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It has recently been shown that it is possible to represent the complete quantum state of any system as
a phase-space quasiprobability distribution (Wigner function) [Phys. Rev. Lett. 117, 180401 (2016)]. Such
functions take the form of expectation values of an observable that has a direct analogy to displaced parity
operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable
to any quantum system. We have applied our procedure to IBM’s Quantum Experience five-qubit quantum
processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as
well as the five-qubit Greenberger–Horne–Zeilinger state. Because Wigner functions for spin systems are not
unique, we define, compare, and contrast two distinct examples. We show how the use of these Wigner functions
leads to an optimal method for quantum state analysis especially in the situation where specific characteristic
features are of particular interest (such as for spin Schrödinger cat states). Furthermore we show that this analysis
leads to straightforward, and potentially very efficient, entanglement test and state characterization methods.
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I. INTRODUCTION

In 1932, Eugene Wigner, in an attempt to link the physics
of many-particle systems (statistical physics) with quantum
mechanics, defined a new way of describing the quantum
state [1]. It took the form of a probability density function
in position and momentum but, interestingly, it could take
on negative values. Now named after its creator, the Wigner
function is usually presented in advanced quantum optics texts
as an integral combining the notions of Fourier transformations
and autocorrelations. The function rapidly established its
usefulness when its ability to take on negative values enabled
physicists to be able to visualize quantum correlations in ways
that were not previously possible. This capability is most
commonly seen in the superposition of two macroscopically
distinct coherent states [2–4]. In Fig. 1 we show an example
of the Wigner function for such a superposition, the famous
Schrödinger cat state. Such a state is very similar to those pre-
sented in Ref. [5] where it was demonstrated that nonclassical
states of light can be made.

Similar schemes to those used in Ref. [5] for the direct
reconstruction of the Wigner function for light have been in
existence for some time (see, for example, Refs. [6–10]). These
schemes all have the same feature that they, either implicitly
or explicitly, rely on the fact that the Wigner function can be
written as the expectation value of an appropriately normalized
displaced parity operator or, equivalently, the expectation of
parity for a displaced state [11]. In quantum mechanics, parity
is similar to the usual notion of point reflection in that it maps a
coordinate to one of opposite sign, the difference being that the
coordinate in quantum mechanics is an observable operator.
What this means is that, to reconstruct the Wigner function
representation of the quantum state, all that is needed is a
mechanism of displacing the quantum state and measuring its

*m.j.everitt@physics.org

parity. Such operations are well established in the quantum op-
tics community [12]. A similar procedure, designed and built
around finite-dimensional systems, is however still lacking.

To address this lack of a mechanism for displacing the
quantum state and measuring its parity for finite-dimensional
quantum systems, we propose a phase-space formalism that
allows for a full representation of a product Hilbert space
and offers easily understandable visualizations. Focusing on
the latter, the symmetric-subspace approach, for example,
the one presented in Ref. [13] where Wigner functions are
constructed via a multipole expansion of spherical harmonics,
is quite visually informative for harmonic-oscillator type sys-
tems [14,15] and those with spin-1/2 symmetry. In more detail,
it was Arecchi et al. [14] that first derived spin-1/2 atomic
coherent states described by continuous functions of Euler
angles. These states satisfied the same mathematical proper-
ties as the Glauber–Sudarshan infinite-dimensional coherent
states [2,16] but offered discreteness and Bloch symmetry to
the corresponding Hilbert space, thus allowing them to be
used to describe an assembly of spin-j particles. Soon after,
Agarwal [17] rewrote the Wigner R and P functions in terms
of Arecchi’s atomic coherent states, thus allowing for the study
of various spin-j systems under the Moyal quantization [18].
These parametrizations allow for easy visualizations of various
quantum systems via Dicke state mappings [19,20] to a
multipole expansion of spherical harmonics, for example, but
they do not allow for a full representation of a product Hilbert
space. As such, all symmetric-subspace Wigner functions are
limited insofar that they cannot correctly show entanglement
or represent the set of states that lie outside of this subspace
(which, for large numbers, is nearly all of the Hilbert space).

To address the issue of the full representation of a product
Hilbert space, we propose that the the phase space needs to be
parametrized by more generalized coherent states such as those
derived by Nemoto [21] and Mathur et al. [22]. Such states
can be used to construct characteristic functions beyond those
written with atomic or three-level coherent states [17,23–26].
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FIG. 1. The iconic textbook example of a Wigner function for
a Schrödinger cat state. The bell shapes represent the “alive” and
“dead” possible states for the “cat” and the oscillations between them
indicate the quantum coherence between these states (i.e., the classic
“both alive and dead” statement). A similar Wigner function without
these interference terms would represent a state with a classical coin
toss probability of being either alive or dead but not both. The presence
of the interference terms indicates that this Wigner function represents
a state that is in both states (“alive and dead”) at the same time (a
superposition).

These characteristic functions [27], by satisfying the
Stratonovich–Weyl correspondence [28], are informationally
complete SU(N )-symmetric, spin-j descriptions of finite-
dimensional quantum states (“qudits”) [29–32]. This work is
in contrast to that proposed by Wootters [33] and others for
generating characteristic functions of N -dimensional discrete
systems. There, the motivating mathematics are built around
analyzing “systems having only a finite number of orthogonal
states. The ‘phase space’ for such a system is taken to
be not continuous but discrete.” [33]. The phase space
generated by such generalized coherent states is continuous
in its parametrization (see Refs. [34,35]), allows for Wigner
functions to be generated by the methodology given in
Ref. [36] (the expectation value of an appropriately normalized
displaced general parity operator), can completely represent
product Hilbert spaces of qudits (thus producing phase-space
signatures of entanglement), and gives a method for visualizing
said functions that is equivalent to that done for symmetric sub-
space representations, which we now discuss in more detail.

