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Vinen turbulence via the decay of multicharged vortices in trapped atomic
Bose-Einstein condensates
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We investigate a procedure to generate turbulence in a trapped Bose-Einstein condensate which takes advantage
of the decay of multicharged vortices to reduce surface oscillations. We show that the resulting singly charged
vortices twist around each other, intertwined in the shape of helical Kelvin waves, which collide and undergo
vortex reconnections, creating a disordered vortex state. By examining the velocity statistics, the energy spectrum,
the correlation functions, and the temporal decay and comparing these properties with the properties of classical
turbulence and observations in superfluid helium, we conclude that this disordered vortex state can be identified
with the Vinen regime of turbulence which has been discovered in the context of superfluid helium.
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I. MOTIVATION

The singular nature of quantized vorticity (concentrated
along vortex lines) and the absence of viscosity make super-
fluids remarkably different from classical fluids. Nevertheless,
recent studies [1] have revealed that superfluid helium, when
suitably stirred, shares an important property with classical
turbulence: the same Kolmogorov energy spectrum [2], de-
scribing a distribution of kinetic energy over the length scales
which signifies an energy cascade from large length scales to
small length scales. This finding suggests that the turbulence
of quantized vortices (quantum turbulence) may represent the
‘skeleton’ of classical turbulence [3].

A puzzle arises, however: experiments [4,5] show that,
besides Kolmogorov (or quasiclassical) turbulence, there is
another regime in which turbulent superfluid helium lacks the
Kolmogorov spectrum: Vinen turbulence (also known as the
‘ultraquantum regime’). In their experiments with superfluid
helium, Walmsley and Golov [4] were able to generate both
regimes by controlling injections of vortex rings in their
system. When monitoring the temporal decay of the vortex
line density L(t), they observed that short injections of vortex
rings produced a regime in which L(t) ∼ t−1, as opposed
to long injections, which displayed the scaling L(t) ∼ t−3/2.
Numerical simulations [6] of this experiment revealed that
Vinen turbulence [decaying as L(t) ∼ t−1] has a spectrum
E(k) which peaks at intermediate length scales and behaves as
E(k) ∼ k−1 for large k in the hydrodynamical range k < 2π/�

(where � is the average intervortex distance); on the contrary,
Kolmogorov turbulence [decaying as L(t) ∼ t−3/2] has a
spectrum E(k) which peaks at the largest length scales and
behaves as E(k) ∼ k−5/3 for large k.
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It is now understood that Vinen’s pioneering experiments
[7] on counterflow heat transfer in superfluid helium also gen-
erated Vinen turbulence. This was demonstrated by numerical
models of counterflow turbulence [8] driven by a uniform
normal fluid which produced a superfluid energy spectrum
peaking at mesoscales with the expected E(k) ∼ k−1 tail at
large k. Additionally, the L(t) ∼ t−1 vortex line density decay
was also observed, which is the large-t decaying solution of
the equation dL/dt ∼ −L2 proposed by Vinen on simple
physical arguments to model a randomlike flow. Moreover,
a recent work [9] examining the properties of turbulence
following the thermal quench of a Bose gas has found that
topological defects created by the Kibble-Zurek mechanism
evolve into a turbulent vortex tangle [10] which eventually
decays into a vortex-free state. During the decay, which has
the form L(t) ∼ t−1, the energy spectrum is concentrated
at intermediate wave numbers and scales as E(k) ∼ k−1,
and the velocity correlation functions drop to a few percent
over the distance �. The thermal quench is therefore a third
clear example of Vinen turbulence. It has been argued [5]
that, physically, Vinen turbulence differs from Kolmogorov
turbulence because it lacks the energy cascade from large to
small eddies which is characteristic of classical turbulence. At
the moment, it is not clear whether this distinction between
Vinen turbulence and Kolmogorov turbulence, first proposed
by Volovik [11], is unique to superfluids. It is in principle
possible that the former regime can appear only in systems
with discrete vorticity, ruling out its presence in classical fluids
(in which vorticity is a continuous quantity).

Given this context, it is clear that trapped atomic Bose-
Einstein condensates (BECs) are ideal systems to tackle this
puzzle and to eventually serve as a test bed for a crossover
between Vinen and Kolmogorov turbulence. This is because,
unlike helium, the physical properties of BECs (e.g., the
strength of atomic interactions, the density, the vortex core
radius) can be controlled. Moreover, individual quantized
vortices are more easily nucleated, manipulated [12,13], and
observed [14–16] in BECs than in helium.

