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Near-field speckle-scanning-based x-ray imaging
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The x-ray near-field speckle-scanning concept is an approach recently introduced to obtain absorption, phase,
and dark-field images of a sample. In this paper, we present ways of recovering from a sample its ultrasmall-angle
x-ray scattering distribution using numerical deconvolution. We also show how to access the 2D phase gradient
signal from random step scans, the latter having the potential to elude the flat-field correction error. Each feature
is explained theoretically and demonstrated experimentally at a synchrotron x-ray facility.
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I. INTRODUCTION

When x-ray imaging was discovered, it took only a few
months for the scientific community to express a great interest,
as acknowledged by the award of the first Nobel prize
to Röntgen. Since then fast and tremendous progress has
been observed in diverse applications over domains including
medicine, materials science, paleontology, and many other
fields. For more than a century great minds have realized
the importance of x-ray imaging and contributed to its
development with, for instance, the introduction of the dose
concept [1,2] and the advent of computed tomography [3,4].
In parallel, constant progress in instrumentation has allowed
the development of x-ray imaging systems with ever better
contrast, resolution, and efficiency [5–7].

While questing for means of collecting more information
and reducing the dose necessary to image a specimen, the
appearance of the first coherent x-ray sources favored the
emergence of phase-contrast imaging methods [6,8,9]. Indeed,
these were motivated by the fact that, in the x-ray domain,
the material optical index n = 1 − δ − iβ presents usually a
refractive index δ with a magnitude several orders larger than
its absorption counterpart β [10]. Thus, since the inception
of coherent third-generation synchrotron sources, different
near-field techniques of x-ray phase sensing emerged, either
inspired by their analogs in other spectral domains or specially
developed [11]. One may categorize those imaging techniques
depending on whether they are sensitive to the Laplacian or
the gradient of the phase. The propagation-based methods,
which belong to the first category, make use of the property of
contrast enhancement of edges when increasing the distance
to the detector from the specimen under study [12–15].
The second category brings together instruments such as
deflection-based instruments, including x-ray grating inter-
ferometers [16,17], Hartmann-like sensors [18,19], coded
apertures [20,21], analyzer-based systems [22], and speckle-
based methods [23,24]. Other full-field imaging approaches
available in the x-ray domain and using different principles
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include for instance ptychography [25] and Zernike phase
microscopy [26,27].

Propagation-based methods offer the advantage of a high
sensitivity to sharp changes in electronic density, the sample
high-frequency features being rendered with high contrast
thanks to the phenomenon of optical interference. Conversely,
they often suffer from reconstruction artifacts when imaging
materials presenting a slowly varying density and low spatial
frequencies due to the very nature of the recorded signal,
i.e., a Fresnel diffraction image [28]. In practice, a phase-
gradient-sensitive method would be preferable for imaging a
homogenous material, although this usually results in a spatial
resolution lower than the one obtained with a propagation-
based technique, all other conditions remaining equal. For their
implementation, phase-gradient-sensitive methods require the
use of a specific optics (grid, grating, crystal, etc.) to modulate
the wave front, which can, sometimes, be expensive or difficult
to get.

Dark-field x-ray contrast is an additional contrast mode
inspired from its counterpart in the visible light and made
possible thanks to the availability of crystal analyzers [22,29]
and of grating interferometers [30]. Dark-field imaging permits
revealing the structure and the orientation of features having a
characteristic size much smaller than the detector resolution.
For instance, the mapping of the dark-field signal with a grating
interferometer allows one to determine the local reduction of
the interference amplitude caused by x-ray beam propagation
through the sample. The interference amplitude actually
reflects the progressive degradation of the beam transverse co-
herence properties caused by scattering induced upon photon
propagation through the sample’s submicroscopic features.

The x-ray near-field speckle-scanning technique [31,32] is
a recent and particularly attractive deflection-based technique
as it provides both phase and dark-field contrast images in
addition to the traditional absorption one. Moreover, it uses
only a random phase object as wave front modulator. This
phase object is used to generate a speckle intensity pattern
in the near-field domain caused by mutual interference of
the scattered waves. The near-field domain is particularly
interesting because the speckle pattern distortion is only
ruled by the wave front transformation upon propagation in
the Fresnel zone [33,34], a region easily accessible with x
rays [35].

