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Collapse of spin-orbit-coupled Bose-Einstein condensates
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A finite-size quasi-two-dimensional Bose-Einstein condensate collapses if the attraction between atoms is
sufficiently strong. Here we present a theory of collapse for condensates with the interatomic attraction and
spin-orbit coupling. We consider two realizations of spin-orbit coupling: the axial Rashba coupling and the
balanced, effectively one-dimensional Rashba-Dresselhaus one. In both cases spin-dependent “anomalous”
velocity, proportional to the spin-orbit-coupling strength, plays a crucial role. For the Rashba coupling, this
velocity forms a centrifugal component in the density flux opposite to that arising due to the attraction between
particles and prevents the collapse at a sufficiently strong coupling. For the balanced Rashba-Dresselhaus
coupling, the spin-dependent velocity can spatially split the initial state in one dimension and form spin-projected
wave packets, reducing the total condensate density. Depending on the spin-orbit-coupling strength, interatomic
attraction, and initial state, this splitting either prevents the collapse or modifies the collapse process. These
results show that the collapse can be controlled by a spin-orbit coupling, thus extending the domain of existence
of condensates of attracting atoms.
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I. INTRODUCTION

Understanding Bose-Einstein condensates (BEC) of inter-
acting particles is one of the most interesting problems in
condensed matter physics [1]. For uniform three-dimensional
systems repulsion between the bosons depletes the condensate,
while attraction leads to the condensate instability seen as the
appearance of Bogoliubov modes with imaginary frequencies.
For the finite-size condensates this instability can be seen
in their collapse [2–6]. The collapse, where the size of the
state goes to zero after a finite time, strongly depends on the
spatial dimension D and is possible only in the D = 2 and
D = 3 condensates. The physics of the collapse is related to
the fundamental problems of nonlinear optics and quantum
mechanics [7], plasma instability [8], self-trapping of carriers
and excitons, and polaron formation [9].

The main features of the collapse of a free, not restricted
by an external potential, condensate are determined by the
interplay of its positive quantum kinetic and negative attraction
energies dependent on the characteristic size of the condensate
a. The kinetic energy is proportional to a−2 while the attraction
contribution behaves as −a−D . For D = 3 the dependence
of the total energy on a is nonmonotonic and the collapse
with a → 0 occurs at any interaction strength since at small a

the attraction dominates [10]. For D = 2 the interaction and
kinetic energies scale as a−2 and the collapse occurs only at a
strong enough attraction.

The BEC physics becomes much richer with synthetic
gauge fields [11] and synthetic spin-orbit coupling (SOC)
[12,13]. For the latter, optically produced atomic pseudospin
1/2 is coupled to atomic momentum and to a synthetic
magnetic field. The SOC can be produced in various forms,
simulating the Rashba and the Dresselhaus symmetries [14,15]
known in solid state physics. This coupling opens a venue to

the appearance of new phases in a variety of ultracold bosonic
[16–25] and fermionic [26–29] ensembles. The SOC plays
a crucial role in BEC physics in uniform three-dimensional
gases with interparticle repulsion and makes condensation
possible only at zero temperature [30], while at a finite
temperature the thermal depletion of the condensate diverges
[31]. For D = 2 the phases of the BEC of repelling bosons
trapped in a harmonic potential were found in Ref. [32].

One of the advantages of cold-atomic gases is the fact that
due to a very large particle wavelength compared with the
atomic radius, the interatomic interaction can be accurately
described by a single parameter, the scattering length as, where
positive (negative) as corresponds to repulsion (attraction)
between the atoms. The attraction can be achieved by means
of the Feshbach resonance [33] in a certain range of the system
parameters. Here we study the joint effect of the interatomic
attraction and spin-orbit on the spread and collapse of a
quasi-two-dimensional spin-orbit-coupled BEC.