II. BACKGROUND

While it has been known for a long time that parity
displacement could be done for continuous systems [16,37],
following much work on the use of Wigner functions of dis-
crete systems [17,18,23–27,30–33,38–44], it has only recently
been proposed that any quantum system’s Wigner function can
be written as the expectation value of a displaced and/or rotated
generalized parity operator [36]. Mathematically this can be
expressed as

Wρ(�) = 〈U (�)�U †(�)〉ρ
= Tr[ρ{U (�)�U †(�)}], (1)

where W is the Wigner function and � is the set of parameters
over which displacement or rotations are defined (typically this
would be position and momentum), ρ is the density matrix,
U (�) is a general displacement or rotation operator or
collection of operators, and �’s definition is motivated by
the usual parity operator. The conventional Wigner function
in position and momentum space is obtained if U is set to the

displacement operator that defines coherent states |α〉 from the
vacuum state |0〉 according to D(α)|0〉 = |α〉, and the operator
� is defined to be twice the usual phase-space parity operator
so that �|α〉 = 2| − α〉 [45].

For a given system the choice of U (�) and � is not
unique, but in Ref. [36] it was stipulated that a distribution
Wρ(�) over a phase space defined by the parameters �

is a Wigner function of ρ if there exists a kernel �(�)
[which we show can be written as a similarity transform
with respect to a “displacement” of a parity-like operator,
i.e., �(�) = U (�)�U †(�)—and the Wigner function is the
expectation value of this similarity-transformed operator]
satisfying the following restricted version of the Stratonovich–
Weyl correspondence (reproduced verbatim from Ref. [36]):

S-W.1 The mappings Wρ(�) = Tr [ρ �(�)] and ρ =∫
�

Wρ(�)�(�)d� exist and are informationally complete.
Simply put, we can fully reconstruct ρ from Wρ(�) and vice
versa.1

S-W.2 Wρ(�) is always real valued which means that
�(�) must be Hermitian.

S-W.3 Wρ(�) is “standardized” so that the definite integral
over all space

∫
�

Wρ(�)d� = Tr ρ exists and
∫
�

�(�)d� =
1l.

S-W.4 Unique to Wigner functions, Wρ(�) is self-
conjugate; the definite integral

∫
�

Wρ ′ (�)Wρ ′′ (�)d� =
Tr [ρ ′ρ ′′] exists. This is a restriction of the usual Stratonovich–
Weyl correspondence.

S-W.5 Covariance: Mathematically, any Wigner function
generated by “rotated” operators �(�′) (by some unitary trans-
formation V ) must be equivalent to rotated Wigner functions
generated from the original operator [�(�′) ≡ V �(�)V †]—
i.e., if ρ is invariant under global unitary operations then so is
Wρ(�).

If we define U (�) as an element of a special unitary (SU)
group that acts as a displacement or rotation and � as an
appropriately normalized identity plus a traceless diagonal
matrix (i.e., an element of the Cartan subalgebra of the
appropriate group) then, from Ref. [36], Eq. (1) is sufficient
to generate Wigner functions for any finite-dimensional,
continuous-variable, quantum system. We note that, beyond
satisfying the Stratonovich–Weyl correspondence, we have
yet to fully determine the level to which this definition is
constrained. Because � performs the same role as parity does
in the standard Wigner function, we refer to it as an extended
parity.

III. THE SCHEME

In this work we present a procedure for the measurement
and reconstruction of the quantum state for a series of qubits
from two different Wigner functions that both satisfy the
above restricted Stratonovich–Weyl correspondence. We start
by considering a Wigner function where the extended parity
operator is defined with respect to the underlying group
structure of the total system. We then proceed to investigate

1For the inverse condition, an intermediate linear transform may be
necessary.
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another Wigner function, whose kernel comprises a tensor
product of one-qubit kernels, which is arguably a more natural
way of looking at composite quantum systems. In both cases
we apply our procedure to IBM’s Quantum Experience five-
qubit quantum processor to demonstrate that we can measure
and reconstruct the Wigner functions of two different Bell
states and the five-qubit Greenberger–Horn–Zeilinger (GHZ)
state.

While Wigner functions can be considered to be expectation
values of displaced extended parity operators, this view does
not necessarily lead to the best way to practically determine
the Wigner function. As previously discussed, displacing the
extended parity operator and taking its expectation value
should be the same as displacing or rotating the state, i.e.,
creating a new “state”:

ρ̃(�) = U †(�)ρU (�), (2)

and calculating the expectation value of the unshifted extended
parity operator

〈�〉ρ̃(�) = Tr [ρ̃(�)�]. (3)

Mathematically this is equivalent to our original expression
for the Wigner function [Eq. (1)] because trace is invariant
under cyclic permutations of its arguments. Furthermore, it is
possible, and in some cases (such as with the IBM Quantum
Experience) easier, to make ρ̃(�) by performing local rotations
on each qubit rather than displacing �.