The x-ray near-field speckle-tracking technique previously
developed and easily implemented [23,24] could provide
phase information from one single exposure of the sample.
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However, its resolution is limited by the speckle grain size
and artifacts may appear in the case of complex objects.
The speckle-scanning method appeared to overcome these
limitations, nonetheless at the cost of additional image acqui-
sitions. The technique advantages include a high sensitivity
to the phase gradient, a moderate requirement for the beam
monochromaticity, a high photon efficiency (no absorption in
the system), and the use of a minimalist optical element in
the form of a scattering membrane. Albeit the speckle-based
methods were first developed at a synchrotron source, they
were recently adapted with success to a laboratory source,
thereby broadening the range of applications [36]. In this paper,
several additional aspects of the speckle-scanning concept
are presented. After having recalled the basic concept and the
general experimental setup, we will expound a method capable
of accessing the ultrasmall-angle x-ray scattering distribution
of a sample from 2D raster scans. Next, a processing scheme
to recover the phase gradient information in two dimensions
from scans with random steps is demonstrated. Each aspect
is illustrated with experimental applications. We also describe
a way of eluding the “flat-field correction error” using the
speckle-scanning technique. A short discussion dealing with
the sensitivity and operational constraints concludes this paper.

II. EXPERIMENTAL SETUP

Let us introduce the experimental setup that was used
to acquire the data presented further. The experiments were
conducted at the beamline BM05 of the ESRF [37]. There, the
photons are produced by synchrotron radiation from a bending
magnet of 0.85 T installed on a storage ring operating with
6.04 GeV electrons. In the experiments presented, a beam with
an energy E = 17 keV was selected thanks to a double-crystal
Si(111) monochromator with a selectivity of �E/E ∼ 10−4.
The experimental setup sketched in Fig. 1 was installed in a
lead-shielded hutch, at a distance from the scattering object to
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FIG. 1. (Color online) First image recorded during the scan with
(a) and without an object (b) inserted in the beam. (c) Experimental
setup for the data collection.

the source of R ≈ 55 m. Considering the source size of 29 μm
rms vertically and ∼77 μm rms horizontally, the transverse
coherence at the level of the membrane at E = 17 keV is ex-
pected to be at most ∼29 μm vertically by 11 μm horizontally.

The scattering object, a piece of sandpaper with a grit
designation P800, was mounted on a motorized 2D piezo
stage, itself mounted above stepping micromotors. Such a
setup permitted moving the random phase object transversally
to the beam with either a nanometer precision and a 100 μm
range, or a micrometer accuracy over a millimeter range. The
scatterer was placed at a distance l = 450 mm upstream of the
sample and the detector at a variable distance d downstream
from it. The imaging system was a FReLoN (fast readout low
noise) CCD camera receiving a visible-light signal resulting
from the luminescence produced by x-ray illumination of a
scintillator and imaged by a microscope objective. The system
effective pixel size was of sp = 5.8 μm. Near-field speckle of
a size of a few pixels was observable in the recorded images
with a contrast defined by a coefficient of variation of ∼14%
when d = 850 mm [visible in Figs. 1(a) and 1(b)].

III. SCANNING TECHNIQUE WITH CONSTANT STEP

This speckle-scanning mode is mainly presented in
Ref. [31] where the concept is described as the crossroads
of the speckle tracking [23,24] and grating interferometry
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FIG. 2. (Color online) (a) Geometry for the scanning x-ray
speckle imaging technique with constant steps. (b) Example of a
reference speckle pattern built from the intensity values read in the
yellow pixel during the scan. (c) Corresponding pattern recorded
in the same pixel during a scan with the sample in the beam. (d)
Scattering distribution obtained by deconvolution of (b) with (c).
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techniques [38,39]. Since we are going to present an extension
of it, let us recall quickly the method principle.

Figure 2 shows the geometry considered with the vectors
(ex,ey) perpendicular to the beam propagation direction ez. The
scattering object with random phasors is placed in a partially
coherent x-ray beam, either right upstream or downstream
from the investigated object. While small differences exist
between these two configurations [24,40] they are negligible in
the following experiments as the beam was nearly collimated.
Nonetheless, we will rederive here the correct formulas for
the magnifying geometries currently encountered, e.g., when
using a focusing optics or a highly divergent laboratory x-ray
source.