The second motivation behind our work is that the study of
three-dimensional (3D) turbulence in BECs [17] is held back
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by the lack of a standard method to excite turbulence in a
reproducible way, so that experiments and numerical simula-
tions can be compared with each other and any generality of
results can be more easily recognized. In classical turbulence,
standard benchmarks are flows driven along channels or
stirred by propellers, flows around well-defined obstacles (e.g.
cylinders, spheres, steps), and wind tunnel flows past grids.
Similar techniques are used for superfluid helium [18,19],
which is mechanically or thermally driven along channels
or stirred by oscillating wires, grids, forks, propellers, and
spheres. Vortices and turbulence in BECs have been generated,
either numerically or experimentally, by moving a laser beam
across the BEC [15,20–26], by shaking [27] or stirring the
trap, rotating it around two perpendicular axes [28], by phase
imprinting staggered vortices [29], or by thermally quenching
the system (Kibble-Zurek mechanism) [30–33]. This variety
of techniques and the arbitrarily chosen values of physical
parameters mean that comparisons are difficult. Moreover, the
disadvantage of some of these techniques is that they tend to
induce large surface oscillations or even fragmentation [34] of
the condensate, which complicates the interpretation of results
and the comparison with classical turbulence.

The aim of this report is to propose a technique to induce
turbulence in BECs based on the decay of multicharged
vortices (a more controlled and less forceful technique than
the above-mentioned methods) and to characterize the tur-
bulence which is produced. For this purpose, we compare
two disordered vortex states, which we call “anisotropic”
and “quasi-isotropic” for simplicity, resulting from the decay
of a single j = 4 charged vortex and from the decay of
two antiparallel j = 2 vortices, respectively. We reveal a
connection between BEC turbulence and the Vinen turbulent
regime discovered in superfluid helium.

II. MULTICHARGED VORTICES

In a superfluid, the circulation around a vortex line is an
integer multiple (j = 1,2, . . . ) of the quantum of circulation
[35] κ = h/m, that is,

∮
C

v · d� = jκ , where C is a closed
path around the vortex line, h is Planck’s constant, and m the
atomic mass. The velocity field around an isolated vortex line
is therefore constrained to the form v = jκ/(2πr), where r

is the distance to the vortex axis. This property is in marked
contrast to classical fluids, where the velocity of rotation about
an axis (e.g., swirls, tornadoes, galaxies) has arbitrary strength
and radial dependence.

The angular momentum and the energy of an isolated
vortex in a homogeneous superfluid grow, respectively, with
j and j 2 [35]. Therefore, for the same angular momentum,
multicharged (j > 1) vortices carry more energy and, in the
presence of thermal dissipative mechanisms, tend to decay
into singly charged vortices [36–39]. Besides the energy
instability, there is also a dynamical instability [40–42], which
would destabilize a multicharged vortex. The time scale of
these effects has been investigated [36,38,39,41,43–46]. The
technique of topological phase imprinting [47] has allowed the
controlled generation of multicharged vortices [36,38,45,48]
in atomic condensates. The decay of a doubly quantized
vortex into two singly quantized vortices has been studied
[36,43,44] in a Na BEC. Quadruply charged quantized vortices

are also theoretically predicted [49] to decay. Recent work has
determined that the stability of such vortices is affected by the
condensate’s density [36] and size [44] and by the nature of
the perturbations [49].

III. MODEL

We model the condensate’s dynamics using the 3D Gross-
Pitaevskii equation (GPE) [35] for a zero-temperature conden-
sate,

ih̄
∂ψ

∂t
=

(
− h̄2

2m
∇2 + U (r) + g|ψ |2

)
ψ, (1)

where ψ(r,t) is the condensate’s wave function, r the position,
t the time, and
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the harmonic trapping potential. The parameter g =
4πh̄2as/m characterizes the strength of the interatomic in-
teractions, where as is the s-wave scattering length. The
normalization is

