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Classical model for measurements of an entanglement witness
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We describe a classical model that may serve as an analog for joint and local measurements of an entanglement
witness. The analogous experimental procedure and data analysis protocol of the model follow those of a previous
experiment to measure an entanglement witness with polarized photons prepared in a mixed state [Phys. Rev.
Lett. 91, 227901 (2003)]. Numerical simulations show excellent agreement with both experimental results and
quantum-mechanical predictions. This agreement is made possible by the fact that the model exhibits contextuality
due to the postselection of coincident detection events.
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I. INTRODUCTION

Entanglement is widely recognized as an important re-
source in quantum information processing [1]. While generally
regarded as a uniquely quantum feature, aspects of entangle-
ment are found in classical systems as well [2–4]. Recently,
a locally deterministic, detector-based method for modeling
quantum measurements has been proposed and shown to
exhibit analogous quantum behavior [5]. That such a scheme
can be devised raises the question of whether a classical model
of this sort is capable of exhibiting true entanglement and, if
so, how one might go about verifying its presence.

In pursuing this question, it is important to distinguish
several different, related properties often associated with
entanglement. In a formal, mathematical sense, entanglement
may be defined simply as nonseparability of the quantum state.
As such, this is a property that is trivially satisfied by many
analogous classical systems; for example, a superposition of
modes in a vibrating rectangular membrane.

Indeed, from the perspective of quantum computing,
nonseparability alone often suffices to realize a significant
quantum speedup, as is found in Shor’s factoring algorithm
or Grover’s search algorithm [6,7], although examples such as
the Deutsch–Jozsa algorithm illustrate that entanglement is not
always needed to realize a quantum speedup in efficiency [8].

Of course, entanglement, as originally conceived by
Schrödinger, connotes much more [9]. The mathematical
property of nonseparability entails, via the Born rule, certain
observational consequences regarding correlations between
subsystems. Thus, we observe that electrons in a singlet state,
say, exhibit perfect anticorrelation in measurements of their
respective spins along a given direction. This limited behavior
can be observed rather trivially in classical systems as well.
For this reason, separable states which exhibit correlations
between different subsystem measurements are sometimes
referred to as classically correlated.
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The Born interpretation of, say, the singlet spin state is
generally taken to be independent of the spatial separation
between the constituent subsystems. This suggests a certain
nonlocal character to the correlations appearing between such
systems even though, as noted above, such correlations can
arise classically as well. When one considers measurements
along different, nonorthogonal directions, however, the naive
classical interpretation breaks down. By using this idea,
Bell was able to derive an inequality relating measurable
correlations between different subsystem observables which,
if violated, would imply entanglement [10]. If, furthermore,
the subsystem measurements are performed in a spacelike-
separated manner, such a violation could not be interpreted
classically; a property which is generally referred to as
quantum nonlocality.

A violation of Bell’s inequality clearly indicates entangle-
ment; however, an entangled state may still fail to violate
the inequality. To more finely distinguish the transition from
separable to entangled states, one may employ an entangle-
ment witness W , an operator chosen for a particular class of
quantum states and such that, for ρ in that class, Tr[Wρ] < 0
if and only if ρ is entangled [11]. In general, entanglement
witnesses may be difficult to define and measure. For certain
classes of quantum states, a parsimonious set of projection
operations may suffice to construct W [12].

In particular, the class of two-qubit Werner states [13],
defined by

ρq = q|ψs〉〈ψs| + (1 − q) 1
4I, (1)

where |ψs〉 is a singlet state, I is the identity, and q ∈ [0,1],
lend themselves to a simple entanglement witness expressed
as a sum of six projections involving only local measurements
in one of three bases. By examining the partial transpose of
ρq , one can show that the state is separable for q � 1/3 and
entangled for q > 1/3. Furthermore, one can show that ρq

is classically correlated for 0 < q � 1/3. The extreme values
of q, then, correspond to a maximally mixed (q = 0) and
maximally entangled (q = 1) state.