In the ideal case, the extended parity � shown in Eq. (3)
will be directly measurable, allowing for reconstruction of the
quantum state via its Wigner function without any intermediate
steps being needed. Even if it is not possible to measure
the extended parity directly, such as with the IBM Quantum
Experience, there is a simple alternative. Note that �, as
introduced in Ref. [36], is always a diagonal operator in
the computational basis. The Wigner function is then easy
to calculate according to

W (�) =
∑

n

ρ̃nn(�)�nn. (4)

To determine the Wigner function we are only required to
measure the probability of the rotated system occupying each
state of the computational basis.

For a set of qubits the rotation of the system can be
intuitively defined in terms of rotation operators acting on each
of the system’s constituent parts. Explicitly, we can define a
total rotation operator for N qubits as

UN =
N⊗
i

Ui(θi,ϕi,	i), (5)

where Ui(θi,ϕi,	i) = eiσzi
ϕi eiσyi

θi eiσzi
	i is the SU(2) rotation

operator for each qubit in terms of the Euler angles �i =
(θi,ϕi,	i). In the following sections we discuss the Wigner
functions defined through two different possible choices of �.

IV. A SPIN WIGNER FUNCTION WITH SU(·)
EXTENDED PARITY

In this section we define and explore a Wigner function
for N qubits where the extended parity operator reflects

the underlying group structure of the total system. Here,
extended parity is motivated by the idea of doing what
amounts to a global π rotation on the hypersphere of the
underlying SU(2[N]) coherent-state representation. This is
achieved by defining our extended parity operator �SU(2[N])

as a 2N × 2N diagonal matrix whose first element2 is
2−N [1 + (2N − 1)

√
2N + 1] and whose remaining diagonal

elements are 2−N [1 − √
2N + 1]. For example,

�SU(2[1]) = 1

2

(
1 + √

3 0

0 1 − √
3

)
= 1

2
[1l +

√
3σz] (6)

for one qubit and

�SU(2[2]) = 1

4

⎛
⎜⎜⎜⎜⎝

1 + 3
√

5 0 0 0

0 1 − √
5 0 0

0 0 1 − √
5 0

0 0 0 1 − √
5

⎞
⎟⎟⎟⎟⎠

= 1

4
[1l ⊗ 1l +

√
51l ⊗ σz +

√
5σz ⊗ 1l +

√
5σz ⊗ σz]

(7)

for two qubits in the computational basis.
Combining this definition of extended parity with the

composite rotation operator UN , we obtain the kernel

�SU(2[N])({θi,ϕi}) = UN�̂SU(2[N])U
†
N (8)

that satisfies the restricted Stratonovich–Weyl correspondence
given in the introduction. We note that the 	i make no
contribution because �SU(2[N]) commutes with σzi

. This kernel
defines our SU(2[N]) extended parity-based Wigner function
according to

WSU(2[N])({θi,ϕi}) = Tr[ρUN�̂SU(2[N])U
†
N ]. (9)

Let us now consider the specific case of the Wigner
function WSU(2[N]) for two qubits. Each qubit brings with it
two degrees of freedom expressed in terms of Euler angles
� = (θ1,ϕ1,θ2,ϕ2); thus the associated Wigner function takes
the form of a four-dimensional quasiprobability distribution
WSU(2[2])(θ1,ϕ1,θ2,ϕ2). Four-dimensional functions are not easy
to visualize, but we can take slices of the function in order
to gain an appreciation of it as a whole. In Figs. 2(a)–2(d)
we show some example Wigner function slices for two
Bell states. Specifically, Figs. 2(a) and 2(b) show the
equal-angle (“=�”) slice W=�

SU(2[2])(θ,ϕ) = WSU(2[2])(θ,ϕ,θ,ϕ)

while Figs. 2(c) and 2(d) show the slice W
ϕi=0
SU(2[2])(θ1,θ2) =

WSU(2[2])(θ1,0,θ2,0). Note that Figs. 2(e) and 2(f) will be
discussed in Sec. V, while more general two-qubit Wigner
function dynamics are shown in Ref. [46].

2This particular representation of extended parity is a rotation of
the extended parity operator given in Ref. [36] that we have taken
in order to keep within the conventions of the experimental physics
and quantum information communities. As with the extended parity
operator given in Ref. [36], ours is still a linear function of the identity
plus the Cartan subalgebra of the selfsame SU group.
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FIG. 2. (a)–(d) Slices from the four-dimensional Wigner function WSU(2[2])(θ1,ϕ1,θ2,ϕ2) of two qubits for two different, maximally
entangled, Bell states |	−〉 = (|0〉1|0〉2 − |1〉1|1〉2)/

√
2 and |�+〉 = (|0〉1|1〉2 + |1〉1|0〉2)/

√
2. The three-dimensional plots in panels (a) and

(b) show W=�
SU(2[2])

(θ,ϕ), the slice where θ = θ1 = θ2 and ϕ = ϕ1 = ϕ2. The two-dimensional plots in panels (c) and (d) of θ1 versus θ2

show W
ϕi=0
SU(2[2])

(θ1,θ2), the slice where ϕ1 = ϕ2 = 0. We recommend that the reader see the Supplemental Material [46], which expands on
these figures and shows animations of the Deutsch–Jozsa algorithm [47] and the creation of all four Bell states (in the animations, for
example, it becomes clear that the Wigner functions for the Bell states, or, for that matter, any maximally entangled two-qubit state, are
simply rotations of the same function in four-dimensional space). Later in this work we present experimental reconstructions of the θ1

versus θ2 plots. In understanding the form of these plots we note that the |�+〉 state is one with total spin-angular momentum h̄ but zero
total z spin-angular momentum. We thus expect to see the observed ring-like symmetry in W=�

SU(2[N])
(θ,ϕ) for |�+〉 (the symmetry of |	−〉

follows from |�+〉 because they are rotations of each other in four-dimensional space). This state is also an angular-momentum analog of a
photon-number (Fock) state which shares a similar symmetry in its Wigner function [8–10]. In panels (e) and (f) we show W

ϕi=0⊗2 SU(2)
(θ1,θ2)

created by using the alternative extended parity operator �⊗2 SU(2) as discussed in Sec. V. The availability of more than one extended
parity operator, which produces Wigner functions with qualitatively very similar features, opens up possible alternative paths for direct
phase-space reconstruction (note we have also included an animation of W⊗2 SU(2) for the creation of the Bell states in the Supplemental
Material [46]).

To demonstrate that this function is indeed easy to construct
we have taken advantage of IBM’s Quantum Experience
project. The project makes available through the Internet
a five-qubit processor, initially based on a simple “star”
topology:3 a central qubit is coupled to four other qubits.
The machine has already been used to produce interesting
results [48,49]. Here we use it to measure and reconstruct
the Wigner functions for the two Bell states |	+〉 and |�−〉,
as presented in Fig. 2. In this work, we are limited by the
operations that IBM has made available to the user, operations
that naturally focus on quantum computing applications.
Nevertheless, following Eq. (2), we are able to produce

3Before the early-2017 update by IBM.

ρ̃(θ1,ϕ1,θ2,ϕ2) by using rotations generated by combina-
tions of gate operations and readout state populations of
ρ̃nn(θ1,ϕ1,θ2,ϕ2) via the standard output of the IBM processor.
We then use Eqs. (4) and (7) to reconstruct the Wigner
function (9).

In Fig. 3 we plot the Wigner function W
ϕi=0
SU(2[2])(θ1,θ2)

slices, comparing the ideal theoretical values of Figs. 2(c)
and 2(d), values generated by IBM’s built in simulator (that
models environmental effects) and real experimental data. The
calibration data pertaining to the experiments are provided in
Table I. In principle, to fully reconstruct the state requires us
to measure the same number of points as needed to reconstruct
the density matrix. In Fig. 3 we have actually measured more,
and different, points than would be needed to fully reconstruct
the state. This was done to demonstrate the ability to generate
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FIG. 3. Plots of the spin Wigner function for the two Bell states
|	+〉 and |�−〉. We plot θ1 versus θ2 for the W

ϕi=0
SU(2[2])

slice of the
Wigner function for two qubits; making use of the periodicity of
the function at the edges of each plot for computational efficiency.
We have included for comparison ideal theoretical values, numerical
results using IBM’s built in simulator, and real experimental data from
IBM’s quantum processor. The quantum circuit presented above is
a screenshot taken directly from IBM’s Quantum Experience web
interface. It provides an example of the measurement protocol we
used to obtain the diagonal elements of the rotated density matrix
ρ̃nn(θ1,ϕ1,θ2,ϕ2). The theoretical, simulated, and experimental data
are all in very good agreement with each other. Slight differences exist
due to imperfect implementation of needed rotations due to different
gate operations having different levels of noise (decoherence). It
should be straightforward to replace the “Gates for performing
θ rotations” with generalized rotation operators on each qubit.
Furthermore, if measurement of the extended parity operator (�)
were available, direct observation of the quantum state would be
reduced to a two-stage process of rotate and measure. We believe that
such a protocol, because it would need fewer gate operations, would
result in better agreement between theory and experiment than that
seen in this figure. Note that, in order to have good color graduation
in the transition from positive to negative values, there is some color
clipping for the very strong blue points.

the Wigner function by using a raster scan approach because
this makes clear the straightforward nature of our measurement
method. Due to finite computational resources, and the need
to do rotations as outlined above, we are limited in our
resolution. Nevertheless, we find good agreement between
theory, simulation, and experimental data, demonstrating that
our tomographic process is clearly able to distinguish between
the two Bell states.

Bell states are interesting both as an example of maxi-
mally entangled states and for their usefulness in quantum
information processing. Fortunately, for systems comprising
more spins, we can extend this class of states to those
that have a direct analogy with optical Schrödinger cat
states as considered in Ref. [5] and others. Such states
are termed “spin-cat states” of which the GHZ state [50]
is an excellent example. In previous theoretical work, spin

TABLE I. Calibration data for the experimental results contained
within this paper. Data for the Bell state and GHZ Wigner functions
were taken on June 16 and 17, 2016 when the fridge temperature was
18.25 and 17.916 mK, respectively. T1 and T2 are the usual relaxation
times, εg is the gate error, εr is the readout error and εi2

g is the CNOT

gate error between the qubit listed and qubit 2 (which is the target
qubit for the CNOT operation).