The method consists of coupling together data collected
when raster-scanning the membrane with the sample present
in the x-ray beam [e.g., array of Fig. 1(c)] or removed from
it [Fig. 1(b)]. For the technique to be effective, the membrane
must be scanned with a positional repeatability p = (X,Y ) of
a fraction of a speckle grain size and with a strictly constant
step size ss = constant. A pair of patterns recorded in a pixel
located at r = (x,y) is considered to be independent from the
data collected in the neighboring pixel. The pixel marked in
yellow in Fig. 2(a) with the pattern pair displayed in panels
(b) and (c) is an example of data sets recorded at a given
position r. Then the 2D intensity value array recorded when
scanning the membrane with the sample in the beam path and
denoted f [Fig. 2(c)] is cross-correlated with the one obtained
during the reference scan and denoted g [Fig. 2(b)], i.e., with
no sample in the beam. The outcome of the operation is a
correlation map whose maximum peak location indicates the
displacement vector v between the two arrays:

v(r) = arg max
τ

∫
f (r,p)g(r,p + τ )dτ. (1)

Well-known recipes based on correlation coefficient curve-
fitting permit us to calculate v with a fraction of a step
accuracy [41,42]. Then, from the angles α, γ , and ζ defined in
Fig. 4 and for the two geometries (a) or (b), we have α = γ + ζ

and so by calculation

α ≈
(

R + d + l

R

)
ss

d
v, (2)

which is valid under the small-angle approximation encoun-
tered with x rays. For a collimated beam, 	 = (R + d + l)/R
reduces to 1 and α = ζ .

In the following we use the del operator denoted ∇. As the
angle α relates to the differential wave front gradient α = ∇W

itself linked to the phase gradient ∇φ [43], we can write

k∇W = ∇φ(r) ≈ k
ss

d
	v(r), (3)

where k is the wave number equal to 2π/λ, with λ the
photon wavelength. Most often, data recorded through 2D
scans are followed by projection of v in order to extract
the two orthogonal transverse phase gradient components.
One-dimensional scans with many fewer points have also
proved to be efficient for recovering the 1D phase gradient [31].
The absorption, or here the transmission image T , can be
correctly calculated free from the flat-field correction errors
that occur in the presence of a strongly dephasing object

and/or of a high magnification projection geometry [25,44].
Its formulas can be obtained by consideration of Fig. 4:

T (r) = μ(f (r))
μ(g(r + 	ssv))

, (4)

where μ denotes the mean operator over the variable p. Finally,
the dark-field image Df can be reconstructed by considering
the decrease of speckle contrast that occurs when introducing
the sample in the beam. More precisely one has to calculate
the ratio of the coefficient of variations of f and g:

Df (r) = 1

T (r)

σ (f (r))
σ (g(r + 	ssv))

(5)

with σ the standard deviation operator over p.
Using a blueberry as a sample, Figs. 3(a)–3(d) illustrate

the various modes the technique offers. The set of two scans
was recorded with d = 850 mm, ss = 3 μm, each scan being
composed of an array of 25 × 25 points. The collection of such
large data scans was performed in an attempt to optimize the
calculation of the higher moments of the scattering distribution
that require more statistics, as we shall see further. Otherwise
many fewer points would be needed. Figure 3 presents the
calculated transmission image in panel (a), in panels (b) and
(c) the respectively horizontal and vertical wave front gradients
∇W · ex/y, in panel (d) the integrated phase image, and in panel
(e) the dark-field image.

IV. ULTRASMALL-ANGLE X-RAY
SCATTERING DISTRIBUTIONS

Recent works demonstrated a way of recovering the
scattering distribution of a sample in each detector pixel from
raster scans. The concept was first introduced by Yashiro et al.
in [45] and [46] using a grating interferometer, wherein the
scattering effect of the sample is treated as a local point
spread function whose estimated width mirrors the local
scattering strength. Later on, Modregger et al. [47,48] also
used a grating interferometer but, this time, combined with
numerical deconvolution to be able to extract the higher
moments of the scattering distribution. In this section, we
introduce by equivalence the recovery of the ultrasmall-
angle x-ray scattering distribution using near-field speckle
scans similar to the ones recorded and used in the previous
section.