∫
V

|ψ |2dV = N , where V is the BEC’s
volume and N the number of atoms. We cast the GPE in
dimensionless form using τHO = ω−1

r , �HO = √
h̄/mωr , and

h̄ωr as units of time, distance, and energy, respectively. The
interatomic interaction parameter, g(=8600), is chosen to
describe a typical BEC with N ≈ 1 × 105 atoms of 87Rb
trapped harmonically in a cigar-shaped BEC with radial and
axial frequencies such that ωz/ωr = λ = 0.129. It is of our
particular interest to study properties of the condensate’s
velocity-field components, which are computed from the def-
inition v(r) = (ψ∇ψ∗ − ψ∗∇ψ)/2i|ψ |2. The dimensionless
GPE is solved numerically in the 3D domain −10�HO � x,y �
10�HO and −40�HO � z � 40�HO on a 128 × 128 × 512 grid
(keeping the same spatial discretization in the three directions)
with time step 
t = 10−3 using the fourth-order Runge-
Kutta method with XMDS2 (eXtensible Multi-Dimensional
Simulator 2) [50]. We have performed tests with different
grid sizes and verified that our results are independent of the
discretization.

IV. DECAY OF SINGLE QUADRUPLY CHARGED VORTEX

The shape of the singly charged vortex lines emerging
from the decay of a multicharged vortex depends on where
and when the decay starts. The singly charged lines may be
straight or intertwined (as reported here), depending on the
perturbation’s symmetry and the local density homogeneity.
If the perturbation is uniform and the density does not vary
much in the z direction, every point on the vortex unwinds
at the same rate, and straight singly charged vortex lines will
emerge. However, if the density changes significantly along
z, the unwinding takes place at different times and different
positions, inducing intertwining, as discussed in [43].

The twisted vortex decay is shown in Fig. 1 and in the first
movie in the Supplemental Material [51]. The main feature
visible during the evolution is Kelvin waves. Kelvin waves
consist of helical displacements of the vortex core axis and
play an important role in quantum turbulence [18]; they have
recently been experimentally identified in superfluid helium
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FIG. 1. Three-dimensional isodensity plots show the time (in
units of τHO) evolution of an initial j = 4 multicharged vortex (a);
note the twisted unwinding of the vortex (b), which finally decays into
four singly charged (j = 1) vortices (c) in the disordered, anisotropic
state. The density isosurfaces representing the condensate and the
vortices are gray and blue, respectively. The 3D domain is displayed
within the plot limits −7�HO � x � 7�HO, −10�HO � y � 10�HO,
and −30�HO � z � 30�HO.

[52] and their presence has been recognized in atomic conden-
sates [53,54]. Considering Fig. 1, it is worth distinguishing
the Kelvin waves which, in our case, emerge on parallel
vortices from the decay of a multicharged vortex [41,44] in
a confined geometry from the Kelvin waves generated by the
Crow instability [55] on antiparallel vortices in a homogeneous
condensate.

Despite its known dynamical instability, in the absence of
large perturbations, a symmetric multicharged vortex can be
a long-lived state in a harmonic trap. We have, for instance,
simulated the time evolution for the quadruply charged vortex
when symmetrically imprinted along the z direction (i.e.,
centered at the origin) up to t = 150τHO without verifying
its decay (observing instead the development of only low-
amplitude collective modes). However, our numerical experi-
ments suggest that the decay of the multicharged vortex can be
sped up. Imposing uniformly distributed random fluctuations
(�10% of |ψ |) on the initial j = 4 wave function does not
significantly change the decay time scale, probably because
the symmetry of the initial condition is not completely broken.
A small displacement of the vortex core axis (≈0.2�HO) is
more efficient, triggering the onset of twisted unwinding
in about 14.0τHO; a larger displacement (≈0.5�HO) reduces
this time to 12.0τHO. Among the other methods which we
have investigated, the most efficient is to gently squeeze the
harmonic potential in the xy plane by an amount ωx/ωy = 0.9
when preparing the initial state in imaginary time, then reset
ωx/ωy = 1 when propagating the GPE in real time; the

FIG. 2. Decay of a quadruply charged vortex (anisotropic state).
Time evolution of average velocity components vi and |vi | (in units
of �ho/τHO, where i = x,y,z) vs time (in units of τHO). The symbol
〈. . . 〉 denotes the spatial average over the condensate.

squeeze triggers the onset of decay in only 6.0τHO. In the
experiments, it is usually difficult to control perturbations well
enough to reproducibly determine the time scale of decay.