The simplicity of the Werner states and their associated
entanglement witness lends itself well to experimental mea-
surement. By using polarization-entangled photons, Barbieri
et al. were able to prepare ρq and measure W for a variety
of settings, thereby demonstrating entanglement in their
system [14]. In terms of the horizontal and vertical polarization
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modes (one-qubit states |H 〉 and |V 〉, respectively), the singlet
state may be written as

|ψs〉 = 1√
2
[|HV 〉 − |V H 〉], (2)

and the entanglement witness takes the form

W = 1
2 [|HH 〉〈HH | + |V V 〉〈V V | + |DD〉〈DD|
+|AA〉〈AA| − |LR〉〈LR| − |RL〉〈RL|], (3)

where |D〉 = [|H 〉 + |V 〉]/√2, |A〉 = [|H 〉 − |V 〉]/√2,
|L〉 = [|H 〉 + i|V 〉]/√2, and |R〉 = [|H 〉 − i|V 〉]/√2
represent the diagonal, antidiagonal, left-circular, and
right-circular polarization states. It can be shown that, for
the above Werner states, Tr[Wρq] = (1 − 3q)/4, so 0 �
Tr[Wρq] � 0.25 for 0 � q � 1/3 and −0.5 � Tr[Wρq] < 0
for 1/3 < q � 1.

In our classical analog of this experiment, we propose to
follow the experimental procedure of Ref. [14], albeit using a
classical (i.e., hidden variable) state in lieu of a quantum optical
system. The details of state preparation and measurement are
therefore radically different, but the types of measurements and
the data analysis protocol are the same. A negative value of
the measured entanglement witness so obtained will thereby
be deemed indicative of entanglement. As we will see, the
postselection of coincident-detection events, which is part of
the analysis protocol, gives rise to contextuality. This will be
of critical importance for obtaining a negative witness value.

II. CLASSICAL REPRESENTATION

Our classical representation of the quantum state will con-
sist of a random, complex-valued vector a of four components
a00, a01, a10, a11 corresponding to the four standard basis
states |HH 〉, |HV 〉, |V H 〉, |V V 〉, respectively. In the model,
amplitude-threshold crossings correspond to measurements.
The randomness associated with a will come from two sources:
first, in state preparation, to model mixed states and, second, in
an additive noise term, to model quantum statistics. The details
of how these random values are drawn, as well as the process
of measurement, are described in the following sections.

A. Mixed states

A general mixed state takes the form of a convex sum of
pure states, written as

ρ =
∑

i

pi |ψi〉〈ψi |, (4)

where pi � 0 and
∑

i pi = 1. Thus, generating a classical
representation of the mixed state ρ may be viewed as a straight-
forward matter of selecting, with each state preparation, a
random pure state in accordance with the above probability
distribution.

For the Werner state of Eq. (1), this process would consist
of randomly choosing either |ψs〉, with probability q, or else
choosing one of the four basis vectors |HH 〉, |HV 〉, |V H 〉, or
|V V 〉 with equal probability. If we denote by α̃ the components

of the randomly drawn state in the standard basis, we have

α̃ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αs with probability q

[1,0,0,0]T with probability (1 − q)/4
[0,1,0,0]T with probability (1 − q)/4
[0,0,1,0]T with probability (1 − q)/4
[0,0,0,1]T with probability (1 − q)/4,

(5)

where αs = [0,1, −1,0]T/
√

2. Of course, any two-qubit or-
thonormal basis would do (or, for that matter, any resolution
of the identity, whether it is orthogonal or not).

Note that the density matrix, in the standard basis, corre-
sponding to α̃ is given by

ρq = E[α̃α̃†] = qαsα
†
s + (1 − q) 1

4 I, (6)

where I is the identity matrix. This suggests that other choices
for α̃ may adequately represent the Werner state as well. For
example, a random vector of the form

α̃ = √
q αs +

√
1 − q w, (7)

where w is a zero-mean complex Gaussian random vector
with covariance 1

4 I, yields the same density matrix as that of
Eq. (6). Note that α̃, as defined by Eq. (7), is not strictly
normalized to unit magnitude but, rather, only on average (i.e.,
E[‖α̃‖2] = 1). Nevertheless, as we will show, it does appear
to provide an empirically equivalent description of the mixed
state.

