity as shown in Eq. (14).

IV. ABSORPTION SPECTRUM

Applying the bi-completeness Eq. (14) to the absorption
spectrum Eq. (11), we obtain the representation of the
absorption spectrum in terms of the complex eigenstates given
in the preceding section as

F (�) = μ2T 2
dc

∑
i∈RI

|〈d|φi〉|2δ(� − Ei)

− μ2T 2
dc

π
Im

[∑
α

〈d|φα〉〈φ̃α|d〉
�−zα+iε

+
∫ 〈d|φk〉〈φ̃k|d〉

�−Ek+iε
dk

]
,

(34)

where the first term is attributed to the bound states, while
the second and the third terms are attributed to the resonance
states and the continuous eigenstates, respectively, which are
directly related to the Fano effect.

We show in Fig. 3 the absorption spectra F (�) by the
(black) solid lines and the resonance state component by the
(red) dotted lines, corresponding to the case of Fig. 2(a) g =
0.16, 2(b) g = 0.1728, and 2(c) g = 0.20 for nd = 4. In each
panel, we show the absorption spectra for Ed = −0.6, −0.5,
−0.4, −0.3, and −0.2 from top to bottom.

It is striking that the absorption spectra are almost perfectly
reproduced only by the direct transitions to the discrete
resonance states given by the second term of Eq. (34). We
also find that the overall features of the spectral change are
similar for the three cases: At Ed = −0.6 close to the BIC
point EBIC

1 , there is a sharp peak with a high-energy tail. As Ed

increases, the peak position shifts to the high-energy side, and
the spectrum is broadened. When Ed comes close to EEP, the
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FIG. 3. Absorption spectra F (�) corresponding to the case of Fig. 2: (a) g = 0.16, (b) g = 0.1728, and (c) g = 0.20 for nd = 4, where
the spectrum intensity is divided by μ2T 2

dc [F (�)/μ2T 2
dc]. In each panel, we show the absorption spectra for Ed = −0.6, −0.5, −0.4, −0.3,

and −0.2 from the top to bottom. The (black) solid lines represent F (�) and the (red) dotted lines represent the resonance state component of
Eq. (34).

spectrum becomes a nearly symmetric broad peak. And as Ed

further increases toward the second BIC point EBIC
2 , the peak

position further shifts to the high-energy side and it becomes
a sharp peak with a low-energy tail. Thus, even with a single
intra-atomic optical transition, the absorption profile changes
as Ed changes. It will be shown below that, even though the
overall features of the spectral changes are similar for the three
cases, the spectral component is very different, reflecting the
characteristic difference in the complex eigenvalues in Fig. 2.

To demonstrate this, we decompose the resonance state
component, i.e., the second term of Eq. (34), into symmetric
and antisymmetric parts according to the real and imaginary
parts of the normalization constant 〈d|φα〉〈φ̃α|d〉 given by

Eq. (30). The resonance state component for |φα〉 (〈φ̃α|) is
written by

fα(�) ≡ −μ2T 2
dc

π
Im

〈d|φα〉〈φ̃α|d〉
�− zα + iε

= f S
α (�) + f A

α (�), (35)

where

f S
α (�) ≡ μ2T 2

dc

π

γα

(� − εα)2 + γ 2
α

dεα

dEd

, (36a)

f A
α (�) ≡ μ2T 2

dc

π

(� − εα)

(� − εα)2 + γ 2
α

dγα

dEd

, (36b)

and zα = εα − iγα (γα > 0).
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The first factors of Eqs. (36) are the optical transition
strengths. The second factors determine the spectral profiles:
symmetric and antisymmetric profiles for Eqs. (36a) and (36b),
respectively, whose maximum values are 1/2γα . The factor
dγα/dEd in Eq. (36b) determines the degree of the Fano-
type asymmetry. In the weak-coupling case under the Marko-
vian approximation, where the energy dependence of the
self-energy may be neglected, γα does not depend on Ed ,
so that the resonance state component comes only from f S

α (�)
and becomes a symmetric Lorentzian. Thus, the degree of
the asymmetry (AD) for a particular resonance state |φα〉
is evaluated by the ratio of the third factor from the two
expressions

AD,α ≡ dγα

dεα

, (37)

i.e., the tangent of the trajectories of Fig. 2. The direction along
the trajectory determines the direction of the asymmetry.

