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The miscibility of two interacting quantum systems is an important testing ground for the understanding of
complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario
in a particularly well controlled setting. In a homogeneous system, the transition between mixed and separated
phases is fully characterized by a miscibility parameter based on the ratio of intra- to interspecies interaction
strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which
the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of
damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by
numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The
change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow
instability in the miscible regime, with collisions becoming only important in the long time evolution.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) are attractive systems
for studying the nonequilibrium dynamics of interacting
quantum gases [1]. The large variety of atomic BECs
that have been produced experimentally and the ability
to engineer tailored potentials [2,3] as well as to control
interactions [4] offer a plethora of research directions. A
fascinating possibility is the creation of binary mixtures using
different hyperfine levels (87Rb [5–7]), different isotopes
(e.g., 87Rb –85Rb [8], 168Yb –174Yb [9]), different elements
(e.g., 87Rb –41K [10], 87Rb –133Cs [11,12], 87Rb –84Sr and
87Rb –88Sr [13], 87Rb –39K [14,15], and 87Rb –23Na [16])
or even atoms with different statistics (e.g., 6Li –7Li [17]).
Experimentally, these mixtures have been used to explore
such diverse issues as collective modes [7,17], pattern forma-
tion [18,19], phase separation [8,11,14,16], nonlinear dynami-
cal excitations [20,21], the Kibble-Zurek mechanism [22], and
the production of dipolar molecules [23].

An important property of a binary mixture is its miscibility.
For a homogeneous system, the miscible-immiscible transition
is uniquely characterized by the miscibility parameter � =
(g11g22/g

2
12) − 1. Depending on the strength of the intraspecies

(g11, g22) and interspecies (g12) interaction, the two compo-
nents can either overlap in space (� > 0) or phase separate
(� < 0). This spatial overlap has practical consequences on,
e.g., rethermalization rate [24], coarse-graining dynamics [25–
27], structures of vortex lattice [28], or instabilities in fluid
dynamics [29]. Based on the assumption of overlapping trap
centers of the two components, numerical studies [30–35] have
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shown three different types of density profiles [Fig. 1(e)–1(i)]:
a mixed phase where both components overlap at the trap
center; a symmetrical demixed phase where one component
forms a shell structure around the other; and an asymmetrical
demixed phase where the centers of mass (COMs) of the two
components do not coincide. Although such features were

FIG. 1. (a)–(d) Ground-state phase diagram of a trapped
87Rb –39K mixture at temperature T = 0 for various total numbers of
87Rb (NRb, species 1) and 39K (NK, species 2) atoms. The symmetrical
phase is characterized by a normalized trap-center density �nnorm

[see Eq. (4)] while the asymmetrical phase is shown in white. Typical
density profiles along the z axis are shown in (e) for asymmetrical
phase and (f)–(i) for symmetrical phase. White circles in (a) indicate
points accessible experimentally using the Feshbach resonances
reported in Ref. [14].
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also seen experimentally [11,36], a full characterization of the
boundaries separating the three phases is still missing.

The aim of this article is fourfold: (i) to demonstrate
that for a trapped binary mixture, � = 0 is generally no
longer the optimal criterion for the transition boundary; (ii)
to characterize the full phase diagram (see Fig. 1) based
on the identification of a new parameter; (iii) to propose
measurements of the frequency and damping rates of induced
dipole oscillations as a universal experimental tool for mapping
out the phase diagram; and (iv) to demonstrate the importance
of thermal effects on the dynamics, by providing a numerical
implementation of a fully self-consistent finite-temperature
model for binary mixtures [37]. This extends the successful
Zaremba-Nikuni-Griffin (ZNG) model [38] to two compo-
nents. The validity of the ZNG model has previously been
verified in studies of collective modes of single-component
BECs [39,40] and macroscopic excitations [41,42].