This paper is organized as follows. In Sec. II we show
by qualitative arguments, a variational approach, and direct
numerical solution of the Gross-Pitaevskii equation that
the effect of the anomalous spin-dependent velocity due to
the spin-orbit coupling [34] can either completely prohibit the
collapse or strongly modify the collapse process. We study
the condensate dynamics and analyze the conditions at which
the collapse does not occur. Possible relations to experiment
and conclusions will be given in Sec. III.

II. COLLAPSE IN THE PRESENCE
OF SPIN-ORBIT COUPLING

A. General formulation: Hamiltonian and the collapse process

We consider a pancake-shaped condensate of pseudospin-
1/2 particles described by a two-component wave function
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� = [ψ↑(r,t),ψ↓(r,t)]T , where r ≡ (x,y), normalized to the
total number of particles N � 1. In the presence of the spin-
orbit coupling, the evolution of the wave function is described
by a system of coupled nonlinear partial differential equations
in the Gross-Pitaevskii-Schrödinger form

i�
∂�

∂t
=

[
− �

2

2M
� + Ĥso + 1

2
(B · σ̂ ) − g2 |�|2

]
�. (1)

Here M is the particle mass, Ĥso is the SOC Hamiltonian, B
is the effective magnetic field, and σ̂ = (

σ̂x ,̂σy ,̂σz

)
is the spin

operator. The coupling constant in Eq. (1) is given by g2 =
−4π�

2as/Maz, which we assume for simplicity to be spin-
independent, where az is the condensate extension along the z

axis, and as is negative [2,4,5]. Below we consider two strongly
different forms of Ĥso: the Rashba coupling with the spectrum
axially symmetric in the momentum space and the balanced,
essentially one-dimensional Rashba-Dresselhaus coupling.

Without loss of generality, we consider an initial state
prepared in a parabolic potential at zero temperature as

�(r,t = 0) ≡ A(0) exp

[
− r2

2a2(0)

]
ψ(0), (2)

where ψ(0) is the initial spinor, A(0) = √
N/π/a(0), and a(0)

is the initial width. At t = 0, the confining potential is switched
off [1] and the spin-orbit coupling and the attraction between
the atoms are switched on. The subsequent dynamics is, thus,
a response of the system to the instantaneous change in the
potential, interaction, and spin-orbit coupling.

In what follows we use the units � ≡ M ≡ 1 and the
dimensionless interaction g̃2 ≡ −4πas/az. The unit of length
� can be chosen arbitrarily, and the corresponding unit of time
is �2.

We address first the collapse without spin-dependent
effects. Here the energy of the system is

E = −1

2

∫
[�†�� + g̃2 |�|4]dxdy, (3)

and the evolution can be described by a variational approach
based on the Gaussian ansatz [4]

�(r,t) = A(t) exp

[
− r2

2a2
v(t)

[1 + ibv(t)]

]
ψ(0), (4)

where the variational parameters bv(t) and av(t) are the chirp
and the packet width, respectively. The equation of motion
for av becomes

..
av = −	/a3

v , where 	 = (̃g2N − λv) /2. The
collapse occurs if g̃2N exceeds the variational threshold value
λv = 2π [35]. The solution of this equation is

av(t) = a(0)

√
1 − 	t2

a4(0)
. (5)

The time scale of the evolution is the collapse time Tc ≡
a2(0)/

√
	, and the characteristic collapse velocity is vc ≡

a(0)/Tc = √
	/a(0).

The key point in the understanding of the role of the spin-
orbit coupling in the collapse process is the modified velocity

v = k + ∇kĤso, (6)

with k = −i∂/∂r, including the anomalous velocity [34] term
∇kĤso (here ∇k ≡ ∂/∂k) directly related to the particle spin.
The evolution of the probability density ρ = �†� is given by
the continuity equation

∂ρ

∂t
+ ∇ · J(r,t) = 0, (7)

with the components of the flux density

J(r,t) = i

2
[�∇�† − �†∇�] + �†[∇kĤso]�. (8)

The spin components of the condensate are given by expecta-
tion values

〈̂σi(t)〉 = 1

N

∫
�†σ̂i�dxdy. (9)