We gain deeper insight by comparing the resonance state
component fα(�) with the ordinary Fano profile

fF(x) = (x + q)2

x2 + 1
= 1 + q2 − 1

x2 + 1
+ 2q x

x2 + 1
. (38)

In Eqs. (36), with the definition

x ≡ � − εα

γα

, (39)

the symmetric and the antisymmetric parts of the resonance
state component are rewritten as

f S
α (�) =

(
μ2T 2

dc

πγα

)
1

x2 + 1

dεα

dEd

, (40a)

f A
α (�) =

(
μ2T 2

dc

πγα

)
x

x2 + 1

dγα

dEd

. (40b)

By comparing Eqs. (38) and (40), it follows that we may
evaluate the q factor for a resonance state |φα〉 as

q = 1

AD,α

[
1 ±

√
1 + A2

D,α

]
, (41)

where the sign is chosen according to the sign of dγα/dEd .
From this relation, we find

|q| → 1 as
∣∣AD,α

∣∣ → ∞, (42a)

|q| → ∞ as AD,α → 0. (42b)

It should be noted that, since Eq. (41) is determined by solving
the complex eigenvalue problem of the total Hamiltonian, our
method enables us to rigorously determine the Fano q factor
based on microscopic dynamics.

We show in Fig. 4 the three resonance state components of
the absorption spectrum for g = 0.2 and Ed = −0.5 in Fig. 3.
The corresponding three resonance states are shown by the
(red) filled circles in Fig. 2(c). In the top panel of Fig. 4, the
three resonance state components fα(�) are shown by the thin
(red) lines, and the sum of them are depicted by the (black)
thick line. In the lower panels of Fig. 4, we have decomposed
fα(�) into the symmetric f S

α (�) and antisymmetric f A
α (�)

parts shown by the (blue) dashed lines and (green) dotted lines,

FIG. 4. Resonance state components of the absorption spectrum
for g = 0.2 and Ed = −0.5 in Fig. 3. In the top panel, the three
resonance state components fα(�) are shown by the thin (red) lines,
and the sum of them are depicted by the (black) thick line. In the three
lower panels, we have decomposed fα(�) into the symmetric f S

α (�)
and antisymmetric f A

α (�) components shown by the (blue) dashed
lines and (green) dotted lines, respectively. The values of AD,α and
the Fano q factors are also shown in the inset.

respectively, where AD,α and the Fano q factors evaluated by
Eq. (41) are also shown in the inset.

We see that the main contribution comes from the resonance
state component f(i)(�). This is because the maximum values
of the spectral profile are given by 1/2γα as mentioned
above, so that the resonance state with the smallest value
of γ(i) is mostly attributed to the spectrum. The spectrum
f(i)(�) exhibits a sharp Fano profile with AD,(i) = 0.664
and q = 3.313, while the antisymmetric parts overwhelm the
symmetric parts for the nonanalytic resonance states (ii) and
(iii) with large AD values.

Next we study the difference of the absorption spectrum
reflecting the trajectories of the complex eigenvalues shown in
Fig. 2. We show in Fig. 5 the resonance state components in
the case Ed = −0.4 for g = −0.16 [Fig. 5(a)], g = −0.1728
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FIG. 5. The resonance state components in the case of Ed = −0.4 for (a) g = 0.16, (b) g = 0.1728, and (c) g = 0.2, corresponding to the
case of Ed = −0.4 in Fig. 3. The depiction of the spectrum decomposition is the same as in Fig. 4.