Bell GHZ

Qubit 1 2 0 1 2 3 3

T1 (μs) 85.8 75.1 58.9 87.1 74.7 74.8 65.5
T2 (μs) 109.6 58.8 74.8 142.2 59.2 53.2 48.4
εg (×10−2) 0.15 0.2 0.29 0.2 0.23 0.23 0.89
εr (×10−2) 4.6 4.3 4.6 4.2 3.6 3.6 5.7
εi2
g (×10−2) 3.19 5.21 3.31 3.18 6.55

Wigner-like functions have been proposed as a mechanism
for visualizing such cat states [13,51,52]. In analogy with
measuring Wigner functions of nonclassical cavity field
states [5], using our method we now construct the WSU(2[5])
Wigner function for a spin-cat of the form |GHZ5〉 =
(|0〉1|0〉2|0〉3|0〉4|0〉5 − |1〉1|1〉2|1〉3|1〉4|1〉5)/

√
2. In Fig. 4 we

show the θ1 = θ2 = θ3 = θ4 = θ5 and ϕ1 = ϕ2 = ϕ3 = ϕ4 =
ϕ5 slice of the WSU(2[5]) Wigner function for |GHZ5〉 which is
the higher-dimensional analog of Figs. 2(a) and 2(b). We show
both theoretical predictions and, due to limited computational
resources, as insets, simulation and experimental data obtained
from the IBM machine. Once more the calibration data
pertaining to the experiments is provided in Table I. We
note that the θ1 = θ2 = θ3 = θ4 = θ5 and ϕ1 = ϕ2 = ϕ3 =
ϕ4 = ϕ5 slice does not contain all the information needed
to reconstruct the state; for full reconstruction we would
need to measure and visualize all {θi,θj } i �= j sets of angles
for various values of ϕi . For the top and bottom point the
theoretical value is 2.7 while the simulated values are 1.64
and 1.70, and experimental values 1.16 and 1.22, respectively.
Here simulation and experiment are in good agreement. The
difference from the theoretical values for all four points
indicates that there is some decoherence and/or gate and mea-
surement errors in the system, mostly accounted for in IBM’s
simulation, meaning that the observed state is not in an ideal
GHZ state.

V. A WIGNER FUNCTION FOR TENSOR
PRODUCTS OF SPINS

The Stratonovich–Weyl conditions do not uniquely specify
the extended parity operator � and hence the Wigner function
is also not uniquely defined. Because of this, it is natural to
ask what difference choosing alternative Wigner functions will
make. As our current focus is on experimental reconstruction
of the quantum state in phase space, we believe that it is
instructive to explore at least one alternative whose direct
measurement may be more readily available to those working
in quantum information. In the previous case, the definition of
extended parity was motivated by the idea of a global π rotation
on the hypersphere of the underlying SU(2[N]) coherent-state
representation. In this case the notion of extended parity is
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Gates for |GHZ Gates performing rotations Output

FIG. 4. Here we show the five-qubit GHZ spin Schrödinger
cat state Wigner function WSU(25) for the θ1 = θ2 = θ3 = θ4 = θ5

and ϕ1 = ϕ2 = ϕ3 = ϕ4 = ϕ5 slice. This can be considered a qubit-
system analog of Fig. 1 and which was presented in Ref. [5] to
reconstruct nonclassical cavity field states. We note that in Ref. [5]
the interference terms that were observed correspond to quantum
coherence in macroscopically distinct superpositions of states. In
this figure, the interference terms should be interpreted as a direct
visualization of the entanglement in the system. Here we show the
ideal function, and as insets, show both simulated and experimental
results from IBM’s Quantum Experience project. In this figure
we also show an example circuit used to generate simulated and
experimental data. As with the circuits used to create the Bell states
presented in Fig. 3, these gate operations ideally would be replaced
by optimized, single-rotation, operations that have very recently been
made available by IBM. We note that the two, nonpolar, points can
be obtained in a variety of ways. Specifically they could be found by
using just θ rotations, or through a combination of θ and ϕ rotations.
We have verified that the results that we obtained from the IBM
Quantum Experience project are independent of the combination of
rotations used.

motivated on an individual qubit level; a global π rotation on
each qubit’s Bloch sphere. This leads to an extended parity
operator that is nothing more than the tensor product of the
parities of individual qubits:

�⊗N SU(2) =
N⊗

i=1

�
(i)
SU(2[1]) =

N⊗
i=1

1

2
(1l +

√
3σzi

), (10)

which for one qubit is equal to Eq. (6) but for two qubits takes
the explicit form

�⊗2 SU(2) = 1

2

⎛
⎜⎜⎜⎝

2 + √
3 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 2 − √
3

⎞
⎟⎟⎟⎠

= 1

4
[1l ⊗ 1l +

√
3 1l ⊗ σz +

√
3 σz ⊗ 1l + 3 σz ⊗ σz]

(11)

in the computational basis. When compared with Eq. (7) we see
that this version of extended parity no longer treats one-qubit
and two-qubit contributions on an equal footing. The definition
of the Wigner function continues in the same way as before
and, in terms of the rotated density matrix ρ̃ = U†

NρUN , takes
the form

W⊗N SU(2)(�) = Tr[ρ̃(�)�⊗N SU(2)]

=
∑

n

ρ̃nn(�)(�⊗N SU(2))nn. (12)

Returning to Figs. 2(e) and 2(f) we show example slices
of W

θi=0⊗N SU(2)
(θ1,θ2) = W⊗N SU(2)(θ1,ϕ1 = 0,θ2,ϕ2 = 0) that

demonstrate that this alternative Wigner function is quali-
tatively very similar to the equivalent slices of WSU(2[N])(�)
shown in Figs. 2(c) and 2(d) [46].

In Fig. 5 (top) we show results for comparison with Fig. 4
and (bottom) (and, by analogy, with nonclassical cavity field
states [5]) with Fig. 3 which demonstrates that W⊗N SU(2) is
a Wigner function with qualitatively very similar features to
WSU(2[N]) that will be compared in the next section. For the top
and bottom point the theoretical value is 2.375. The simulated
values are 1.13 and 1.11, and the experimental values are
0.8876 and 0.9006, respectively.