Figure 2 shows the time evolution of the (spatially) averaged
velocity components and their magnitudes during the decay.
The x and y components display oscillations which become
large for t > 20τHO, after the initial multicharged vortex has
split. The z component behaves differently because all vortices
are aligned in the z direction. The oscillations of the transverse
velocity components vx and vy appear practically out of phase
[see Fig. 2 (top)], and these suggest the existence of collec-
tive modes. In order to properly identify these modes we have
evaluated the time evolution of the condensate’s transverse
widths wx and wy (found by adjusting Gaussian fits in the x

and y directions over the z-integrated density). As shown in
Fig. 3, the condensate exhibits a quadrupolar mode, in which
wx and wy oscillate out of phase in time. After performing a
Fourier analysis of these quadrupolar oscillations we verified
the mode’s frequency to be ω ∼ √

2ωr , in agreement with
theoretical predictions for a vortex-free cloud [56]. This mode
is reminiscent of the unstable (quadrupolar) Bogoliubov mode
that drives the decay of the initial multicharged vortex, as
identified for analogous 2D [46] and 3D [42] trapped systems.

For simplicity of reference, we call the resulting disordered
vortex configuration an ‘anisotropic state’.

V. DECAY OF TWO ANTIPARALLEL DOUBLY
CHARGED VORTICES

Now we exploit the twisted unwinding of a multicharged
vortex as a convenient technique to generate turbulent vortex
tangles which are relatively free of high-density perturba-
tions. We start by numerically imprinting antiparallel, doubly
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FIG. 3. Decay of quadruply charged vortex (anisotropic state).
Time (in units of τHO) evolution of the condensate’s width wi (in
units of �HO).

charged vortices as the initial state. One vortex is centered
at position (x,y) = (1.8�HO,1.5�HO) and the other at (x,y) =
(1.0�HO,−1.3�HO), as shown in Fig. 4(a). We have performed
several simulations, with different initial positions for the
vortex pair. When the system was prepared in a symmetric
initial state, the vortex pair annihilation was too quick, and
less vortex tangling was observed. Since our aim was to induce

FIG. 4. Isodensity plots showing the evolution (with time t in
units of τHO) of two initial doubly charged (j = 2) antiparallel vortices
at t = 0τHO (a) into the turbulent quasi-isotropic state at t = 13.6τHO

(b), which has finally decayed at t = 50τHO (c). The 3D domain is
displayed within the plot limits −7�HO � x � 7�HO, −10�HO � y �
10�HO, and −30�HO � z � 30�HO.

FIG. 5. Decay of antiparallel doubly charged vortices (quasi-
isotropic state). Time evolution of velocity components as in Fig. 2.

more vortex tangling (therefore stretching the turbulence time
window), the values we present are the results of an optimized
choice, which breaks the symmetry by imposing a noncentered
initial state. During the evolution, the vortices unwind, twist,
move slightly forward due to the self-induced velocity field,
and then reconnect, generating a turbulent state with only
moderate density oscillations, as shown in Fig. 4(b).

We analyze the turbulent state in terms of the spatial
averages of the velocity components. At the beginning of
the decay, we find 〈|vy |〉/〈|vx |〉 ≈ 1 and (as expected, as
vortices are initially aligned in the z direction) 〈|vz|〉/〈|vx |〉 ≈
0. Figure 5 (top) shows that, as time proceeds, the vortex
configuration becomes almost isotropic; indeed at t = 10τHO

we have 〈|vy |〉/〈|vx |〉 ≈ 1.00 and 〈|vz|〉/〈|vx |〉 ≈ 0.77. For
simplicity of reference, we call the resulting disordered vortex
configuration a ‘quasi-isotropic state’.

As opposed to the anisotropic case, the oscillations of
the transverse velocity components vx and vy appear almost
completely in phase for this quasi-isotropic case [compare
Fig. 2 (top) and Fig. 5 (top)], and these also suggest the
existence of collective modes. We have evaluated the time
evolution of the condensate’s transverse widths for this
scenario as well. Figure 6 shows that after t ≈ 10τHO there is a
small (∼0.2�HO) in-phase oscillation of the widths (as opposed
to the larger oscillations for the anisotropic case in Fig. 3).
This can be identified as a breathing mode and (again, through
a Fourier analysis) it was found to exhibit a characteristic
frequency of ω ∼ 2ωr , also in agreement with theoretical
predictions for a vortex-free cloud [56]; this value is expected
to hold even for rapidly rotating trapped systems [57]. These
results, alongside a visual comparison of Figs. 1 and 4, show
that the outer surface of the condensate is actually slightly less
disturbed in the quasi-isotropic case. Our turbulent condensate
[Fig. 4(b)] is clearly less ‘wobbly’ than condensates made
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FIG. 6. Decay of antiparallel doubly charged vortices (quasi-
isotropic state). Time evolution of the condensate’s width.

turbulent via other stirring methods, as in, notably, Refs. [29],
[58], and [34]. (See the Appendix for a quantitative discussion
of the surface oscillations of the condensate.)