[Fig. 5(b)], and g = −0.2 [Fig. 5(c)], corresponding to the
case Ed = −0.4 in Fig. 3. The three resonance states for each
case are shown by the filled squares in Fig. 2. The depiction
of the spectrum decomposition is the same as in Fig. 4.

In the weak-coupling case [Fig. 5(a)] g = 0.16 < gEP,
where the repulsion of the trajectories occurs in parallel to
the real axis, since γ(i) is much smaller than those for the other
nonanalytic resonance states, the spectrum is mostly governed
by the resonance state component f(i). Since AD,(i) � 0 and
AD,(ii) � 0 as seen from Fig. 2(a), the antisymmetric parts are
very small, so that f(i)(�) and f(ii)(�) show almost symmetric
Lorentzian profiles. The symmetric component f(ii) is negative,
because dε(ii)/dEd < 0, as indicated by the arrow in Fig. 2(a).

On the other hand in the case of strong coupling [Fig. 5(c)]
g = 0.2 > gEP, since the repulsion of the trajectories occurs
parallel to the imaginary axis as shown in Fig. 2, AD,(i) and
AD,(ii) become large, so that the antisymmetric parts f A

(i) and
f A

(ii) overwhelm the symmetric parts f S
(i) and f S

(ii), as shown in
Fig. 5(c). The direction of the asymmetric spectral profiles of
f A

(i) and f A
(ii) are opposite. Because dγα/dEd has opposite sign

between them, as seen in Fig. 2(c), the spectral components
cancel each other except around � � −0.5. As a result, the
resonance state component

∑
α fα(�) shows a single, broad

Gaussian-type peak: Even though the absorption spectrum is
a single peak similar to Fig. 5(a), its origin is very different.

For the case of Fig. 5(b), g = 0.1728 � gEP, it is striking
that both the symmetric and antisymmetric components
become very large and yet cancel each other between the
resonance states (i) and (ii) [see the vertical scale of Fig. 5(b)].
This reflects the fact that the normalization constant diverges
at the EP, as mentioned above. As a result of this (partial)
cancellation, the sum of the resonance components show a
single peak.

V. DISCUSSION

In this paper, we have presented a perspective on the
absorption spectrum in terms of the complex spectral analysis.
We have studied the specific example of the absorption spec-
trum of an impurity embedded in semi-infinite superlattice.

052511-8



FANO ABSORPTION SPECTRUM WITH THE COMPLEX . . . PHYSICAL REVIEW A 96, 052511 (2017)

It is found that, due to the boundary condition on the
lattice, the self-energy has a strong energy dependence over
the entire energy range of the continuum, which enhances
the nonlinearity of the eigenvalue problem of the effective
Hamiltonian, yielding several nonanalytic resonance states
with respect to the coupling constant at g = 0.

It has been revealed that the overall spectral features are
almost perfectly determined by the direct transitions to these
discrete resonance states, reflecting the characteristic change
in the complex energy spectrum of the total Hamiltonian.
Even with only a single optical transition channel present,
the absorption spectrum due to the transition to the resonance
states, in general, takes an asymmetric Fano profile. The
asymmetry of the absorption spectrum is exaggerated for the
transition to the nonanalytic resonance state.

To illustrate the physical impact of the nonlinearity in
the present system, it is interesting to compare the present
results with the absorption spectrum of the unbounded chain
system, studied in Ref. [33], in terms of the resonance state
representation. For the unbounded chain, the Hamiltonian is
represented by

Ĥ = Ec|c〉〈c| + Ed |d〉〈d| +
∫ π

−π

Ek|k〉〈k|dk

+
∫ π

−π

gV (|k〉〈d| + |d〉〈k|)dk, (43)

where the energy dispersion Ek is the same as Eq. (8). The
important difference from Eq. (7) is that, in this case, the
interaction potential does not depend on the wave number.
Then the effective Hamiltonian is given by Ĥeff(z) = Ed +
g2σ+(z), where the self-energy is given by