Typical studies to date have probed the phases by varying
a single parameter (e.g., g12 [32,36] or the number of
atoms [11,31]), equivalent to a line scan in a multidimensional
parameter space. In these investigations it was thus impossible
to obtain a full picture of the problem. Here we present
a ground-state phase diagram of the density profiles in a
four-dimensional space, treating the ratios of the interaction
strengths (g11/g12, g12/g22) and the numbers of atoms (NRb,
NK) as independent variables [Fig. 1(a)–1(d)]. Not only do we
find a clear deviation of the boundaries from the uniform case
(g11/g12 = g12/g22), which depends on the atom numbers,
but we can also predict whether certain phases (e.g., the
asymmetrically separated phase) are accessible to a particular
mixture or experiment.

The mapping of the transition boundary in experiments is
a nontrivial task. A typical procedure [8,14,16] involves free
expansion of the BECs and a measurement of the separation
of the COMs of the expanded clouds as a function of �. The
boundary is then identified as the point where the separation
starts to grow. While this method yields quantitative agreement
with the transition boundary in the uniform case, we have
previously [14] shown that the measured separation can be
influenced by the repulsion developed during the expansion
dynamics rather than the in-trap phase separation. In the second
part of this work, we therefore propose to map the transition
boundary of a trapped mixture by monitoring the damping rate
and the frequency of dipole oscillations, which we numerically
find to be sensitive to the in-trap density profiles. Based on
experimentally relevant parameters, our numerical simulations
of the oscillation dynamics at both zero and finite temperature
indicate an abrupt increase in both the damping rate and the
frequency when crossing from the immiscible to the miscible
regime, which generally occurs at � �= 0.

II. MODEL

To address the role of temperature in such dynamics, we use
the two-component generalization of the ZNG model, which
has been previously demonstrated to pass the stringent test of
the undamped Kohn mode, essential for a correct modeling
of collective modes [43]. Our kinetic model [37] describes
the self-consistent coupling of two BECs, each coupled to
their own thermal cloud, and additionally includes coupling

between the thermal clouds. This approach enables us to
consider the relative importance of damping arising from
mean-field coupling (Uj

c , U
j
n ) and thermal-condensate (C..

12,
C

kj

12) or thermal-thermal (C..
22) collisions. Each condensate

wave function, φj (r) obeys a dissipative Gross-Pitaevskii
equation

i�
∂φj

∂t
=

[
− �

2

2mj

∇2 + Uj
c − i(Rjj + Rkj + Rkj )

]
φj , (1)

while the Wigner distribution function of the thermal atoms
f j (p,r,t) obeys a quantum Boltzmann equation

∂

∂t
f j + 1

mj

p · ∇rf
j − ∇pf

j · ∇rU
j
n

= (
C

jj

12 + C
kj

12

) + C
kj

12 + (
C

jj

22 + C
kj

22

)
. (2)

The effective potentials are related to the condensate den-
sity nc,j (r) = |φj (r)|2, and thermal atom density ñj (r) =∫

dp/(2π�)3f j (p,r,t), as

Uj
c = Vj + gjj (nc,j + 2ñj ) + gkj (nc,k + ñk), (3a)

Uj
n = Vj + 2gjj (nc,j + ñj ) + gkj (nc,k + ñk). (3b)

Here gkj = 2π�
2akj /mkj denotes the effective interaction

strength, where akj defines the s-wave scattering length
between atoms in components j and k, and m−1

kj = m−1
j + m−1

k

defines the reduced mass. The source terms in Eq. (1) are
related to the first three collision integrals in Eq. (2) via
Rkj (r,t) = �

2nc,j

∫
dp

(2π�)3 C
kj

12 (k = j , k �= j ) and Rkj (r,t) =
�

2nc,j

∫
dp

(2π�)3 C
kj

12. These collision integrals are sampled in
dynamical simulation through the direct simulation Monte
Carlo [40] method.

III. SIMULATION PARAMETERS

For our simulations, we consider the 87Rb –39K mix-
ture [14], but our analysis is general and can be extended
to other mixtures. The atoms are confined in a harmonic
potential Vj (r) = 1