VI. EFFICIENT STATE ESTIMATION,
CHARACTERISATION, AND ENTANGLEMENT

VALIDATION

As they are informationally complete, our Wigner functions
for spin can be considered mathematically equivalent to the
density matrix (state space) formulation. They also exhibit
unique and intuitively natural characteristic features. If, for
example, we look at Fig. 5 for the GHZ state (which is a
superposition of spin coherent states) it is clear that there
are regions of strong oscillations in the equal-angle slice;
these are reminiscent of the interference terms between two
harmonic-oscillator coherent states shown in Fig. 1. It is
natural to ask if measurement of such characteristic features
can be used to verify nonclassical properties of the state
such as quantum coherence or entanglement. In other words,
can we extract information in a similar way as for Wigner
functions of continuous systems where negativity is a signature
of nonclassical correlations? In finite-dimensional systems
things are a little more complicated because negativity of the
Wigner function has some subtle complexities which we will
expand on later in this paper and in full detail in a later work.
Moreover, the exact form of a state’s spin Wigner function is
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FIG. 5. Here we reproduce Figs. 3 and 4 by using the same
data but now employing the Wigner function defined by using the
alternative extended parity operators as given in Eq. (12). In the
top figure, for comparison with Fig. 4, we show the five-qubit
GHZ spin Schrödinger cat state Wigner function W⊗5 SU(2) for the
θ1 = θ2 = θ3 = θ4 = θ5 and ϕ1 = ϕ2 = ϕ3 = ϕ4 = ϕ5 slice. Again
we show the ideal function and, as insets, show both simulated and
experimental results from IBM’s Quantum Experience project. On
the bottom figure, for comparison with Fig. 3, we provide plots
of W⊗2 SU(2) for the two Bell states |	+〉 and |�−〉. We plot θ1

versus θ2 for the ϕ1 = ϕ2 = 0 slice of the Wigner function for two
qubits. Once more, we have included for comparison ideal theoretical
values, numerical results using IBM’s built in simulator, and real
experimental data from IBM’s quantum processor. Again we see
good agreement between theory, simulation and experiment and note
that using a different extended parity operator provides an alternative
path to direct measurement of phase space.

fixed by the chosen extended parity operator that is used. As
such, it may be that different extended parity operations may
be more or less useful in revealing particular characteristic
features of the quantum state. To focus the discussion in
this section we fix our choice of parity and Wigner function
to �⊗N SU(2) and W⊗N SU(2). We discuss with reference to

this specific Wigner function possibilities for efficient state
characterization or categorization (e.g., by identifying features
peculiar to GHZ states). We show that if one has sufficient prior
information about the expected state of the system (such as that
it comprises a superposition of antipodal spin coherent states)
it may be possible to validate entanglement with only a couple
of measurements.

To begin we consider the N -qubit state

ρ(γ ) = γρGHZ + (1 − γ )ρm, (13)

where γ ∈ [0,1]. Here ρ(γ ) interpolates between the density
operators ρGHZ for the GHZ state (the coherent superposition
of |11111〉 and |00000〉 with γ = 1) and ρm for the statistical
mixture of |11111〉 and |00000〉 (with γ = 0). The Wigner
function of this state is

W
(γ )⊗N SU(2)

(�) = 1

2N+1

N∏
i=1

(1 +
√

3 cos 2θi)

+ 1

2N+1

N∏
i=1

(1 −
√

3 cos 2θi)

− γ

2N

N∏
i=1

(−
√

3 sin 2θi) cos

(
2

N∑
i

ϕi

)
. (14)

When γ = 1 we can see that the N -qubit GHZ state is made
up of three terms: the first two correspond to the first and last
diagonal elements of the density matrix in Eq. (13) and the third
(interference) term to the maximally off-diagonal elements.
Figure 6 compares the equal-angle Wigner functions (θ =
θ1 = · · · = θN,ϕ = ϕ1 = · · · = ϕN ) of the GHZ state γ = 1
[Fig. 6(a)]and the separable mixed state γ = 0 [Fig. 6(b)]. As
can be seen, the maxima at the top and bottom of the sphere
are the same in both states, although the equatorial oscillations
are absent in the separable state.

From this simple example, it is clear that the oscillations
around the equator, where all θi = π/4, arise entirely from the
cos(2