σ+(z) = 1

2π

∫ π

−π

dk
V 2

(z − Ek)+
= V 2

√
z2 − 1

. (44)

The dispersion equation η+(z) ≡ z − Ed − g2σ+(z) = 0 re-
duces to a fourth-order polynomial equation, yielding a
resonance state and an antiresonance state in addition to the
two bound states that are called persistent bound states (PBSs)
[25,33]. We show in Fig. 6 the trajectory of the resonance
state by the dotted line and the solutions for Ed = −0.9 and
Ed = −0.6 by a filled circle and a filled square, respectively.
In contrast with the semi-infinite-chain system, there is only
a single resonance state in the infinite-chain system, because
the self-energy does not exhibit strong energy dependence
within the energy range of the continuum except near the band
edges.

The absorption spectrum is calculated in terms of the
complex eigenstate of the total Hamiltonian in a similar
manner to the preceding section. We have shown in Fig. 7 the
absorption spectra for g = 0.2, where the bare impurity state
energies Ed are taken at Ed = −0.9, −0.6, −0.3, and 0. It
is seen that the overall spectral features shown by the (black)
solid lines are perfectly reproduced by the resonance state
components [shown by the (red) dotted lines], just as in Fig. 3.
Significant deviation appears only for the case Ed = −0.9,
where the self-energy changes due to the branch-point effect,
as explained just below Eq. (20). In contrast to Fig. 3, however,
the spectral profiles do not change so much with Ed : The
single peak just shifts toward the higher-energy side as Ed

Re[zα]Im[zα]g = 0.2

FIG. 6. Resonance state solutions zα of the infinite-chain system
for g = 0.2 for a fixed value of Ed = −0.9 (filled circle) and
Ed = −0.6 (filled square) in the complex energy plane, where the
horizontal and the vertical axes denote the real and the imaginary
parts of the eigenvalues, respectively. The open circle and square
denote the position of the bare impurity energies Ed . The dotted lines
are the trajectory of the resonance state solutions with the change
of Ed . The arrows indicate the direction of the solutions along the
trajectories as the bare energy increases as shown by the double
arrows.

increases, because the self-energy does not have strong energy
dependence within the continuum, as mentioned above.

To confirm that the absorption spectrum of the transition
to the resonance states takes an asymmetric Fano shape, even
with only a single optical transition channel, we decompose
the resonance state component for Ed = −0.9 and Ed = −0.6
into symmetric and antisymmetric parts in Fig. 8. We found
that the degree of the asymmetry is always nonzero although
it is quite small, therefore the absorption spectrum exhibits
a Fano-type asymmetry. However, compared with the semi-
infinite lattice case, the degree of the asymmetry is very small
so that the absorption spectrum takes an almost symmetric
Lorentzian shape.

In this paper, we have presented an interpretation of the
Fano-type asymmetry in the absorption spectrum in terms of
direct transitions to the resonance states without relying on
the idea of quantum interference between transition paths.
Because the resonance states are intrinsic states of the system
in the sense that they diagonalize the total Hamiltonian in
the dual space, we may say that the Fano-type asymmetry
represents an intrinsic property of the unstable state. Nonethe-
less, it is still possible to use the ordinary interpretation
in terms of quantum interference to describe the Fano-type
asymmetry if we appropriately choose the representation basis
for the physical situation under consideration, as shown in
Appendix D. There are, however, several ways to choose
the representation basis set for the quantum interference
interpretation in the absorption spectrum. Therefore, the most
appropriate choice for the representation basis depends on
what aspect of the absorption process might be of primary
interest in a given physical situation.