B. Rashba spin-orbit coupling

The first form of spin-orbit interaction that we consider is
the Rashba coupling

Ĥso ≡ ĤR = α(kxσ̂y − kyσ̂x), (10)

with the coupling constant α and k ≡ (kx,ky). The correspond-
ing spin-dependent terms in the velocity operators in Eq. (6)
become

∂ĤR

∂kx

= ασ̂y,
∂ĤR

∂ky

= −ασ̂x. (11)

The spatial scale of the SOC effects is described by the
characteristic distance the particle has to move to flip
the spin, Lso = 1/α. The corresponding spin rotation angle
at the particle displacement L is of the order of L/Lso. At
the initial stage of the BEC evolution t 
 Tc we obtain from
Eq. (1) for �(r,t = 0) in Eq. (2) with ψ(0) = [1,0]T

∂

∂t
ψ↓(r,t → 0) = i

√
N√

πa3(0)

x + iy

Lso
exp

[
− r2

2a2(0)

]
.

(12)

As a result, the ψ↓(r,t) component begins to grow at distances
r ∼ a(0) with a rate proportional to α. At a sufficiently large
α this growth can eventually lead to the collapse prevention.

At t > 0, the spatially nonuniform spin evolution begins.
Since the spin precession angle at the displacement of a(0)
is of the order of a(0)/Lso, starting from the fully polarized
ψ(0) = [1,0]T state, the atoms acquire the anomalous velocity
of the order of a(0)/Lso × α ∼ α2a(0) for the weak SOC
a(0) 
 Lso, or of the order of α otherwise. The criterion of
a large spin rotation in the collapse is a(0) > Lso, that is α >

1/a(0), while the condition of a sufficiently large developed
anomalous velocity is α > vc, that is α >

√
	/a(0). If the

latter inequality is satisfied, the centrifugal component in the
flow caused by the SOC can prevent the collapse, as we explain
in detail below [36]. The condition of a weak effect of magnetic
field on the collapse can be formulated as smallness of spin
precession angle due to the Zeeman splitting compared to
the precession angle due to the spin-orbit coupling, that is
TcB 
 min {a(0)/Lso,1} . We will assume this condition and
neglect the effects of the Zeeman splitting.

We begin the analysis of the joint effect of the SOC and
the interatomic attraction with numerical results obtained by
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FIG. 1. (Color online) Time dependence of the condensate width
for g̃2N = 16π and the values of α marked near the lines. The green
short-dashed line corresponds to the absence of collapse.

direct integration of Eq. (1) for a strong attraction, g̃2N � 1,

where the effect is clearly seen, taking the initial spin state
ψ(0) = [1,0]T . Figure 1 shows the time-dependent width of
the packet defined as

a(t) ≡ N√
2π

[∫
|�|4 dxdy

]−1/2

, (13)

where � is obtained by a direct solution of Eq. (1) for several
values of α. The solid line in Fig. 1 corresponds to the collapse
at α = 0 where in the vicinity of Tc, the numerically calculated
using Eqs. (1) and (13) width a(t) is accurately described by
the variational Eq. (5) with a(t) ∼ (Tc − t)1/2.

When spin-orbit coupling is included, the following fea-
tures may be seen. (i) At short time t 
 Tc, the attraction-
induced velocity develops linearly with t , while the anomalous
velocity increases as t2. As a result, the a(t) dependencies for
all values of α are the same at small t . (ii) The packet width
a(t) increases with time, reaches a plateau, and then decreases
to zero. Thus, with the increase in α, the collapse still can
occur, albeit taking a longer actual time tc > Tc. (iii) Increasing
further, α reaches a critical value αcr ≈ 0.7vc such that at
α > αcr the anomalous velocity is large enough to prevent the
collapse. The dependence of tc on the SOC strength can be
described as tc ∼ (αcr − α)−1 .