∑N
i ϕi) term. These oscillations, which are of maximum

possible frequency for a Wigner function with this number of
qubits, are characteristic of GHZ-type superposition (compare
the iconic Wigner function Fig. 1) and are analogous to the
super-resolution oscillations observed in NOON states [53].
We note that any antipodal superposition of spin coherent states
will be look like a rotated version of Fig. 6(a) with interference
terms along the geodesic bisecting them. It is natural to
ask if such oscillations can be used to certify GHZ-type
entanglement. We note that negativity in the Wigner function
alone is insufficient to be a signal of entanglement. To illustrate
this we show in Fig. 6(c) the equal-angle slice Wigner function
for the state |10000〉 and note that, despite being separable, it
has significant negativity in this equal-angle slice. Indeed, the
equal-angle slice of the W⊗5 SU(2) function for the statistical
mixture of |10000〉, |01000〉, etc. is identical to Fig. 6(c). To
establish if there is a potential to use the characteristic features
of the GHZ Wigner function equal-angle slice for certification
we can ask what is the nearest separable state in terms of its
phase-space characteristics. We believe the closest in form is
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FIG. 6. Here we show the equal-angle slice W⊗N SU(2) Wigner function for various 5-qubit states. Panel (a) shows the same GHZ state
as seen in Fig. 5, with panel (b) showing the mixed state counterpart of this GHZ state given by [(|0〉〈0|)⊗N + (|1〉〈1|)⊗N ]/2 Only the pure
state displays the interference pattern given by the off-diagonal terms in the density matrix when the state is entangled. In panel (c) we see
the state |10000〉. In panels (d) and (e) we see the clock state; panel (d) is shown with the same color map as the other plots, whereas panel
(e) shows the state with a modified color map to show the structure of the slice that is not evident with the color maps used throughout the
rest of this figure. (f), (g) Defining |→〉 = (|0〉 + |1〉)/√2 we show the entangled superposition of spin coherent states |0〉⊗N + |→〉⊗N and
its mixed-state counterpart, the equally weighted statistical mixture of (|0〉〈0|)⊗N and (|→〉〈→|)⊗N . Again note that only the pure state has
negative interference terms in this slice with two of particularly large amplitude. Finally, panel (h) shows the equal-angle slice Wigner function
for the five-qubit W state showing that other entangled states have patterns that could also act as state identification signatures.

the “clock” state which we define by

|ψclock〉 = 1

2N/2

N⊗
k=1

[
|0〉 + exp

(
2iπk

N

)
|1〉

]
, (15)

whose Wigner function is

W clock⊗N SU(2)
(�) = 1

2N

N∏
k=1

1 +
√

3 sin 2θk cos

(
2ϕk + 2πk

N

)
.

(16)

We show the equal-angle slice of this function in Fig. 6(d). We
note that there is a similar oscillatory character to that seen in
the GHZ state but that it is exponentially smaller in amplitude.
For this reason we show this function again in Fig. 6(e) but
on a different scale. It is straightforward to show4 therefore
that oscillations of this wavelength that exceed those of the
clock state Wigner oscillations is a signature of a GHZ type of
entanglement—something that in principle can be established
with only two measurements. Due to an update on the IBM
computer during the closing stages of our work, we were able

4The maximum-frequency equatorial oscillations of the Wigner
function are determined by the top-right and bottom-left elements of
the density matrix. The maximum amplitude of these for any product
state

⊗N

k=1(ak|0〉 + bk|1〉) occurs when |ak| = |bk| = 1/
√

2 and has
magnitude 2−N , compared with 2−1 for the GHZ state.

to observe these oscillations directly, as seen in Fig. 7. This was
due to the implementation of three new gates that can perform
arbitrary rotations on individual qubits: u1(λ), u2(ϕ̃,λ), and
u3(θ̃ ,ϕ̃,λ), with u3(θ̃ ,ϕ̃,λ) = e−iϕ̃σz/2e−iθ̃σy/2e−iλσz/2. These
three gates give us the freedom to specify any rotation or
any point in phase space in SU(2), allowing us to sweep
around the equator, experimentally verifying the presence of
the interference-based oscillation for a 5-qubit GHZ state. In
Fig. 7 these measurement results are compared with ideal
theoretical values. The experimentally measured amplitudes
are somewhat reduced, as well as having an offset phase. This
indicates that the computer is not producing a perfect GHZ
state but that the state is verified to be both entangled and
in reasonably consistent agreement with a perfect GHZ state.
However, since there is a linear mapping between the density
matrix and the Wigner function, a similar Wigner function
implies the state is at least similar, making feature-based
characterization robust against small errors in state preparation
and limited decoherence, likely candidates for the difference
between the theoretical and experimental curves.

The advantage of our approach is in the potential to
reduce the number of measurements required to develop
confidence certifying more general states. For example, begin
by defining |→〉 = (|0〉 + |1〉)/√2. We then generate the
normalized equal superposition of |0〉⊗N and |→〉⊗N . In
Fig. 6(f) we show W⊗N SU(2) for this state and the corre-

sponding equally weighted mixture of |0〉⊗N and |→〉⊗N

[Fig. 6(g)]. Both density matrices have no nonzero elements
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FIG. 7. Points around the equator of the 5-qubit GHZ state
Wigner function from Fig. 5 with θ1 = θ2 = · · · = θN = π

4 ,ϕ1 =
ϕ2 = · · · = ϕN = ϕ where the blue curve is the theoretically calcu-
lated values for an ideal GHZ state found from our model. The green
dots are the measured experimental results and the green curve is a
least-square best-fit sinusoid to the experimental results. In red we see
the oscillations given around the equator for the separable clock state
of Eq. (15); the amplitude is significantly lower than for the “GHZ
measured” state demonstrating that the latter (whose oscillations are
not as strong as the theoretical maximum) is indeed entangled. Here,
ϕ̃ = 2ϕ to correspond to how IBM defines the rotations on their
machine.

in the computational basis (making conventional tomography
challenging), but the superposition can be certified to be within
an acceptable confidence interval through a few measurements
of the characteristic features of its corresponding Wigner
function. As with our analysis of the GHZ state the presence
of this structure may be used to give confidence in the
existence of entanglement in the system and categorization as
a superposition of spin coherent states. As another example,
we show in Fig. 6(h) the equal-angle Wigner function for
the W state of five qubits. Again we see that W states have
a distinctive shape (because W states can be thought of as
“eigenstates of a total ‘z’ angular-momentum operator,” this
form is intuitively sensible). Once more, it would not take
more than a few measurements to gain significant confidence
that a system was or was not in a W state.