The present method for interpreting the absorption spec-
trum in terms of the direct transition to the discrete resonance
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FIG. 7. Absorption spectra F (�) for the infinite chain for g =
0.20, where the spectra are divided by μ2T 2

dc [F (�)/μ2T 2
dc]. In each

panel, we show the absorption spectra for Ed = −0.9, −0.6, −0.3,
and 0 from the top to bottom. The solid lines (black) represent F (�)
and the dotted lines (red) represent the resonance component of
Eq. (34).

states is an extension of Bohr’s idea for quantum jumps
between discrete states of matter under optical transitions.
In the usual picture, the spectrum due to the quantum jump
just exhibits a symmetric Lorentzian profile, whose peak
position and width are determined by the excitation energy
and the decay rate, i.e., the real and imaginary parts of
the complex eigenvalues, respectively. What we have shown
here is that the optical spectrum due to the quantum jump
between the resonance states can cause much richer spectral
features, representing not only their complex eigenvalues but
also the peculiar features of the wave functions belonging
to the extended Hilbert space. Therefore, we hope that the
present method can be applied to give an understanding for
stationary spectroscopies, such as resonance fluorescence,
four-wave mixing, etc., in the frequency domain, but also for
time-resolved spectroscopies [37–39].

FIG. 8. The resonance state components in the cases of Ed =
−0.9 and Ed = −0.9 for g = 0.2 corresponding to Fig. 7. The
depiction of the spectrum decomposition is the same as in Fig. 4.
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APPENDIX A: ABSORPTION SPECTRUM IN TERMS
OF GREEN’S-FUNCTION METHOD

In this section, we briefly review the Green’s-function
method to evaluate the absorption spectrum Eq. (11). Define
the resolvent operator as

Ĝ(z) ≡ 1

z − Ĥ
= 1

z − Ĥ0 − gV̂
, (A1)

where Ĥ0 and gV̂ are given by Eq. (7). With use of the Dyson’s
equation, we have the relations

Gdd (z) ≡ 〈d|Ĝ(z)|d〉 = 1

z − Ed

+ 1

z − Ed

∫
dkgVkGkd,

(A2)

Gkd (z) ≡ 〈k|Ĝ(z)|d〉 = 1

z − Ek

gVkGdd, (A3)

where Gij (z) is an element of the resolvent. It immediately
follows from Eqs. (A2) and (A3) that we obtain

Gdd (z) = 1

z − Ed − g2
+(z)
. (A4)
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Therefore, the absorption spectrum is obtained by substituting
Eq. (A4) into Eq. (11) as

F (�)

= −μ2T 2
dc

π

g2Im
+(�)

[� − Ed − g2Re
+(�)]2 + g4[Im
+(�)]2
,

(A5)

where the self-energy is defined by Eq. (20).

APPENDIX B: COMPLEX EIGENVALUE PROBLEM WITH
THE PROJECTION METHOD

In this section we briefly summarize the complex eigenvalue
problem with use of the BWF projection method. One could
refer to the literature for details [13,21,23].

First, we consider the right-eigenstate for the discrete
resonance state:

Ĥ |φα〉 = zα|φα〉. (B1)

The application of the projection operators given in Eq. (15)
to the above leads to

P̂ (d)Ĥ0P̂
(d)|φα〉 + P̂ (d)gV̂ Q̂(d)|φα〉 = zdP̂

(d)|φα〉, (B2a)

Q̂(d)gV̂ P̂ (d)|φα〉 + Q̂(d)Ĥ Q̂(d)|φα〉 = zdQ̂
(d)|φα〉. (B2b)

The Q̂(d)|φα〉 is solved in Eq. (B2b) as

Q̂(d)|φα〉 = 1

zα − Q̂(d)Ĥ Q̂(d)
Q̂(d)Ĥ P̂ (d)|φα〉, (B3)

which is substituted into Eq. (B2a); we then have the
eigenvalue problem of the effective Hamiltonian (18), where
the effective Hamiltonian is expressed by

Ĥeff(z) = P̂ (d)Ĥ0P
(d) + P (d)V̂ Q̂(d) g2

z − Q̂(d)Ĥ Q̂(d)
Q̂(d)V̂ P (d)