To get an insight of the effects of SOC on the collapse, we
depict the density profiles in Fig. 2. At a large α the density
forms a double peak with the maxima positions separating
with time as a result of the centrifugal component in the flux.
The resulting two-dimensional density distribution is given by
a ring of radius R(t) and width w(t) with a(t) ∼ √

R(t)w(t),
responsible for the broad plateaus in a(t)/a(0) seen in Fig. 1 at
subcritical spin-orbit coupling. At R(t) � a(t) the interatomic
interaction energy tends to zero as −1/R(t)w(t), and the
conserved total energy is the sum of the kinetic and SOC terms.
At α < αcr [see Fig. 2(a)] the attraction is still strong enough
to reverse the splitting and to restore the collapse. At α > αcr

[see Fig. 2(b)] the anomalous velocity takes over, the splitting
continues, and the collapse does not occur [37]. This process
is naturally accompanied by evolution of the condensate flux
and spin presented in the Supplemental Material [38].
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FIG. 2. (Color online) Density profile ρ(r,t) for g̃2N = 16π.

Black solid line is for t = 0, red dashed line is for t = 0.2a2(0),
blue dot-dashed line is for t = 0.4a2(0), and green dotted line is for
t = a2(0). (a) Here α = 0.67vc, and the dotted green line shown
in detail in the inset clearly demonstrates the collapse. (b) Here
α = 0.84vc; the condensate is robust against attraction and can spread
without collapsing.

C. Balanced Rashba and Dresselhaus couplings

In this subsection we consider a one-dimensional coupling

Ĥso ≡ ĤRD = αkxσ̂z, (14)

which is equivalent to the balanced Rashba and Dresselhaus
contributions and gauged out by an x-dependent spin rotation
[39] U = exp [iσ̂zx/Lso].

For simplicity we consider the initial state correspond-
ing to the spin oriented along the x axis with ψ(0) =
[1,1]T /

√
2. Due to the anomalous velocity ∂ĤRD/∂kx = ασ̂z

[cf. Eq. (11)], the initial state splits into two spin-projected
wave packets moving in the absence of interactions with
velocities ±α. As a result, the effective interaction decreases,
and the collapse can be prohibited by this decrease. This
happens, however, only at certain conditions, which we
establish here. For qualitative analysis we use the ansatz

ψ↑,↓(r∓,t) = Ã(t) exp

[
− r2

∓
2̃a2

v(t)
(1 + ib̃v(t)) ∓ ic̃v(t)x

]
,

(15)

where the upper (lower) sign corresponds to spin up (down)
and position r∓ ≡ (x ∓ d̃v(t),y), and in addition to the
variational chirp b̃v(t) and width ãv(t), we introduced the
variational momentum c̃v(t). From this ansatz we obtain, using
an approach similar to that of Ref. [4], equations of motion for
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d̃v and ãv:

..

d̃v = − g̃2N

π

d̃v

ã4
v

exp

(
−2d̃2

v

ã2
v

)
,

(16)
..

ãv = 1

ã3
v

{
π − g̃2N

4

[
1 +

(
1 − 2d̃2

v

ã2
v

)
exp

(
−2d̃2

v

ã2
v

)]}
,

for given ãv(0) = a(0) and other initial conditions

d̃v(0) = 0,
.

d̃v(0) = α,
.

ãv(0) = 0, (17)

where
.

d̃v(0) is due to the anomalous velocity term leading
to the spin-dependent splitting. These equations show that
the collapse disappears if the coupling is strong enough to
sufficiently separate the spin components; that is, at a certain
time

..

ãv changes sign from negative to positive.
Qualitative conditions of the collapse in the presence of

spin-orbit coupling in Eq. (14), which can be found from
Eq. (16), are as follows. If g̃2N > 4π , the collapse always
occurs since even if the spin states are well separated, each of
them still has the sufficient number of atoms. Depending on
the interatomic interaction and SOC, one can either obtain
the collapse at the origin, producing a spin-nonpolarized
condensate, or two spatially symmetric ones producing z-axis
polarized condensates. If g̃2N < 4π , the collapse occurrence
depends on the SOC strength.