B. Modeling quantum statistics

The above prescription for representing the quantum state
says nothing of measurement. In Ref. [5] it was shown that,
by adding a random vector ν to a particular pure state α, scaled
by s > 0, and observing threshold crossings of the component
magnitude, one is able to reproduce or approximate the
quantum statistics of the Born rule. More generally, replacing
α with α̃ for a mixed state, we have the random vector

a = sα̃ + ν, (8)

where ν is taken to be statistically independent of α̃. We
shall refer to ν as the quantum noise to distinguish it from
the randomness in state preparation associated with α̃. The
particular form of this model is motivated by stochastic electro-
dynamics [15], wherein the quantum noise term corresponds
to the pertinent modes of a real (vice virtual), albeit random,
vacuum field. Here we take it to simply be a mathematical
model.

True photon detection in devices such as avalanche photodi-
odes arises from abrupt changes in current. Motivated by this,
we shall say that a measurement of a results in the outcome i if
|ai | > γ and |aj | � γ for all j �= i for some threshold γ > 0.
Measurements for which this is not the case, either because
of multiple detections or a lack of detections, are discarded.
In particular, if ν = σ z/‖z‖, where z is a standard complex
Gaussian, σ > 0, s = (

√
2 − 1)σ , and γ = σ , then we are

guaranteed that at most one threshold crossing will occur [5].
To measure in a basis other than the standard basis,

one performs a unitary transformation corresponding to the
desired measurement basis and then performs a threshold-
detection measurement, as before. In the case of so-called joint
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measurements, the entire two-qubit state is transformed and
measured in this manner. In the case of local measurements,
each qubit is measured separately in a manner to be described
below.

Thus, to perform a joint measurement of the projection
|HH 〉〈HH |, for example, one examines |a00| and ascertains
whether it is above the threshold γ . Similarly, to measure
|V V 〉〈V V | one examines |a11|. For a joint measurement of
|DD〉〈DD|, say, one first transforms a to a′ = (H ⊗ H)†a,
where H is the unitary Hadamard matrix, and examines
whether |a′

00| > γ . Finally, to measure |LR〉〈LR| jointly, we
transform a to a′ = (V ⊗ V)†a, where

V = 1√
2

[
1 1
i −i

]
, (9)

and examine whether |a′
01| > γ . Other observables may be

measured in a similar fashion.
To perform a local measurement of |LR〉〈LR|, say, we

first apply separate unitary transformations to qubits A and
B, obtaining a′ = (V† ⊗ I)a and b′ = (I ⊗ V†)a, respectively.
Next, we apply the projection matrix

P(A)
0 = [1,0,0,0]T [1,0,0,0] + [0,1,0,0]T [0,1,0,0] (10)

to a′, obtaining a′′ = P(A)
0 a′, and the projection matrix

P(B)
1 = [0,1,0,0]T [0,1,0,0] + [0,0,0,1]T [0,0,0,1] (11)

to b′, obtaining b′′ = P(B)
1 b′. Finally, we examine whether we

have both ‖a′′‖2 = |a′
00|2 + |a′

01|2 > γ 2 and ‖b′′‖2 = |b′
01|2 +

|b′
11|2 > γ 2. If this is so, then we say we have a coincident

detection. Local measurements of other observables may be
performed in a similar manner.

III. EXPERIMENT SIMULATION

The notional classical experiment consists of a centralized
source for generating random realizations of the vector a
according to the procedures described in the previous section
and for a given value of q ∈ [0,1].

For local measurements, a copy of a is sent to separate
devices to measure qubits A and B. Note that the same classical
state is sent to each measuring device, but each device would
measure a different qubit. Each device is capable of locally
and independently selecting one of six possible measurements
(H,V,D,A,L, or R). Projective threshold-crossing measure-
ments are then performed and recorded. Each device measures
the presence or absence of a threshold crossing, and coincident
detections between qubits A and B are noted upon postanalysis.