(B4a)

= Ed + g2
+(z). (B4b)

The discrete resonance state eigenvalues are obtained as the
solutions of the dispersion equation (23). The corresponding
resonance state is obtained by adding the Q̂(d) component as

|φα〉 = P̂ (d)|φα〉 + Q̂(d)|φα〉 (B5)

= 〈d|φα〉
(

|d〉 + g

∫ π

0
dk

Vk

(z − Ek)+z=zα

|k〉
)

, (B6)

where we have used Eq. (15).
The left-eigenstate problem

〈φ̃α|Ĥ = zα〈φ̃α| (B7)

is similarly solved by applying the projection operators from
the right.

Next we solve for the continuous eigenstate. For this
purpose, we choose the projection operators as

P̂ (k) = |k〉〈k|, Q̂(k) = 1 − P̂ (k). (B8)

The effective Hamiltonian for k space is given by

Ĥ
(k)
eff (z) = P̂ (k)Ĥ0P

(k) + P (k)V̂ Q̂(k) g2

z − H(k)
Q̂(k)V̂ P (k),

(B9)

where we have denoted

H(k) ≡ Q̂(k)Ĥ Q̂(k). (B10)

This is represented by

H(k) = Ed |d〉〈d| +
∑

k′(�=k)

Ek′ |k′〉〈k′|

+ 2√
N

g
∑

k′(�=k)

sin k′(|d〉〈k′| + |k′〉〈d|) (B11a)

≡ H(k)
0 + V (k). (B11b)

Then the matrix elements in the second term of Eq. (B9)
are represented by

〈k|V̂ Q̂(k) 1

zk − H(k)
Q(k)V̂ |k〉 = 4

N
(sin k)2g2G

(k)
dd (zk),

(B12)

where the Green’s function in terms of the k state is given by

G
(k)
dd (zk) = 〈d| 1

zk − H(k)
|d〉. (B13)

By using the Dyson equation, we have the relations

G
(k)
dd (z) = 1

z − Ed

+ 1

z − Ed

2g√
N

∑
k′(�=k)

sin k′G(k)
k′d (z),

(B14a)

G
(k)
k′d (z) = 1

z − Ek′

2 sin k′
√

N
gG

(k)
dd (z). (B14b)

Substitution of Eq. (B14b) into (B14a) yields

G
(k)
dd (z) = 1

η+(z)
, (B15)

where η+(z) is given in Eq. (23).
Using Eqs. (B9), (B12), and (B15), the eigenvalue problem

of the effective Hamiltonian Ĥ
(k)
eff (z) reads

Ĥ
(k)
eff (zk)P̂ (k)|φk〉 =

[
Ek + 4(sin k)2

N

g2

η+(zk)

]
P̂ (k)|φk〉

= zkP̂
(k)|φk〉. (B16)

We find that zk = Ek in the limit N → ∞.
The right-continuous eigenstate for the wave number k is

given by adding the Q̂(k) component:

|φk〉 = P̂ (k)|φk〉 + Q̂(k)|φk〉

=
[
|k〉 + Q̂(k) 1

Ek − H(k)
Q̂(k)V̂ |k〉

]
〈k|φk〉. (B17)
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The second term is written by

Q̂(k) 1

Ek − H(k)
Q̂(k)V̂ |k〉 = |d〉〈d| 1

Ek − H(k)
|d〉〈d|V̂ |k〉 +

∑
k′(�=k)

|k′〉〈k′| 1

Ek − H(k)
|d〉〈d|V̂ |k〉

= 2gV sin k√
N

⎡
⎣|d〉G(k)

dd (Ek) +
∑

k′(�=k)

|k′〉G(k)
k′a(Ek)

⎤
⎦. (B18a)

Substituting Eq. (B18) into Eq. (B17), we obtain Eq. (31). The left-eigenstate for the continuous state is obtained in the same
way.