2mj [ω2
r,j r

2 + ω2
z,j (z − zj )2] with radial and

axial angular frequencies, ωr,j = 2πνr,j and ωz,j = 2πνz,j ,
respectively, with νr = 119 Hz (178 Hz) and νz = 166 Hz
(248 Hz) for 87Rb (39K) atoms—labeled as species 1 (2)—in
such a way that m1ω

2
r,1 = m2ω

2
r,2 (and similarly for the axial

frequencies). For atomic species with different masses, there
is a gravitational sag between the two trap centers, i.e.,
|z1 − z2| > 0. Since this sag can be eliminated, we treat the
sag z1 − z2 as a variable in our modeling. The scattering length
of 87Rb is fixed at a11 = 99 a0.

IV. EQUILIBRIUM PHASE DIAGRAM

At equilibrium, both the source terms and the collision

integrals vanish, hence we can set φj (r,t) = φj (r)e−iμj t/�

with chemical potential μj in Eq. (1) and use a semiclassical
Hartree-Fock approximation for the thermal cloud ñj (r) =
g3/2(�j )/λ3

j with thermal wavelength λj = √
2π�2/(mjkBT )

and local fugacity �j = exp[(μj − U
j
n )/(kBT )] at tempera-

ture T . We also set the sag to be zero. We then obtain the density
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profiles by solving Eq. (1) (using imaginary-time propagation)
and ñj (r) self-consistently.

Focussing initially on the zero-temperature case, we con-
sider four different values (3 × 104, 5 × 104, 105, and 5 × 105)
for the total number of 87Rb atoms (NRb) and 39K atoms (NK),
resulting in a total of 16 combinations. The ground states,
shown in Figs. 1(e)–1(i), are then given by the final density
profiles with the lowest total energy, probed numerically by
means of different initial states [44].

The ambiguity in classifying a trapped mixture into a mixed
or demixed phase becomes evident in Fig. 1(h). Based on the
usual prescription (motivated by the homogeneous system),
this would typically be classified as a mixed phase, since � =
0.5. To avoid such an evident inconsistency, we instead propose
characterizing the mixture (with symmetrical distribution) by
the difference in the normalized trap-center density,

�nnorm = nc,1(0)

max nc,1(r)
− nc,2(0)

max nc,2(r)
. (4)

If the two components overlap strongly [e.g., Fig. 1(g)], we
have �nnorm = 0. On the other hand, if the two components
repel each other so strongly that one acts as an impenetrable
barrier to the other [e.g., Figs. 1(f), 1(i)], we have �nnorm = 1
(−1) if 87Rb (39K) sits at the trap center. For ground states with
asymmetrical distribution [e.g., Fig. 1(e)], we have nonzero
separation, i.e., 〈z〉1 �= 〈z〉2.

The g12/g22–g11/g12 space is thus divided into four regions,
as marked by the solid black lines in Figs. 1(a)–1(d), depicting
the phase diagram for NRb = 5 × 104 and various NK. These
regions are a miscible phase (bottom right), a strongly
immiscible phase with asymmetrical distribution (top left), and

FIG. 2. Results with approximately 5 × 104 87Rb and 3 × 104 39K
BEC atoms. Top row: Condensate fractions of a mixture with
indicated total atom numbers at (a) T = 100 nK (noninteracting
critical temperatures Tc,1 = 234 and Tc,2 = 287 nK) and (b) T =
150 nK (Tc,1 = 259 and Tc,2 = 298 nK), as a function of miscibility
parameter �. Middle row: Axial densities of an immiscible mixture
of 87Rb (thick red) and 39K (thin blue) atoms at different temperatures.
Solid (dashed) line represents condensate (thermal cloud). The
thermal cloud densities have been amplified by 20 times for clarity.
Bottom row: Same as middle panels but for a miscible mixture.