Joint measurements are performed in a similar manner but
require only one measurement device. The device is selectable
between the six different projections in the definition of W

and indicates the presence or absence of the selected two-qubit
state. So, a coincident detection of, say, |HH 〉〈HH | merely
indicates that |aHH | was found to fall above the threshold γ .
If no threshold crossing is obtained, this fact is noted but the
sample is discarded later during postanalysis.

We performed a numerical simulation of the above notional
experiment, which we shall now describe. For the purposes of
this study, we assume that the devices are able to faithfully
encode the quantum state, as represented by the random
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FIG. 1. (Color online) Plot of the estimated entanglement wit-
ness West versus the exact singlet weight parameter q using the
mixture model of Eq. (5).

vector a, and reproduce the necessary unitary and projective
transformations. We produced N = 220 realizations of a and
counted the number of coincident detections for each of
the six projection terms in W . Let CHH denote the number
of coincident counts for |HH 〉〈HH |, CV V the number for
|V V 〉〈V V |, CDD for |DD〉〈DD|, and so on. We also measured
CHV and CV H , the coincidence counts for measurements of
|HV 〉〈HV | and |V H 〉〈V H |, respectively. Both local and joint
measurements were performed.

Generally, of the N realizations, about 12% (8%) resulted
in local (joint) coincident detections. This is comparable to
the roughly 105 coincident detections used in the experiment
of Ref. [14]. Using the observed coincident counts, the
entanglement witness was estimated by using the formula

West = 1

2

CHH + CV V + CDD + CAA − CLR − CRL

CHH + CHV + CV H + CV V

, (12)

where, following Ref. [14], we have normalized by the total
coincident counts in the standard basis.

In Fig. 1 we plot the measured entanglement witness (West)
versus the known value of the singlet weight parameter q for
values q ∈ {0, 0.2, 1/3, 0.4, 0.6, 0.8, 1.0}. In this example, α̃

was modeled according to Eq. (5). We find perfect agreement
for the maximally mixed case (q = 0) and a general linear
trend showing entanglement for q > 0.4. Perfect agreement
is also found for the maximally entangled case (q = 1)
when joint measurements are performed. In general, though,
West tends to fall slightly above the quantum prediction,
with the joint measurement scheme showing somewhat better
agreement than the local scheme.

We next consider modeling α̃ according to Eq. (7), with
the results shown in Fig. 2. The estimates are qualitatively
similar, with a general trend showing entanglement for large
values of q. In this case, we note that joint measurements tend
to give lower (more negative) witness values than the quantum
prediction, while local measurements tend to give values that
are slightly higher. Modifying the detection threshold tends to
move the curves up (for γ < σ ) or down (for γ > σ ), with γ =
1.05σ (local) and γ = 0.95σ (joint) giving good agreement.
The results in Fig. 2, however, are for γ = σ .

032302-3



BRIAN R. LA COUR AND E. C. GEORGE SUDARSHAN PHYSICAL REVIEW A 92, 032302 (2015)

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Exact singlet weight

W
itn

es
s

 

 

Local
Joint

FIG. 2. (Color online) Plot of the estimated entanglement wit-
ness West versus the exact singlet weight parameter q using the
mixture model of Eq. (7).

Now, unlike in the experiment of Ref. [14], we do have
complete control and knowledge of the singlet weighting
parameter q. Nevertheless, by following the same analysis
protocol we may also estimate this parameter as follows:

First, we compute

Rest = 1

4

[
CHH

CV H

+ CV V

CHV

+ CHH

CHV

+ CV V

CV H

]
. (13)

Then, using the fact that the diagonal matrix elements
of ρq are 〈HH |ρq |HH 〉 = 〈V V |ρq |V V 〉 = (1 − q)/4 and
〈HV |ρq |HV 〉 = 〈V H |ρq |V H 〉 = (1 + q)/4, the parameter q

may be estimated by qest = (1 − Rest)/(1 + Rest).
Using this approach, we plot West against the estimated

singlet weight (qest), as was done in Ref. [14]. These results
are plotted in Fig. 3. Surprisingly, we find nearly perfect
agreement with the quantum predictions, for both local and
joint measurements. The results shown in Fig. 3 are for
α̃ modeled according to Eq. (5), but quite similar results
were found for the Gaussian model of Eq. (7) as well. The
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FIG. 3. (Color online) Plot of the estimated entanglement wit-
ness West versus the estimated singlet weight parameter qest using the
mixture model of Eq. (5). (Compare to Fig. 2 of Ref. [14]).