At a sufficiently strong SOC, the spin splitting of the initial
state and possible collapse happen on different time scales.
The splitting occurs fast, on the time scale of a(0)/α, and the
interatomic attraction starts to play a role after the splitting. The
condition of time scale separation, which allows one to treat
the splitting and the collapse independently, is formulated as
a(0) < Tcα or, in other words, as α >

√
	/a(0). Although this

inequality looks similar to the above condition for the critical
Rashba coupling, they are qualitatively different. For the
Rashba coupling, the density decreases to zero and the collapse
disappears completely at any SOC stronger than the critical
one. For the balanced Rashba-Dresselhaus coupling the max-
imum density decreases at most by a factor of 2, and therefore
the collapse can occur even at a very strong SOC, when spin-up
and spin-down states are already well separated in space.

Figure 3 shows the time dependence of the packet width
in Eq. (13) obtained by solution of Eq. (1) with spin-orbit-
coupling Hamiltonian (14) for g̃2N = 3π. The behavior at
small t 
 Tc here depends on α since the peaks in the
spin-projected densities split by 2α t due to the anomalous
velocity. The numerically obtained critical value of α here is
approximately 0.83vc and a(t) ∼ (tc − t) shows a linear rather
than a square-root behavior near the collapse time.

III. RELATION TO EXPERIMENT AND CONCLUSIONS

To make connections to possible BEC experiments, we
return to the physical units and estimate the constant g̃2 as
0.05 for −as ∼ 100aB ∼ 5 × 10−3 μm and az ∼ 1 μm. The
condition g̃2N > 2π can be satisfied already for ensembles
with N ∼ 100 particles. The velocity of the collapse is vc ∼

Α = 1.25 vc

Α = 0.75 vc

Α = 0.63 vcΑ = 0
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t a2 0

a
t
a

0

FIG. 3. (Color online) Time dependence of the condensate width
for g̃2N = 3π in the presence of balanced Rashba-Dresselhaus SOC
and different values of α as marked near the lines.

�

√
g̃2N/Ma(0). At a(0) ∼ 10 μm and N ∼ 103 this estimate

yields vc ∼ 0.03 cm/s and the corresponding time scale Tc =
a(0)/vc ∼ 0.3 s. Such a small value of vc demonstrates that
even a relatively weak experimentally achievable coupling [40]
can prevent the BEC from collapsing. At these conditions, the
characteristic distance between the particles [a2(0)az/N]1/3 ∼
0.5 μm is much larger than −4πas � 0.1 μm, still preventing
a strong depletion of the condensate.

To conclude, we have demonstrated that the anomalous
spin-dependent velocity determined by the spin-orbit-coupling
strength can prevent collapse of a nonuniform quasi-two-
dimensional BEC [41,42]. For the Rashba coupling with the
spectrum axially symmetric in the momentum space, this ve-
locity leads to a centrifugal component in the two-dimensional
density flux. As a result, spin-orbit coupling can prevent
collapse of the two-dimensional BEC if this flux is sufficiently
strong to overcome the effect of interatomic attraction. In
this case, the attraction between the bosons cannot squeeze
the initial wave packet and force it to collapse. In the case
of effectively one-dimensional balanced Rashba-Dresselhaus
couplings, the anomalous velocity splits the initial state into
spin-polarized wave packets, decreases the condensate density,
and thus can prevent the collapse. Our approach can be
generalized in a straightforward way for the intermediate
case, where Dresselhaus and Rashba couplings have different
strength. These results show that one can gain control over the
BEC collapse process by using the experimentally available
synthetic spin-orbit-coupling fields and, thus, extend the
experimental abilities to study various nontrivial dynamical
regimes in Bose-Einstein condensates of attracting particles.
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[40] D. L. Campbell, G. Juzeliūnas, and I. B. Spielman, Phys. Rev.
A 84, 025602 (2011).