Let us consider the light distribution f in the case of a
sample present in the x-ray beam path. Upon propagation, and
for a given pixel position r, we can consider f as the effect
of the sample optical transfer function o(r,p) convoluted with
the input reference signal g [31,47]:

f (r,p) =
∫

o(r,p − u)g(r,p)du. (6)

Henceforth, for each pair of patterns (with and without
sample) (f,g)(r), a deconvolution procedure can be applied
to retrieve the distribution o. For this purpose the iterative
Richardson-Lucy deconvolution [49–51] algorithm is conve-
nient because it is robust and its input does not require any
assumption on the system noise [52]. Such processing was
applied to the blueberry sample data of Sec. III with 100
iterations used in the Richardson-Lucy deconvolution for each
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FIG. 3. (Color online) Image modes of a blueberry sample obtained with the method of Sec. III: (a) transmission image T , (b)–(c) horizontal
and vertical wave front gradients ∇W · ex/y, (d) phase reconstruction φ, and (e) scattering image Df . Images obtained using the method of
Sec. IV: (f)–(g) horizontal and vertical wave front gradients ∇W · ex/y. Higher moments of the scattering distribution: (i)

√
M20, (j)

√
M02,

(k) 3
√
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M03, and (h) 4
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pixel. An illustration of the scattering distribution o resulting
from the deconvolution of the data of Figs. 2(b) and 2(c) is
displayed in Fig. 2(d).

Geometrically, the position p corresponds to the angular
coordinate α = 	 ss

d
p (see Fig. 4). By projection in this

angular variable coordinate system, a scattering image o(α)
can be constructed for each angular vector. Figure 5 shows an
image array of the blueberry sample organized as a function
of the scattering angular coordinates. Given a scan step of
ss = 3 μm, the angular step size from image to image was of
3.5 μrad.

Moments of the scattering distribution contain physical
information about the sample features and correspond, as
we shall see for the first of them, to the traditional contrast
modalities, i.e., the absorption, phase, and scattering signals.
The central moments Mmn of order (m,n),m + n > 1 of o(r)
are calculated within the meaning of angular probability
density functions:

Mmn(r) = 1

M00

(
ss

d

)(m+n) ∫
(X − Xr)m(Y − Yr)no(r,p)dp,

(7)
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FIG. 4. (Color online) The two possible geometries for the tech-
nique with the membrane placed either (a) upstream or (b) down-
stream from the investigated object. The refraction angle of the
(dashed) red ray passing through the sample is denoted α and the
(plain) blue ray shows the ray falling in the same detector pixel when
no sample is in the beam.
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y

x

FIG. 5. Array of the 5×5 central scatter images organized by their
angular vector α = ssp/d .

where

M00 =
∫

o(r,p)dp (8)

and (Xr,Y r) are the centroid positions of o(r,p):

Xr =
∫

Xo(r,p)dp
M00

Y r =
∫

Yo(r,p)dp
M00

. (9)

We have then v(r) = (Xr,Y r) by definition of v, from
which we can calculate ∇φ using Eq. (3). Furthermore, the
two second normalized moments

√
M02 and

√
M20 mirror the

angular characteristic scattering width in the two transverse
directions. Higher moments provide complementary informa-
tion on the scattering distribution, with, for instance, the third
and fourth moments related to its skewness and kurtosis. The
wave front differential gradients ∇W · ex/y for the blueberry
sample obtained using the scattering distribution centroid are
shown in Figs. 3(f) and 3(g). Even visually they are in good
agreement with the equivalent maps (b) and (c) calculated with
the constant-step method presented in the previous section. In
this same figure, the second moments

√
M02 and

√
M20 are

shown in panels (i) and (j) and the higher moments 3
√

M30,
3
√

M03, and 4
√

M40 drawn in panels (k), (l), and (h).

V. SCANS WITH RANDOM STEPS

In this section, we present a processing method to recover
the sample-induced 2D phase gradients from images acquired
using random-step scans, i.e., scans where the images are
recorded with the scattering membrane moved at random
transverse positions (X,Y ) in the plan (ex,ey), with no
particular translation distance from one image to the next.
However, it is crucial that scans performed with and without the
sample have their images taken with the scattering membrane
located at the very same positions for each corresponding step.

Here, we will change slightly the notation, in order not
to confuse the reader with the previous processing method.
We note i(r,n) the intensity collected at the position r of the
nth image of a scan containing N images when the sample is
inserted into the beam. Then, writing ir,n = i(r,n), we have the
vectors ir = (ir,1, . . . ,ir,n, . . . ,ir,N ) built from N realizations
of the random variables Ir, induced by the variable position
of the membrane. With equivalent notations, we also build the
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FIG. 6. (Color online) Geometry of the concept. (a) Data vector
ir built from N images with the sample in the beam. (b) Set of
reference vectors {ωr+h} in the reference data. (c) Correlation factor
map of ρ(ir,ωr+h).

reference vectors ωr, from N realizations of Wr obtained in
absence of a sample.