TABLE I. Table of measured counts for local measurements using
the mixture model of Eq. (5), as illustrated in Fig. 3.

q 0 0.2 1/3 0.4 0.6 0.8 1

CHH 31180 25796 22353 20297 14863 9660 4194
CHV 31287 35788 38688 40113 45075 49742 54250
CV H 31153 35668 39088 39938 45194 49572 53914
CV V 31360 25931 22327 20566 15178 9739 4212
CDD 29688 24406 21148 19400 14577 9416 4257
CAA 29735 24479 21291 19451 14448 9201 4164
CLR 29553 34590 37902 39275 44099 48880 53887
CRL 29525 34651 37883 39192 44248 49138 53797
West 0.2516 0.1273 0.0463 0.0052 −0.1217 −0.2527 −0.3897
qest −0.0008 0.1602 0.2703 0.3241 0.5006 0.6732 0.8558

corresponding counts are summarized in Table I. As shown
in the Appendix, this agreement is well within the 95%
confidence interval for statistical uncertainty. On the other
hand, agreement in Figs. 1 and 2, which use the known
values of q, would not be expected to improve with additional
samples. Nevertheless, as we shall see in the next section, a
change of threshold can give arbitrarily good agreement with
the quantum predictions, even when q is known.

IV. DETECTOR EFFICIENCY

Conditioning on coincident counts is necessitated by the
fact that not every state realization results in a measurement.
This is true for quantum systems as well as the classical model
considered here. This, then, leads to the concept of detector
efficiency.

Notionally, detector efficiency would be defined as the ratio
of detected photons to incident photons. Since the latter cannot
be measured experimentally, various surrogate definitions are
used instead, often based on attendant assumptions regarding
statistical independence which cannot themselves be verified.
In these schemes, one uses the measurable coincident counts
CHH , CHV , CV H , CV V as well as the single-detection counts
CHN , CV N , CNH , CNV .

What remains inaccessible is the number of nondetections,
CNN , or, equivalently, the total number of state realizations, N .
Unlike a true quantum system, our classical model provides
full access to the underlying details of the experiment,
including the values of N and CNN . This allows us to
compute, for both joint and local measurements, the true
coincident-detection efficiency as

εAB = CHH + CHV + CV H + CV V

N
. (14)

Efficiency for a single detector is computed by including
the total number of single-detection events on that detector.
Thus, the true efficiencies for measurements of qubits A and
B, respectively, are given by

εA = εAB + CHN + CV N

N
, (15a)

εB = εAB + CNH + CNV

N
. (15b)
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FIG. 4. (Color online) Plot of measured efficiency η (blue cir-
cles) and true efficiency ε (black squares) versus detection threshold
γ in units of σ using local measurements on a singlet state.

Note that single-detector efficiencies make sense only for local
measurements, because quantities such as CHN are not defined
for joint measurements.

If the input states and detectors are physically identical, as
is the case in our classical model, then it makes sense to define
the true detector efficiency as simply the average of the two:

ε = εA + εB

2
. (16)

A plot of ε versus the detection threshold γ is shown
in Fig. 4. Note that, for γ 
 σ , the efficiency becomes
unbounded and therefore ill defined due to the presence of
double detections (i.e., threshold crossings for both H and V

detectors on a single qubit).
To measure the efficiency in the absence of N or CNN , one

must make certain assumptions. Thus, one might suppose that
the probability of obtaining H on qubit A and V on qubit B,
say, which is estimated by CHV /N , may be expressed as the
“true” probability of obtaining H and V , written PHV and
predicted quantum mechanically to be 〈HV |ρq |HV 〉, times
the probability of a detection on qubit A and qubit B, written
as ηAηB . Thus, one assumes CHV /N ≈ ηAηBPHV . Similarly,
CHN/N ≈ ηA(1 − ηB)(PHH + PHV ).