[41] In terms of collective effects in solids [9], this result implies
that spin-orbit coupling can prevent self-trapping of carriers and
excitons.

[42] Collapse of two-dimensional BEC of polaritons in optical
microcavities was, supposedly, observed in M. Vladimirova,
S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A.
Lemaı̂tre, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V.
Kavokin, Phys. Rev. B 82, 075301 (2010). It will be of interest
to experimentally study the influence of spin-orbit coupling of
polaritons [e.g., O. A. Egorov, A. Werner, T. C. H. Liew, E. A.
Ostrovskaya, and F. Lederer, Phys. Rev. B 89, 235302 (2014)]
on the BEC collapse process in these systems.

043604-5

http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/PhysRevLett.79.2604
http://dx.doi.org/10.1103/PhysRevLett.79.2604
http://dx.doi.org/10.1103/PhysRevLett.79.2604
http://dx.doi.org/10.1103/PhysRevLett.79.2604
http://dx.doi.org/10.1103/PhysRevLett.85.1795
http://dx.doi.org/10.1103/PhysRevLett.85.1795
http://dx.doi.org/10.1103/PhysRevLett.85.1795
http://dx.doi.org/10.1103/PhysRevLett.85.1795
http://dx.doi.org/10.1103/PhysRevA.67.013605
http://dx.doi.org/10.1103/PhysRevA.67.013605
http://dx.doi.org/10.1103/PhysRevA.67.013605
http://dx.doi.org/10.1103/PhysRevA.67.013605
http://dx.doi.org/10.1103/PhysRevLett.81.933
http://dx.doi.org/10.1103/PhysRevLett.81.933
http://dx.doi.org/10.1103/PhysRevLett.81.933
http://dx.doi.org/10.1103/PhysRevLett.81.933
http://dx.doi.org/10.1103/PhysRevLett.80.2031
http://dx.doi.org/10.1103/PhysRevLett.80.2031
http://dx.doi.org/10.1103/PhysRevLett.80.2031
http://dx.doi.org/10.1103/PhysRevLett.80.2031
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.1103/PhysRevLett.80.1576
http://dx.doi.org/10.1103/PhysRevLett.80.1576
http://dx.doi.org/10.1103/PhysRevLett.80.1576
http://dx.doi.org/10.1103/PhysRevLett.80.1576
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1103/PhysRevLett.105.160403
http://dx.doi.org/10.1103/PhysRevLett.105.160403
http://dx.doi.org/10.1103/PhysRevLett.105.160403
http://dx.doi.org/10.1103/PhysRevLett.105.160403
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1142/S0217979212300010
http://dx.doi.org/10.1142/S0217979212300010
http://dx.doi.org/10.1142/S0217979212300010
http://dx.doi.org/10.1142/S0217979212300010
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1103/PhysRevLett.92.153005
http://dx.doi.org/10.1103/PhysRevLett.92.153005
http://dx.doi.org/10.1103/PhysRevLett.92.153005
http://dx.doi.org/10.1103/PhysRevLett.92.153005
http://dx.doi.org/10.1103/PhysRevLett.95.010403
http://dx.doi.org/10.1103/PhysRevLett.95.010403
http://dx.doi.org/10.1103/PhysRevLett.95.010403
http://dx.doi.org/10.1103/PhysRevLett.95.010403
http://dx.doi.org/10.1103/PhysRevLett.95.010404
http://dx.doi.org/10.1103/PhysRevLett.95.010404
http://dx.doi.org/10.1103/PhysRevLett.95.010404
http://dx.doi.org/10.1103/PhysRevLett.95.010404
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevA.81.053403
http://dx.doi.org/10.1103/PhysRevA.81.053403
http://dx.doi.org/10.1103/PhysRevA.81.053403
http://dx.doi.org/10.1103/PhysRevA.81.053403