We proceed and analyze the distribution of values of
the turbulent velocity components (Fig. 7). We find that
the probability density functions (PDFs, or normalized his-
tograms) display the typical power-law scaling PDF(vi) ∼ v

αi

i

FIG. 7. Decay of antiparallel doubly charged vortices (quasi-
isotropic state). PDFs of velocity components vi (i = x, i = y, and
i = z corresponding to blue, red, and green symbols, respectively)
plotted vs vi/σi (where σi are the corresponding standard deviations)
at t = 12.6τHO. For reference, solid curves are Gaussian fits (gPDFs)
with standard deviations σx = 1.8, σy = 1.7, and σz = 1.4, and
mean values (plotted as vertical lines near the origin) μx = −0.3,
μy = −0.1, and μz = 0.0.

(i = x,y,z), where αx ≈ −2.97, αy ≈ −2.95, αz ≈ −3.20,
in agreement with findings in larger condensates [29]. Such
power-law scaling, characteristic of quantum turbulence and
observed in helium experiments [59], is in contrast to Gaussian
PDFs, which are typical of classical turbulence. The difference
between power-law and Gaussian statistics is important at high
velocities (power-law PDFs have larger values in the tails) and
arises from the quantization of vorticity [which creates very
high velocities for r → 0, as v = κ/(2πr)]. For the sake of
comparison, Fig. 7 also displays Gaussian fits [60].

VI. IDENTIFICATION OF THE TURBULENCE

The two disordered vortex states, anisotropic and quasi-
isotropic, produced, respectively, by the decay of a single
quadruply charged vortex (Sec. IV) and by the decay of
two antiparallel doubly charged vortices (Sec. V), are clearly
different. In the anisotropic state, all vortex lines are aligned
in the same direction, and the net nonzero angular momentum
constrains the flow. In the quasi-isotropic state, the oscilla-
tions of the average transverse velocity components 〈vi〉 are
three times larger, suggesting the presence of high-velocity
events (vortex reconnections between Kelvin waves growing
on opposite-oriented vortices), which are the hallmarks of
turbulence. Moreover, in the quasi-isotropic state, the zero
angular momentum of the initial configuration allows a
redistribution of the velocity field, making the amplitudes
of the three velocity components almost equal; indeed, after
the initial vortex has split (t ≈ 10τHO), the axial velocity,
〈|vz|〉 ≈ 0.9�HO/τHO, is not much lower than the transverse
velocity, 〈|vx |〉 ≈ 1.2�HO/τHO and 〈|vy |〉 ≈ 1.1�HO/τHO. On
the contrary, in the anisotropic state, at the same stage
(t ≈ 10τHO), the axial velocity component is much smaller
than the transverse components. In other words, the velocity
field which results from the decay of the antiparallel doubly
charged vortex state is indeed almost isotropic.

Since there is not yet a precise definition of turbulence,
in principle both disordered states investigated here could be
considered somewhat ‘turbulent’. However, at this early stage
of investigation, we want to make conceptual connections to
the simple isotropic cases known in the literature (in particular,
the Kolmogorov and Vinen regimes of turbulence). Therefore
hereafter we concentrate on the quasi-isotropic state.

The next question is whether the quasi-isotropic state is
turbulent in the sense of classical turbulence or in comparison
with turbulent superfluid helium. To find the answer, we turn to
the workhorse of statistical physics: the correlation function.