FIG. 3. (a) Difference in normalized trap-center density �nnorm,
(b) damping rate γ , and (c) oscillation frequency ν of COM of 39K
atoms as a function of miscibility � (bottom axis) or Feshbach
magnetic field (top axis) at different temperatures. The simulation
parameters are the same as in Fig. 2.

two regions that contain symmetrical distributions with shell
structure (bottom left and top right). It is interesting to notice
how the boundary between |�nnorm| = 1 and |�nnorm| < 1
deviates from the homogeneous criterion � = 0 (dashed white
lines). In particular, as NK increases [Figs. 1(a) →1(b)],
the boundary rotates clockwise from � = 0 into g12 = g22,
which coincides with the black horizontal line. Likewise, if
we fix NK but increase NRb [Figs. 1(c)→1(a)→1(d)], the
boundary rotates counterclockwise. This observation can be
understood by considering the NK � NRb limit. To the lowest
order we neglect the effect of 87Rb on 39K, hence we can
adopt the single-component Thomas-Fermi approximation,
nc,2 ≈ [μ2 − m2

2 (ω2
r,2r

2 + ω2
z,2z

2)]/g22. Taking into account
the mean field g12nc,2, 87Rb atoms experience an effective
trap potential (1 − g12/g22)m1(ω2

r,1r
2 + ω2

z,1z
2)/2 at the trap

center. If g12/g22 < 1, the effective trap remains harmonic,
hence 87Rb has a peak at the center. However, if g12/g22 > 1,
the effective trap turns into a potential barrier and 87Rb
develops a shell structure. A complete phase diagram showing
data for all 16 combinations of NRb and NK can be found in the
Appendix (Fig. 6) to further support our reasoning. We also
show there (Fig. 7) a similar observation for a phase diagram
of an isotropic trap which rules out trap anisotropy as the
underlying origin of our observations.

We next investigate how this boundary is changed at finite
temperature. Consider a line scan in the g12/g22–g11/g12 space
that corresponds to tuning the scattering lengths a12 and a22

in the experimental setup [14] by using Feshbach resonances.
This is shown as the white circles in Fig. 1(a). We simulate the
density profiles at T = 100 nK � 0.4 Tc and 150 nK � 0.6 Tc

for NRb = (6–8) × 104, and NK = (3–4) × 104, chosen
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such that the number of BEC atoms does not devi-
ate significantly from 5 × 104 (87Rb) and 3 × 104 (39K)
respectively [Figs. 2(a) and 2(b)], used at T = 0 nK in
Fig. 1(a). We find the equilibrium condensate densities to
be very similar for the three different temperatures for the
same miscibility parameter [Figs. 2(c)–2(h)], even though the
thermal clouds have different magnitudes. As a result, �nnorm

will be approximately the same even at different temperatures
[Fig. 3(a)] as long as the condensate atom numbers are
comparable.

V. DETECTION THROUGH DIPOLE OSCILLATION

The question arises whether �nnorm is a physically mean-
ingful quantity. To investigate this, we dynamically simulate
the dipole oscillation of the mixture at different miscibilities
and temperatures. Starting with a mixture at equilibrium, we
excite the dipole mode in our simulation by increasing the
trap-center separation from 0 μm to 0.2 μm in 5 ms linearly in
time, followed by a decrease in the separation back to 0 μm
in 1 ms linearly in time. The separation is chosen to be small
compared to the Thomas-Fermi radii.