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1209/0295-5075/99/56008
http://dx.doi.org/10.1209/0295-5075/99/56008
http://dx.doi.org/10.1209/0295-5075/99/56008
http://dx.doi.org/10.1209/0295-5075/99/56008
http://dx.doi.org/10.1103/PhysRevA.86.063621
http://dx.doi.org/10.1103/PhysRevA.86.063621
http://dx.doi.org/10.1103/PhysRevA.86.063621
http://dx.doi.org/10.1103/PhysRevA.86.063621
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.109.115301
http://dx.doi.org/10.1103/PhysRevLett.108.235301
http://dx.doi.org/10.1103/PhysRevLett.108.235301
http://dx.doi.org/10.1103/PhysRevLett.108.235301
http://dx.doi.org/10.1103/PhysRevLett.108.235301
http://dx.doi.org/10.1103/PhysRevLett.108.035302
http://dx.doi.org/10.1103/PhysRevLett.108.035302
http://dx.doi.org/10.1103/PhysRevLett.108.035302
http://dx.doi.org/10.1103/PhysRevLett.108.035302
http://dx.doi.org/10.1103/PhysRevLett.102.046402
http://dx.doi.org/10.1103/PhysRevLett.102.046402
http://dx.doi.org/10.1103/PhysRevLett.102.046402
http://dx.doi.org/10.1103/PhysRevLett.102.046402
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095301
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevLett.109.095302
http://dx.doi.org/10.1103/PhysRevA.87.063627
http://dx.doi.org/10.1103/PhysRevA.87.063627
http://dx.doi.org/10.1103/PhysRevA.87.063627
http://dx.doi.org/10.1103/PhysRevA.87.063627
http://dx.doi.org/10.1103/PhysRevLett.109.025301
http://dx.doi.org/10.1103/PhysRevLett.109.025301
http://dx.doi.org/10.1103/PhysRevLett.109.025301
http://dx.doi.org/10.1103/PhysRevLett.109.025301
http://dx.doi.org/10.1103/PhysRevA.85.023615
http://dx.doi.org/10.1103/PhysRevA.85.023615
http://dx.doi.org/10.1103/PhysRevA.85.023615
http://dx.doi.org/10.1103/PhysRevA.85.023615
http://dx.doi.org/10.1103/PhysRevLett.107.270401
http://dx.doi.org/10.1103/PhysRevLett.107.270401
http://dx.doi.org/10.1103/PhysRevLett.107.270401
http://dx.doi.org/10.1103/PhysRevLett.107.270401
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1016/0022-3697(59)90004-6
http://dx.doi.org/10.1016/0022-3697(59)90004-6
http://dx.doi.org/10.1016/0022-3697(59)90004-6
http://dx.doi.org/10.1016/0022-3697(59)90004-6
http://dx.doi.org/10.1080/00018730802564122
http://dx.doi.org/10.1080/00018730802564122
http://dx.doi.org/10.1080/00018730802564122
http://dx.doi.org/10.1080/00018730802564122
http://link.aps.org/supplemental/10.1103/PhysRevA.91.043604
http://dx.doi.org/10.1103/PhysRevB.82.161305
http://dx.doi.org/10.1103/PhysRevB.82.161305
http://dx.doi.org/10.1103/PhysRevB.82.161305
http://dx.doi.org/10.1103/PhysRevB.82.161305
http://dx.doi.org/10.1103/PhysRevA.84.025602
http://dx.doi.org/10.1103/PhysRevA.84.025602
http://dx.doi.org/10.1103/PhysRevA.84.025602
http://dx.doi.org/10.1103/PhysRevA.84.025602
http://dx.doi.org/10.1103/PhysRevB.82.075301
http://dx.doi.org/10.1103/PhysRevB.82.075301
http://dx.doi.org/10.1103/PhysRevB.82.075301
http://dx.doi.org/10.1103/PhysRevB.82.075301
http://dx.doi.org/10.1103/PhysRevB.89.235302
http://dx.doi.org/10.1103/PhysRevB.89.235302
http://dx.doi.org/10.1103/PhysRevB.89.235302
http://dx.doi.org/10.1103/PhysRevB.89.235302