In terms of the more general problem of rapid quantum
state estimation, spin-Wigner functions may be of particular
use when some properties of the state are known in advance.
We have already noted that only a few measurements are
needed to verify that certain characteristic features of the
Wigner function are present. Because it is possible to build
these Wigner functions from expansions by using bases other
than the computational basis, such as from stabilizer states, full
quantum-state reconstruction can be viewed as establishing the
coefficients of such expansions. Understanding the structure
of these expansions together with foreknowledge of the
set of potential states a system may achieve can lead to
efficient state-estimation protocols. This is because one can
select measurements that rapidly exclude very many of the
components of the expansion and confirm the presence of the

dominant terms. In this way phase-space methods provide an
alternative path to efficient state estimation from those known
in other areas of quantum state tomography [54–58]. A detailed
study of efficient quantum state reconstruction in phase space
will be the subject of a future work.

VII. ON THE DIFFERENCES BETWEEN
WIGNER FUNCTIONS

Each of the two cases we have considered here have their
own strengths which will be expanded on in a later publication.
However, we are including a brief discussion to highlight that
there is some freedom in choosing extended parity operators
in tensor product spaces. This should be of utility because
it increases the number of available options in designing
experiments for the direct measurement of a Wigner function.

The full-group Wigner function WSU(2[N]) and the tensor-
product Wigner function W⊗N SU(2) are related to the density
matrix by different, but still invertible, linear maps, and
therefore both contain full information about the quantum
state. The tensor-product form has the additional property of
respecting the marginals in each subspace. We can see that this
is indeed the case by noting that the two-qubit kernel separates,

�⊗2 SU(2) = �SU(2)(�A) ⊗ �SU(2)(�B), (17)

leading to the result∫
W⊗2 SU(2)(�A,�B)d�B = Tr[ρA�SU(2)(�A)]

= WSU(2)(�A), (18)

where ρA is the reduced density matrix of subsystem A. Note
that extension to an arbitrary number of qubits is a trivial
extension of this argument.

As an example, consider the Bell state |�+〉 shown in
Fig. 2(b). Here our two Wigner-function cases have the
same structure, with the tensor-product form having a larger
amplitude of modulation:

WSU(2[2]) = 1
4 [1 +

√
5(xAxB + yAyB − zAzB)], (19)

W⊗2 SU(2) = 1
4 [1 + 3(xAxB + yAyB − zAzB)], (20)

where (xi,yi,zi) is the unit vector in the direction �i . However,
for the product state (|0〉1|0〉2) we see a distinction in angular
dependence:

WSU(2[2]) = 1
4 [1 +

√
5(zA + zB) +

√
5zAzB], (21)

W⊗2 SU(2) = 1
4 [1 +

√
3(zA + zB) + 3zAzB]. (22)

Note that the one-qubit and two-qubit angular terms carry
coefficients of different magnitude in the tensor-product
Wigner function.

The above distinctions have led us to speculate that the
two different forms of the Wigner function that we consider
in this paper may be useful as a mechanism to differentiate
(in representation) logical and physical qubit systems. That is,
when there is a natural separation into physical qubits, into
subsystems, or into a system and an environment, we choose
the tensor product formulation. If, on the other hand, the system
under consideration comprises a many-level quantum system
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constrained to act as logical qubits, it is less natural to impose
a tensor product structure to the phase-space representation
than use the full-group form, which may be more natural.
Furthermore, in systems that comprise a mixture of logical and
physical qubits a tensor product of the different kernels could
be used to maintain this distinction. We also note that in the
case of W⊗2 SU(2) the Weyl transform ρ = ∫

�
Wρ(�)�(�)d�

reconstructs the original density matrix but in the case of
WSU(2[2]) a further linear transform is needed. If reconstruction
of the density matrix from the Wigner function is desired,
W⊗2 SU(2) would be the more appropriate choice. While much
further work needs to be done, it may well be that drawing
such distinctions may help us understand separability from
a phase-space perspective, thus enabling derivation of new
useful entanglement measures.

VIII. CONCLUDING REMARKS

We have demonstrated a simple method for quantum state
reconstruction that extends those previously known for quan-
tum optical systems [5–10] to other classes of systems. Using
IBM’s Quantum Experience five-qubit quantum processor,
we have shown reconstruction of two Bell states and the
five-qubit GHZ spin Schrödinger cat state via spin Wigner
function measurements. We note that our procedure could be
made much more efficient by direct implementation of rotation
operations and measurement of any suitable extended parity
operator (or, if appropriate, direct measurement of the rotated
extended parity). By doing so, the potential advantage of our

procedure over other tomographic methods would be made
much clearer in that fewer measurements would be needed
to check certain properties of the quantum state. In such an
instance, in verifying the fidelity of a high-quality GHZ state,
only a small set of measurements that quantifies the strength
of the interference terms is needed, providing an improvement
over traditional quantum state tomography. Furthermore, this
work demonstrates how phase-space methods can be of utility
in understanding processes such as decoherence and be useful
in the “debugging” of quantum information processors. In
particular we have proposed a method for verifying whether
a system is entangled that uses only a few measurements and
which in some circumstances, where suitable constraints of the
range of possible states are known, may potentially be reduced
to only two. The utility of this work extends beyond metrology
because the inclusion of tomography in device engineering will
no doubt be of use in the development of quantum analogs
for “Design for Test,” debug, fault identification, and system
certification.
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