With these assumptions, we may deduce the following:

ηA = εAB/εB, (17a)

ηB = εAB/εA. (17b)

Since N drops out in the ratio, both ηA and ηB are computable
solely from measurements of coincident- and single-detection
events. This is the manner in which detector efficiency is
determined experimentally in a true quantum system. Finally,
as symmetry warrants, the average of the two may be used to
define the overall measured detector efficiency,

η = ηA + ηB

2
. (18)

A plot of η versus the detection threshold γ is shown in
Fig. 4. Note that η approaches 1 for γ 
 σ and otherwise

monotonically decreases with increasing threshold. For values
of γ greater than about 1.25σ , there are no detections at all, so η

is undefined. We further note that, for γ � 0.8σ , the measured
efficiency η tends to be quite a bit larger than the true efficiency
ε. For example, at γ = σ we have η = 0.52 vice ε = 0.22.
Typical efficiencies in coincident photon experiments tend to
be around 0.3 at most [16], although efficiencies over 0.7 have
been observed in supercooled detectors [17], so a value of 0.52
is actually quite good.

Implicit in the definition of the measured efficiency is the
assumption that local detection events are independent when
conditioned on a given quantum state. Thus, we write ηAηB as
the probability of coincident detections and ηA(1 − ηB), say, as
the probability of a detection only on qubit A. This assumption
would indeed be reasonable in the naively realistic view that
a quantum optic event such as the coincident detection of the
state |HV 〉 corresponds to an H photon incident upon detector
A and a V photon incident upon detector B, the detection
of each being determined by independent random variables
intrinsic to each detector.

The present model provides an alternative to naive realism.
In this view, all randomness originates in the initial signal, as
represented by a particular realization of the complex vector a.
Whether a detection event occurs or not is determined solely
by a and not by any additional randomness associated with the
detectors. Coincident detections are therefore correlated not
only by virtue of correlations in the prepared state ρq but also
from correlations arising from the quantum noise term ν. For
this reason, we do not expect the coincident detector efficiency
εAB to factor into the product εAεB .

In fact, the true coincident efficiency εAB and single-
detector efficiencies εA and εB are related to the measured
single-detector efficiencies ηA and ηB by ε2

AB/(εAεB) = ηAηB .
To the extent that the single-detector efficiencies are equal, we
furthermore have that εAB = εη. Thus, the degree to which ε

and η differ is indicative of the statistical dependence between
local detection events. This, in turn, depends upon the detection
threshold.

As we have now seen, detector efficiency can be made
arbitrarily high by lowering the threshold. On the other hand,
a lower threshold can also lead to undesirable effects such
as double detections. This naturally leads one to question the
impact of the threshold on measurements of the entanglement
witness. In Fig. 5 we plot the estimated entanglement witness
West versus the threshold γ for local measurements of the
singlet state. We find that we approach the ideal witness value
of −0.5 for γ slightly above σ and still remain entangled (i.e.,
West < 0) for γ greater than about 0.88σ . Thus, raising the
threshold may be viewed as a mechanism for refining the level
of entanglement, albeit at the cost of fewer detection events
and an overall lower yield.

V. DISCUSSION

It is important to understand that the results presented here
rely fundamentally on the use of coincident detections to com-
pute the estimated entanglement witness. If one normalizes
by the actual number of realizations, N , instead of the total
number of coincident counts, CHH + CHV + CV H + CV V , in
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FIG. 5. (Color online) Plot of the entanglement witness West

versus detection threshold γ in units of σ using local measurements
on a singlet state.

the computation of West, no entanglement is observed (i.e.,
West � 0).

We may therefore infer the presence of entanglement
no more strongly than could be inferred in the experiment
of Ref. [14]. This is not to be construed as criticism of
that experiment, though. The process of photon detection is
inherently limited in efficiency, and the true number of photons
impinging upon a detector, if that concept has any meaning,
cannot be known. We do claim, however, that qualitatively
similar results, in particular evidence of entanglement, can be
obtained by using a classical system and a similar experimental
procedure and data analysis protocol.