APPENDIX C: DISPERSION EQUATION IN POLYNOMIAL FORM

In this section we reduce the dispersion equation (23) to a 2nd th-order polynomial equation. Using the binomial expansion, it
is written as

z − Ed + g2

√
z2 − 1

nd−1∑
m=0

(
2nd

2m + 1

)
(−z)2nd−(2m+1)(

√
z2 − 1)2m+1 = g2

√
z2 − 1

[
1 −

nd∑
m=0

(
2nd

2m

)
(−z)2nd−2m(

√
z2 − 1)2m

]
.

(C1)

Using the identities

nd−1∑
m=0

(
2nd

2m + 1

)
(−z)2nd−(2m+1)(

√
z2 − 1)2m+1 = 1

2
{(−z +

√
z2 − 1)2nd − (−z −

√
z2 − 1)2nd }, (C2a)

nd∑
m=0

(
2nd

2m

)
(−z)2nd−2m(

√
z2 − 1)2m = 1

2
{(−z +

√
z2 − 1)2nd + (−z −

√
z2 − 1)2nd }, (C2b)

Eq. (C1) reads

z − Ed+ g2

2
√

z2 − 1
[(−z +

√
z2 − 1)2nd − (−z −

√
z2 − 1)2nd ] = g2

2
√

z2 − 1
[2 − (−z +

√
z2 − 1)2nd + (−z −

√
z2 − 1)2nd ].

(C3)

Taking the square of Eq. (C3) and using Eqs. (C2) again, we obtain the 2nd th-order polynomial equation:

0 = (z − Ed )2 + 2g2(z − Ed )

{
nd−1∑
m=0

(
2nd

2m + 1

)
(−z)2nd−(2m+1)(z2 − 1)m

}

+ 2g4

{
nd−1∑
m=0

z2m +
nd∑

m=1

(
2nd

2m

)
(−z)2nd−2m(z2 − 1)m−1

}
. (C4)

APPENDIX D: ABSORPTION SPECTRUM IN TERMS
OF QUANTUM INTERFERENCE

In this section, we interpret the Fano-type asymmetry of
the absorption spectrum of the impurity in the infinite chain in
terms of quantum interference between transition paths. In the
site-state representation, the Hamiltonian (43) is represented
by

Ĥ = Ec|c〉〈c| + Ed |d〉〈d| + E0|0〉〈0| + gV (|0〉〈d| + |d〉〈0|)

+
∞∑

n=−∞(�=0)

E0|n〉〈n|−B

2

∞∑
n=−∞

(|n+1〉〈n|+|n〉〈n+1|),

(D1)

where the impurity state |d〉 is locally coupled with the chain
at the zeroth site.

We first diagonalize the first line of Eq. (D1) within the
subspace consisting of the |0〉 and |d〉 states by using the
transformation

|a〉 = cos θ |d〉 + sin θ |0〉,
|b〉 = − sin θ |d〉 + cos θ |0〉 .

(D2)

Choosing

tan 2θ ≡ 2gV

Ed − E0
(D3)

yields the eigenvalues

Ea,b = 1

2
{(Ed + E0) ±

√
(Ed − E0)2 + 4g2V 2}. (D4)
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It is convenient for the following discussion to use the
symmetrized basis defined by

|sn〉 ≡ 1√
2

(|n〉 + | − n〉), (D5a)

|pn〉 ≡ 1√
2

(|n〉 − | − n〉). (D5b)

The Hamiltonian is then divided into the s and p symmetries
as

Ĥ = Ĥs + Ĥp, (D6)

where

Ĥs = Ec|c〉〈c| + Ea|a〉〈a| + Eb|b〉〈b| +
∞∑

n=1

E0|sn〉〈sn|

− B√
2

∞∑
n=1

{(|sn+1〉〈sn| + |sn〉〈sn+1|) − B sin θ√
2

(|a〉〈s1|

+ |s1〉〈a|) − B cos θ√
2

(|b〉〈s1| + |s1〉〈b|), (D7)

Ĥp =
∞∑

n=1

E0|pn〉〈pn| − B√
2

∞∑
n=1

(|pn+1〉〈pn| + |pn〉〈pn+1|).