In Fig. 4, we show the simulated displacements of the
condensates. The top panels display the undamped oscillation
at zero temperature for an immiscible mixture (left) and a
rapidly damped oscillation for a miscible mixture (right). At
finite temperature (middle panels), numerical solution of our
full binary kinetic model [37] (including all possible collisional
processes) reveals damping even for the immiscible mixtures,

FIG. 4. The COM 〈z〉 of 87Rb (thick red) and 39K (thin blue)
condensates at temperature T = 0 nK (top) and 150 nK (middle)
for different miscibilities. Bottom panels reveal the 39K COM with
our full model (solid blue line), or the reduced version excluding all
collisions (dashed black line) The simulation parameters are the same
as Fig. 2.

due to the interaction with the thermal cloud. These numerical
results are compared for different conditions by fitting the
COM of the 39K atoms with a damped sinusoidal function
for time t > 10 ms [45], as 〈z〉 = A exp(−γ t) cos(2πνt + ϕ).
Both the damping rate γ and the frequency ν, shown in
Figs. 3(b) and 3(c), respectively, increase markedly at � ≈ 0.2
(vertical dashes), at which �nnorm also starts to change
in Fig. 3(a). We have checked the results for other atom
numbers and arrived at the same conclusion (e.g., critical
� ≈ 0.5 if NRb = 5 × 104 and NK = 105, or critical � ≈ 0
if NRb = 5 × 105 and NK = 3 × 104).

Interestingly, we find that the mean-field interactions
between the BECs and the thermal clouds are by far the
dominant damping mechanisms; nonetheless, inclusion of
collisions appears essential at long time scales (�γ −1) to
eliminate residual center-of-mass oscillations, as evident by
the 39K COM oscillations shown in the bottom panels of Fig. 4
(and associated inset).

It is noteworthy that the sharp changes in both quantities
remain detectable at finite temperature (green squares and red
diamonds in Fig. 3), albeit with a decrease in the difference
between the damping rates across the transition. This indicates
the relevance of these changes in a realistic experimental setup.
In addition, the much lower oscillation frequency compared to
any of the axial trap frequencies (166 and 248 Hz) highlights
the impact of interspecies repulsion [46].

Overall, our results in Fig. 3 demonstrate that �nnorm

is physically meaningful, and we can detect the transition
by monitoring both the damping rates and the frequency.
Interestingly, �nnorm also reflects the penetrability of the
mean-field barrier. Consequently, we can reinterpret our results
as related to the distinct dynamical behavior of the BEC in the
presence of a penetrable or impenetrable barrier, as seen also
in recent experiments on vortex generation [47] and Josephson
junction [48] in single-component Bose gas.

It is interesting to note how counterintuitive the under-
damped oscillation of an immiscible mixture is. Since an
immiscible mixture is associated with strong interspecies
repulsion, we would naively expect the dipole oscillation to
be quickly damped by the strong interaction. Our numerical
results reveal the opposite.

This can be explained based on the different dynamical
excitations associated with the topology of the equilibrium
densities. In the immiscible case, there is a large interfacial
tension between the two condensates [49]. Since a large
amount of energy is needed to break the surface tension,
the lower energy excitation involves undamped surface shape
oscillations [50]. In the top panels of Fig. 5, we show the
column-integrated density of the 87Rb condensate, nint(y,z) =∫

dx nc,1(
√

x2 + y2,z), at different times. These snapshots
clearly reveal the surface oscillation, where the 87Rb cloud
encircles the 39K cloud and periodically displays a gap at the
interface.

For the miscible case, large spatial overlap of the con-
densates favor the counterflow instability [29]. Sound, seen
as density modulation in the bottom panels of Fig. 5, can
be generated if the relative speed v of the two condensates
is greater than c1 + c2 [51], where ci = √

giinc,i(0,0)/mi is
the speed of sound of each individual condensate. This has
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FIG. 5. Snapshots of the column-integrated density profiles of
87Rb and 39K condensates at T = 0 nK of immiscible (top)
and miscible (bottom) mixtures, showing the different dynamical
excitations when the clouds execute dipole oscillation. The white
dashes mark the initial trap center. The simulation parameters are the
same as Fig. 2. See online Supplemental Material, [52] for videos.

been probed experimentally with a double superfluid Bose-
Fermi mixture executing dipole oscillations in an elongated
trap [17,53] via a different excitation scheme. For our pa-
rameters, v ≈ (ωz,1 + ωz,2) × 0.1 μm ≈ 0.3 mm/s, damping
emerges due to density inhomogeneities even though v is much
smaller than the trap-center speeds of sound, c1 ≈ 2.2 mm/s
and c2 ≈ 3.4 mm/s. In addition, the increase in damping rate
with decreasing � for � > 0.5 [Fig. 3(b)] is consistent with
the counterflow instability [54].