A larger question is whether the mathematical model
described here could provide a physical explanation of the
photon-polarization experiment itself. The present model was
inspired by the work of Marshall and Santos on stochastic
optics, a classical theory intended to explain quantum optics
phenomena [18]. In that view, the random vector ν represents
contributions from the vacuum zero-point field (ZPF), taken to
be similar in form to that of quantum electrodynamics (QED)
but assumed to be real rather than virtual. The threshold
exceedance condition, then, merely reflects the response of
a nonlinear device, such as an avalanche photodiode, to the
intensity of a coherent sum of the prepared signal, represented
by sα̃, and the quantum background noise, represented by ν.
Replicating the quantum state to measure qubits A and B is, in
this view, equivalent to dividing the incoming emission with a
prism-like pair of mirrors.

Finally, although a particular probability distribution for
the noise term ν was used here, other distributions may be
considered as well. Unnormalized complex Gaussians, for
example, have been found to produce similar results with
suitably high thresholds [5].

VI. CONCLUSION

We have described a classical model of joint and local
measurements of an entanglement witness. By considering
only coincident detections a negative witness value, indica-
tive of entanglement, can be achieved. In general, joint

measurements give rise to more strongly negative witness
values than local measurements, although these values can be
adjusted up or down by varying the detection threshold. Good
agreement with quantum theoretic predictions can be achieved
by adjusting the thresholds for joint and local measurements
separately. Interesting, when plotted against the estimated
singlet parameter, both joint and local measurements provide
excellent agreement with theory.

These results point to an interesting subtlety in certain
experimental determinations of entanglement. Optical exper-
iments to verify entanglement, such as the one described in
Ref. [14], are complicated by the lack of perfect efficiency
in coincident photon detection. As a consequence, classical
models such as the one described here may be able to provide
an equally valid description of the observed phenomena. The
model also provides an interesting perspective on detector
efficiency. While efficiency is generally regarded as a property
that is intrinsic to the detector, the present model suggests an
alternative view in which the variability resides in the photon
itself, so to speak, rather than in the measuring device.
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APPENDIX

In this appendix, we examine the construction of confi-
dence intervals for the estimates West and qest. For large N ,
we may assume that count frequencies CHH/N , CHV /N ,
etc. are Gaussian distributed with mean pHH , pHV , etc.
and standard deviations σHH = √

pHH (1 − pHH )/N , σHV =√
pHV (1 − pHV )/N , and so on. If these counts are the result of

separate state preparations, then we may furthermore assume
that they are statistically independent.

A standard propagation of errors for West would suggest an
uncertainty of the form

δW = |West|
√(

σX

μX

)2

+
(

σY

μY

)2

, (A1)

where

X = CHH + CV V + CDD + CAA − CLR − CRL

N
, (A2)

Y = CHH + CHV + CV H + CV V

N
, (A3)

and μX, σX are the mean and standard deviation, respectively,
of X (and similarly for Y ). In practice, the sampled counts
would be used in place of the exact expectation values.

A similar propagation of errors for qest yields

δq = |qest|
√(

δR

1 − R̄

)2

+
(

δR

1 + R̄

)2

, (A4)
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where

δR = 1

4

√
(δr1)2 + (δr2)2 + (δr3)2 + (δr4)2, (A5)

and

δr1 = pHH

pV H

√(
σHH

pHH

)2

+
(

σV H

pV H

)2

, (A6)

δr2 = pV V

pHV

√(
σV V

pV V

)2

+
(

σHV

pHV

)2

, (A7)

δr3 = pHH

pHV

√(
σHH

pHH

)2

+
(

σHV

pHV

)2

, (A8)

δr4 = pV V

pV H

√(
σV V

pV V

)2

+
(

σV H

pV H

)2

. (A9)

For N = 220, typical values of δW and δq are found to
be no more than about 0.002, with a 95% confidence interval
corresponding to about twice this value.
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