The quantity which measures the degree of randomness of
a turbulent flow is the (normalized) longitudinal correlation
functions [9,61], defined by

fi(r) = 〈vi(x + r êi)vi(x)〉
〈vi(x)2〉 , (3)

where the symbol 〈. . . 〉 denotes an average over the po-
sition vector x = (x,y,z), and êi is the unit vector in the
corresponding Cartesian direction. The distance r is limited
by the size of the BEC, approximately the transverse and
axial Thomas-Fermi radii, dTF = 4.2�HO and DTF = 32.6�HO,
respectively. From the longitudinal correlation function one
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FIG. 8. Decay of antiparallel doubly charged vortices (quasi-
isotropic state). Longitudinal correlation functions fi(r) (i = x,y,z)
vs r (in units of �HO) at t = 13τHO. Dashed vertical lines indicate the
length �c over which the velocity field is highly correlated, as defined
in Eq. (4).

obtains the integral length scale

�c =
∫ ∞

0
fi(r)dr. (4)

In fluid dynamics, �c represents the size of the large eddies.
In our case, �c is the length scale over which the velocity
field is highly correlated. Figure 8 shows that the correlation
functions drop to only ≈10% at distances of the order of the
average separation between the vortex lines, � ≈ 6.1�HO; the
last quantity is estimated as � ≈ L−1/2 from the measurement
of the vortex line density L (the vortex length per unit volume).
Physically, this lack of correlation means that the vortex lines
are randomly oriented with respect to each other. The analysis
of the correlation function therefore suggests that the turbulent
velocity field arising from the decay of antiparallel doubly
charged vortices is essentially a random flow.

This result implies that the distribution of the kinetic energy
over the length scales, or energy spectrum E(k) (where the
wave number k represents the inverse length scale), should
be very different from the celebrated Kolmogorov scaling,
E(k) ∼ k−5/3, which is observed in classical turbulence and
implies a particular structure of the flow. The importance of
the Kolmogorov scaling is that it is the signature of a nonlinear
cascade mechanism which transfers energy from large length
scales to small length scales. Besides classical turbulence, the
Kolmogorov scaling has been observed in helium experiments
[62,63] when the turbulence is generated by grids in wind
tunnels or by counter-rotating propellers. Numerical simula-
tions [64] revealed that the Kolmogorov scaling is associated
with the presence of large-scale polarization (bundles) of
vortex lines which become locally parallel to each other;
the bundles locally create a net average rotation over length
scales larger than �, thus building up energy at wave numbers
k < k� = 2π/� (the hydrodynamical range).

To compute the energy spectrum E(k) of our turbulent
condensate, we use a standard procedure [65] to extract

FIG. 9. Decay of two antiparallel doubly charged vortices (quasi-
isotropic state). Incompressible kinetic energy spectrum Ei(k) (arbi-
trary units) vs wave number k (in units of �−1

HO) at t = 12.8τHO. Vertical
lines mark the wave numbers corresponding to the healing length
ξ = 0.24�HO, the vortex core size a = 0.96�HO, the average distance
between vortex lines � = 6.10�HO, and the radial and axial Thomas-
Fermi radii dTF = 4.21�HO and DTF = 32.64�HO. Red, gray, and green
lines represent the power laws k−3, k−5/3, and k−1, respectively.

the incompressible kinetic energy from the total energy,
obtaining Fig. 9. To interpret the figure, we mark with vertical
lines the wave numbers kξ = 2π/ξ , ka = 2π/a, k� = 2π/�,
kd = 2π/dTF, and kD = 2π/DTF, corresponding to the healing
length ξ , the vortex core radius a, the average vortex separation
�, and the radial and axial Thomas-Fermi radii dTF and DTF,
respectively. Figure 9 shows that the energy spectrum is not
of the Kolmogorov type: under the classical Kolmogorov
scenario, most of the energy would be contained in the largest
eddies in the small-k region (the apparent deficit, estimated
by extrapolating the k−5/3 slope to the left, is more than two
orders of magnitude). Instead of the k−5/3 scaling, we observe
the E(k) ∼ k−1 spectrum, which is characteristic of an isolated
straight vortex line. This means that, at distances less than �,
the velocity field is dominated by the nearest vortex in the
vicinity of the point of observation—the effects of all the
other vortices in a random tangle canceling each other out.
The range of k space where this scaling takes place is less than
a decade because not much k space is available in a typical
atomic condensate (unlike superfluid helium and classical
fluids), but the scaling is clearly visible (the fact that k� < kTF

simply means that, at this time in the decay, the vortex lines
are spread throughout the condensate with typical distances
� larger than the radial dimension dTF; note that � < DTF,
of course.) It is also noteworthy that the E(k) ∼ k−3 scaling
which appears in the region ka < k < kξ is characteristic of
the vortex core [66,67]. We conclude that Fig. 9 is consistent
with the random flow interpretation which results from the
analysis of the correlation functions.
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FIG. 10. Time evolution of the vortex line density (t in units
of τHO). The shaded area corresponds to the time elapsed for the
decay of the two antiparallel multiply charged vortices, t ≈ 8τHO,
after which we only see singly quantized vortices in the system in the
quasi-isotropic state.