(D8)

Since the impurity states are coupled only with the s-symmetry
subspace, we shall focus on the s symmetry.

With use of the wave-number representation, Ĥs is repre-
sented by

Ĥs = Ec|c〉〈c| + Ea|a〉〈a| + Eb|b〉〈b| +
∫ π

0
Ek|sk〉〈sk|dk

+
∫ π

0

{(
wa

k |a〉 + wb
k |b〉)〈sk|

+ |sk〉
(
wa

k 〈a| + wb
k 〈b|)}dk, (D9)

where |sk〉 is the wave-number basis for the s-symmetrized
state defined in the same manner as Eqs. (2) and (3). In this
representation, the |a〉 and |b〉 states are coupled with the
common continuum |sk〉 with the coupling strengths wa

k and
wb

k , respectively, defined by

wa
k ≡ − B√

π
cos θ, wb

k ≡ − B√
π

sin θ. (D10)

Since the |d〉 state component is included both in |a〉 and
|b〉, the optical transitions to these states are allowed with the
strengths of

μac ≡ μTdc cos θ, μbc ≡ μTdc sin θ, (D11)

as shown in Fig. 9(a). Through the coupling with the common
continuum |sk〉, the two optical transitions interfere with each
other to induce the Fano-type asymmetry in the absorption
spectrum.

Indeed, by including the |b〉 state in the Friedrichs solution
for the continuum given by [40]

∣∣ψb
k

〉 = |sk〉 + wb
k

η+(Ek)

(
|b〉 +

∫ π

0
dk′ wb

k′

Ek − Ek′ + iε
|sk′ 〉

)
,

(D12)

|c
Ec

|b

|a Ea

Eb

μac μbc

|sk

wa
k

wb
k

(a)

|c
Ec

|a Ea

μac

ua
k

|ψb
k

(b)

μb
k

FIG. 9. Two optically allowed transitions in the infinite chain.

the Hamiltonian Ĥs is rewritten in the form of the single-
impurity Anderson model as

Ĥs = Ea|a〉〈a| +
∫ π

0
Ek

∣∣ψb
k

〉〈
ψb

k

∣∣dk

+
∫ π

0
ua

k

(|a〉〈ψb
k

∣∣+ ∣∣ψb
k

〉〈a|)dk, (D13)

where the coupling constant ua
k is given by

ua
k = wa

k

{
1 + wb

k

η+(Ek)

∫ π

0

wb
k′

Ek − Ek′ + iε
dk′

}
. (D14)

Since the |d〉 state component is included in |ψb
k 〉 in this

representation, we have the direct transition to the continuum
|ψk〉 with the strength given by

μb
kc ≡ 〈

ψb
k

∣∣T̂ |c〉 = wb
k

η+(Ek)
μbc, (D15)

in addition to the local transition μac, as shown in
Fig. 9(b). This is the same transition pathways as the one
originally studied by Fano in Ref. [4]. We have shown
here that we can interpret the Fano-type asymmetry of
the absorption spectrum even in the case of a single
intra-atomic optical transition path by transforming the
basis.

It should be noted nonetheless that there are other ways
to yield a single-impurity Anderson model with the mul-
tiple transition paths. For example, we could include the
state |a〉 into the other continuum |ψa

k 〉 in a similar way,
where the quantum interference would occur between the
transitions to the |b〉 and the |ψa

k 〉 states. Thus, there are
several ways to choose the representation basis set for
the quantum interference interpretation in the absorption
spectrum. Therefore, the most appropriate choice for the
representation basis depends on what aspect of the absorption
process might be of primary interest in a given physical
situation.
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