The idea is here again to use correlation calculations
between the speckle distribution in the various pixels to retrieve
the beam wave front derivative through the calculation of the
local light deflection angles α(r) as sketched in Fig. 6. So, we
use the Pearson correlation coefficient ρr generally defined by

ρ(Ir,Wr′) = E{[Ir − μ(Ir )][Wr′ − μ(Wr′)]}
σ (Ir)σ (Wr′)

, (10)

where E denotes the expected value. The factor ρ is the
normalized covariance of the pixel signals distributions. It
is used as figure of merit to evaluate the level of similarity
between the data acquired in the different pixels of the two
scans. For the vectors i and ω, this operation can also be seen
as a scalar product. Thus, we calculate an estimate of each
projection vector of ir onto vectors ωr+h located at a small
distance h from r in the reference scans:

ρ(ir,ωr+h) =
∑N

k (ir,k − ir)(ωr+h,k − ωr+h)√∑N
k (ir,k − ir)2

∑N
k (ωr+h,k −ωr+h)2

, (11)

where ir and ωr denote the mean values of the measurement
vectors.

For all ir, and with the correlation map ρ(ir,ωr+h)
[see Fig. 6(c)], we can locate the vector position of ωr+hmax

rendering maximum correlation:

hmax = arg max
h

ρ(ir,ωr+h). (12)

Here also the vector hmax is determined with a subpixel
accuracy by numerical interpolation over the neighboring
pixels [42,53]. Following the law of light propagation in
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homogeneous media, the phase gradient ∇φ is recovered by

∇φ(r) = k
sp

d
hmax(r), (13)

where sp is the detector pixel size. The corrected transmission
signal is equal to

Tr = μ(Ir)

μ(Wr+hmax(r))
(14)

and is valid for any geometry. With this processing method the
dark-field signal is written

Df = 1

Tr

σ (Ir)

σ (Wr+hmax(r))
, (15)

which is fully equivalent to Eq. (5). This method can be
seen as an oversampling version of the x-ray speckle-tracking
technique. Indeed, the cross-correlation operation is operated
between data collected in different pixels as performed with
speckle tracking [23]. Moreover, the refraction angle α is here
calculated at the sample position (see Fig. 6) and not at the
detector plane level as in the case of the method of Sec. III
with the angle ζ .

An experimental demonstration of the processing scheme
is provided in Fig. 7, using the same blueberry sample as
before, for comparison purposes. A pair of 25-image scans
was acquired by applying displacements to the membrane with
steps larger than 20 μm using a micrometer precision linear
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FIG. 7. (Color online) Random step processing scheme. (a) Hor-
izontal and (b) vertical differential wave front gradients. (c) Phase, (d)
transmission, and (e) scattering reconstruction images. (f) Intensity
plot along the lines marked in (c)–(e).

positioning motor. Figures 7(a) and 7(b) respectively show
the horizontal and vertical transverse differential wave front
gradients. The results obtained are in nearly perfect agreement
with the one calculated with the constant step size method
presented in Sec. III. Figure 7 shows the reconstructed phase
shift of the sample in panel (c), the transmission image in panel
(d), and the dark-field image in panel (e). Figure 7(f) displays a
plot of cuts along the marked lines of the three previous images
normalized to an arbitrary scale. One can observe the way the
different contrasts vary depending on the image modality.

This processing scheme is particularly interesting as it
allows us to recover the 2D phase and scattering information
for every pixel, as does the scheme with constant step, although
requiring a lower number of images. With the constant-step
method, O(N2) images are necessary to build the 4D matrix
f (r,p) while only O(N ) are required in this method for 2D
phase sensing.

VI. DISCUSSION

A. Sensitivity

The sensitivity of the speckle-scanning technique differs
depending on the processing method. When applying the
algorithm presented in Sec. III on data acquired with a scan of
constant step, the accuracy σ (α) on the wave front gradient is

σ1(α) = ss

d
	σ (vr). (16)

This can be compared to the processing method introduced in
Sec. V, for instance when using the same data:

σ2(α) = sp

d
σ (hr). (17)

From these equations, with a similar experimental setup, it
is the constant-step scanning method that delivers the highest
sensitivity. As a matter of fact, considering an equivalent
subpixel/step accuracy for the peak finder algorithm [41] in
both processing methods, we have σ (vr) ≈ σ (hr) and we can
set ss < sp to diminish σ1. When working with a collimated
x-ray beam, the gain in sensitivity gets rapidly limited by the
minimum step length necessary to get a sufficient intensity
variation within a pixel from one step to the next [42,54].
On the contrary, with a magnification projection geometry
setup, the gain can be tremendous since a tiny displacement
of the membrane located near the x-ray beam focal point can
generate a much larger displacement of the speckle pattern at
the detector level. In this case, when generating a sufficient
speckle statistic variation for the correlation algorithm to be
efficient and accurate, the angular resolution may reach the
nanoradian scale [55].