Besides the correlation function and the energy spectrum,
further insight into the nature of our turbulence is acquired
by measuring the temporal decay of the vortex line density
L(t). This decay is caused by sound radiated away by vortices
as they accelerate about each other [68] or reconnect [69]
with each other. Figure 10 shows that, at large t , the decay is
consistent with the form L(t) ∼ t−1, as reported for a larger
spherical condensates [29]; the decaying turbulence is shown
in the second movie in the Supplemental Material [51].

Therefore the short correlation length, the lack of energy
at small k, the E(k) ∼ k−1 scaling of the energy spectrum
for large k in the hydrodynamical range, and the L(t) ∼ t−1

temporal behavior of the decay allow us to identify our quasi-
isotropic vortex state as an example of the Vinen turbulent
regime in a trapped system.

VII. CONCLUSION

In this work we have explored the decay of initially
imprinted multicharged vortices as a method to generate
turbulence in a trapped Bose-Einstein condensate, which is
relatively free of large surface oscillations and fragmenta-
tion (see the Appendix). We have examined the decay of
two multicharged vortex systems in a typical cigar-shaped,
harmonically confined, atomic Bose-Einstein condensate. The
first (a quadruply charged vortex) led to the disordered,
anisotropic vortex state. The second (two antiparallel doubly
charged vortices) generated helical Kelvin waves on oppo-
sitely oriented vortex lines which reconnected, creating a
second disordered, quasi-isotropic vortex state. Looking for
similarities to classical turbulence in its simplest possible
forms—in particular, with the property of isotropy—we have
concentrated our attention on the quasi-isotropic state and
carefully considered in what sense it is turbulent.

This question is subtle. In classical physics, turbulence
implies a large range of length scales which are all excited and
interact nonlinearly. In classical fluids, the presence and the
intensity of turbulence are inferred from the Reynolds number
Re, which must be sufficiently large (typically few thousands,

depending on the problem) for turbulence to exist. But the
Reynolds number has two definitions. The first definition is

Re = uD

ν
, (5)

where D is the system’s large length scale, i.e., the system’s
size or the size of the energy-containing eddies, u is the flow’s
velocity at that large scale, and ν is the kinematic viscosity;
this definition follows directly from the Navier-Stokes
equation and measures the ratio of the magnitudes of inertial
and viscous forces acting on a fluid parcel. The definition
makes apparent why large-scale (e.g., geophysical) flows are
always turbulent and why microfluids flows are not (indeed,
with microfluids one has to rely on chaos, not turbulence, to
achieve any desired mixing). The second definition assumes
Kolmogorov theory and is

Re =
(

D

η

)4/3

, (6)

where η is the length scale of viscous dissipation. This defini-
tion measures the degree of separation between the large length
scale (at which energy is typically injected) and the small
length scale (at which energy is dissipated). In the context of
condensates, the two definitions clash with each other: The
first definition implies that Re is infinite (because the viscosity
is zero), and the second that Re is not much larger than unity
(because the size of a typical condensate is larger, but not orders
of magnitude larger, than the healing length, which can be
considered the length scale at which acoustic dissipation of ki-
netic energy occurs). Although interesting work is in progress
to identify a definition of Reynolds number suitable for a su-
perfluid system (for example, exploring dynamical similarities
[70]), to answer the question which we asked, at this stage, we
have to leave the Reynolds number and proceed in other ways.

We have therefore carefully examined the properties of the
disordered, quasi-isotropic state in terms of velocity statistics,
energy spectrum, correlation function, and temporal decay
and compared them to the properties of classical turbulence
and of turbulent superfluid helium. Clearly, the quasi-isotropic
state does not compare well with the properties of classical
turbulence. Despite the limited range of length scales available
in a small BEC, we conclude that, in the decay of the two
antiparallel doubly charged vortices, the quasi-isotropy of our
disordered state, the short correlation length, the properties of
the energy spectrum, and the temporal behavior of the vortex
decay identify our disordered, quasi-isotropic vortex state as
an example of the Vinen turbulent regime first discovered in
superfluid helium at low temperatures, which is interpreted as
a state of turbulence without an energy cascade.