VI. EXPERIMENTAL FEASIBILITY

The simulations presented so far apply to many existing
multispecies experiments, e.g., the mixture of 87Rb and
39K [14]. Typically, however, the gravitational sag between
the two components of different mass is not compensated
and experiments are conducted with relatively small spatial
overlap [10,13,14,16]. Depending on the trap parameters
the differential sag can exceed the typical Thomas-Fermi
radius and therefore needs to be compensated to conduct the
experiments proposed above.

The gravitational sag for each of the species is given
by g/ω2

z,j , where g is the acceleration due to gravity. The
differential sag between both species can be canceled by
employing an optical potential with a carefully selected
wavelength. One option is to select a dipole trap which leads
to identical frequencies ωz,j for both species [55]. Another
option is to add an additional optical potential to an existing

trap which introduces an upward force proportional to the
atomic mass, thus canceling the sag.

In both cases the necessary detuning δj of the dipole poten-
tial can be found as follows. In the simplified case of a two-level
system the dipole force is proportional to 
j/ν

3
0,j δj , where


j is the linewidth and ν0,j is the transition frequency [2].
Hence the same upward acceleration for both species can be
obtained if the criterion m2/m1 = 
2ν

3
0,1δ1/
1ν

3
0,2δ2 is met.

The detunings δj then provide the wavelength necessary to
cancel gravity. A full calculation for the 87Rb –39K mixture
shows that an additional beam at 806 nm should hence be used
to realize the second cancellation method outlined above.

VII. CONCLUSIONS

We have provided numerical evidence that for a trapped
condensate mixture with overlapping trap centers, the
miscible-immiscible transition depends critically on the con-
densate numbers, deviating from the simple homogeneous
prediction used to date. We demonstrate that this transition can
be mapped out experimentally by measuring the damping rate
and the frequency of the dipole oscillations, the predominant
contribution to which stems from mean-field coupling. We
relate this change in damping rate across the transition to
the different dynamical excitations due to the topology of
the initial density distribution. The successful implementation
of the fully self-consistent dynamical kinetic model for
binary mixtures opens up a multitude of possibilities for
studying coupled binary dynamics, and we hope that our
work will inspire future experiments on systematic stud-
ies of the dynamical behavior of trapped multicomponent
condensates.

Data supporting this publication is openly available under
an “Open Data Commons Open Database License” [56].
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APPENDIX: FULL PHASE DIAGRAMS

Here we demonstrate the generality of the presented
results by considering all 16 possibilities for the stability
phase diagram based on experimentally realistic numbers of
87Rb and 39K (see Fig. 6). To rule out trap anisotropy as
the underlying cause of our observations, we also perform
identical simulations but for atoms in isotropic trap (see Fig. 7).
Similar features that have been discussed in the text are clearly
visible. Our results thus confirm that, in general, and for a broad
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FIG. 6. Zero-temperature phase diagram of 87Rb –39K mixtures
with different total number of atoms (NRb, NK) in anisotropic
harmonic traps. The trap frequencies are νr = 119 Hz (178 Hz) and
νz = 166 Hz (248 Hz) for 87Rb (39K) atoms. NRb increases from left
to right while NK increases from top to bottom. The symmetrical
phase is characterized by a normalized trap-center density �nnorm

[see Eq. (4)] while the asymmetrical phase is shown in white.

FIG. 7. Same as Fig. 6 but for atoms in isotropic harmonic trap.
The trap frequencies are ν = 133 (199) Hz for 87Rb (39K) atoms.

range of realistic parameters, the transition from miscible to
immiscible does not happen precisely at the assumed � = 0
line.
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