The convergence of the distribution estimators in Eq. (11)
scales with 1/

√
N [56]. This implies that only the few first

images are necessary to reach a suitable accuracy since√
Nσ (h) → 0 and

√
Nσ (v) → 0 as N → ∞.

From Eq. (10), considering two identical scans or areas of r
where the x-ray light is neither refracted nor scattered by any
sample, the distributions (Ir,Wr) should, by definition, render
a theoretical value ρ(Ir,Wr) = 1. For our experimental data,
when using the method of Sec. V, the deviation from unity of ρ

over an area of 150×150 pixels amounts to σ (α) = 0.8 μrad
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FIG. 8. (Color online) (a)–(b) Correct transmission and phase
images of a juniper cone. (c) Horizontal phase gradient calculated
searching the location of vectors from the sample scan across the
reference scan. (d) Output of the reciprocal calculation, searching
reference vector locations across the sample scan. (e)–(f) Zoom in
the small subset drawn on the above images. (f) Absolute difference
between the values of two magnified image subsets: � = (e)–(f).

for a scan of 25 images. When more than 150 images are
used it tends to a limit of σ (α) = 0.35 μrad. This last figure
is comparable to the one calculated with the two constant-step
methods presented in Secs. III and IV, suggesting that the
discrepancy may be due to monochromator instabilities, more
felt in the vertical direction.

B. Tracking orientation

Section V explains and illustrates the way the refraction
angle is recovered by examining the vector positions in the
original reference scan data. This subsection aims at illustrat-
ing the importance of operating along this line rather than
tracking the reference scan vectors in the data array collected
when the sample is present in the beam. The problem raised
here is due to the creation of optical vortices in the propagated
beam when going through the sample discontinuities [57].

Figure 8 presents an experimental data set for a juniper
berry sample imaged with x rays. That sample exhibits strong

scattering features and turbid phase shift. Figures 8(a) and 8(b)
successfully display the transmission and phase contrast im-
ages, respectively. Figure 8(c) presents the horizontal speckle
displacement vectors calculated picking vectors within the
sample scan and searching for their counterpart vectors in
the reference scan. Conversely, Fig. 8(d) corresponds to the
tracking of vectors from the reference scan across the sample
scan data. Figures 8(e) and 8(f) zoom-in the square subsets
of Figs. 8(c) and 8(d), while Fig. 8(g) shows the absolute
intensity difference between these two subsets. The significant
difference observed between the two calculated images results
from the incapacity of the algorithm to seize reference
vectors folded up in optical vortices upon propagation. As
these vectors add up at singularity points they generate new
distributions Ir [57] that are no longer correlated to any
reference vector. Obviously, as the detector pixel size and the
speckle grains themselves get smaller, or as the propagation
distance increases, the effect becomes more pronounced.

VII. CONCLUSION

Several advanced processing schemes were demonstrated
within the context of our x-ray speckle-scanning imaging
technique. Starting from the presently available scanning
method with a constant step, we proposed ways of building
error-free transmission images and of accessing the sample
scattering distribution, pixel by pixel, through a numerical
deconvolution of the scan data. The various processing
schemes were demonstrated with experimental data, assessing
thereby the excellence of the method. The recovery of
the sample scattering distribution is of interest in various
fields of materials science as well as in biological imaging
where the orientations of subpixel structures are responsible
for the functional behavior of the systems. In addition, a
processing scheme with relaxed constraint on the step size
was proposed. It can be seen as an oversampled version of
the speckle-tracking technique with a resolution enhanced
up to the one defined by the detector. The speckle-scanning
imaging technique based on a random-step scheme reduces
dramatically the number of acquisitions as compared to the
previously available schemes. This point is often essential in
the case of biological imaging, where the photon efficiency
permits us to reduce the dose delivered to the sample. Future
work will permit pushing and testing the limit of the method
in this regard. The proposed approach will also promote the
development of the speckle imaging technique with laboratory
low-brilliance sources.
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