The nature of the disorder, or turbulence, in the anisotropic
case generated by the decay of the single quadruply charged
vortex will be the subject of future investigations: one should
vary the amount of polarization and study fluctuations of
the velocity field over the mean rotating flow. There are no
numerical studies yet of such turbulence in trapped Bose
systems, and (because of the role played by boundaries in the
spin-down of viscous flows) no immediate classical analogies,
so this case is less straightforward to analyze; spin-down
dynamics experiments in superfluid helium [71–73] should
be the main reference systems.
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In summary, our scheme describes a controllable system
to investigate different regimes of quantum turbulence in
trapped atomic condensates, where isotropy could be a
tunable parameter (depending on the initial configuration of
multicharged vortices). This control, alongside the versatility
of experiments with condensates, could shed light on
fundamental aspects of turbulence. Future work will, for
instance, address the next natural question: Can the classical
Kolmogorov regime be achieved in much larger condensates
under suitable forcing at the largest length scale, as suggested
by some numerical simulations [28], thus identifying the
crossover between Vinen and Kolmogorov turbulence?

Finally, an important question which must be addressed
by further work is whether Vinen turbulence is unique to
superfluids or can be generated also in classical fluids. If the
definying property of Vinen turbulence is, as it seems [5], the
absence of a Kolmogorov energy cascade, the line of inquiry
should start with studies of turbulent flows in wind tunnels
with fractal (rather than uniform) grids, which suggest the
absence of an energy cascade [74].

Data supporting this publication is openly available under
an ‘Open Data Commons Open Database License’. Additional
metadata are available in Ref. [76]. Please contact Newcastle
Research Data Service at rdm@ncl.ac.uk for access instruc-
tions.
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APPENDIX: CHARACTERIZING SURFACE
OSCILLATIONS

In order to quantify our claim that the generation of
turbulence via the decay of multicharged vortices reduces
large surface oscillations of the condensate and prevents
fragmentation, we introduce the following isoperimetric
quotient [75] as a measure of the condensate’s surface
oscillations, or “wobbliness”:

Q ≡ 4πA

P 2
, (A1)

where P is the perimeter of a closed curve C, and A the
area enclosed by it. This quantity intuitively quantifies the
departure from circularity. Q equals its maximum value 1 for
a perfect circle and reaches smaller values for greater surface
oscillations of C.

For the time evolution of our quasi-isotropic case, we
define a curve C representing the edge of the condensate for
a transverse cross section. An average over 40 adjacent cross
sections (separated by the numerical spatial resolution) from
a thin, horizontal stripe around the center of the axial z axis
(equivalent to less than a tenth of the condensate z direction
extension) was necessary to avoid numerical issues in the

FIG. 11. Transverse cross section of the condensate in the quasi-
isotropic case. The green curve defines the condensate edge C

compared to the magenta curve, representing the radial Thomas-
Fermi circumference for (a) the initial state and (b) at a turbulent
instant. The circularity of both edges is given by Q as defined in
Eq. (A1).

definition of the condensate edge. See examples shown in
Figs. 11(a) and 11(b) for the (green) curve C, compared to the
radial Thomas-Fermi (magenta) circumference, for the initial
state and a turbulent instant, respectively.

In Fig. 12, we see the values of Q for the entire evolution.
For the sake of comparison, we apply the same analysis to
images taken from simulations [58] of a combined shaking
and rotation of the trap that has been successfully used to
generate quantum turbulence in BECs [27]. In particular,
applying the criterion to images from Fig. 3 in [58], at
times of 15.54 and 15.92 ms, we find Q = 0.401 and Q =
0.386, respectively. Their described technique clearly excites
high-amplitude modes, such as scissors modes and dipolar
oscillations, including other large density fluctuations, which
justify such low values of circularity, compared to the induction
of turbulence from the decay of multicharged vortices. We
conclude that for all instants, Q is much closer to 1 in our
case, suggesting less perturbation of the condensate’s surface.
Not only does our method generate a less wobbly condensate,
but also the center of mass of the cloud stays practically still, as
opposed to the case in [58]. The absence of large oscillations
of the center of mass in our scheme offers a practical advantage
for experiments which make use of time-of-flight imaging. The
less momentum the cloud’s center of mass acquires, the easier
to focus when taking the time-of-flight absorption image.

FIG. 12. Time evolution of the isoperimetric quotient (t in units
of τHO).
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