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Dynamical role of system-environment correlations in non-Markovian dynamics
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We analyze the role played by system-environment correlations in the emergence of non-Markovian dynamics.
By working within the framework developed in Breuer et al. [Phys. Rev. Lett. 103, 210401 (2009)], we unveil
a fundamental connection between non-Markovian behavior and dynamics of system-environment correlations.
We derive an upper bound to the rate of change of the distinguishability between different states of the system
that explicitly depends on the establishment of correlations between system and environment. We illustrate our
results using a fully solvable spin-chain model, which allows us to gain insight into the mechanisms triggering
non-Markovian evolution.
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The study of non-Markovian quantum dynamics is gather-
ing substantial interest due to key advances in the analysis,
understanding, and even simulation of nontrivial system-
environment effects [1]. A particularly significant step forward
in this context has been performed with the formulation of
new theoretical tools able to characterize and quantify the
deviations of given dynamics from Markovianity [2–6]. Each
of such instruments addresses a specific manifestation of
non-Markovianity, therefore embodying in principle a distinct
quantitative measure. Although the relationship among such
diversified approaches has been considered [7] and a full
reconciliation seems foreseeable [8], the fundamental factors
responsible for the occurrence of non-Markovian features
remain largely elusive.

In particular the question of whether system-environment
correlations (SECs) are of any importance in the emergence
of non-Markovian dynamics is essentially open. Although a
possible role of SECs was hinted at in some formulation of
non-Markovian dynamical maps [9], their connection with
quantitative measures of non-Markovianity has not been
explored, to the best of our knowledge. Here, we aim at
filling this gap by formulating a theory that makes such a
connection explicit and indeed experimentally testable. We
show that by making use of the properties of the trace distance,
it is possible to establish a quantitative link between the
non-Markovian nature of a process and the existence and
evolution of dynamical SECs. Our key result is the formulation
of an upper bound for the derivative of the trace distance
between two evolving states of the system that depends
explicitly on SECs and environmental distinguishability. In
turn, this bound can be used to witness the occurrence
of SECs by monitoring experimentally the behavior of the
trace distance. The development of increasingly accurate and
reliable techniques for manipulation of quantum systems in
photonics and condensed-matter physics will soon open up
the possibility to harness the interaction between system
and environment. In this perspective, our results provide an
analytic tool to gather useful information on the way a system
and its environment share quantum correlations by monitoring
a figure of merit of simple experimental access.

In order to link our formal findings to an interesting
physical case, we use an exactly solvable quantum many-body
model. We consider a quantum spin chain ruled by XX-
like interparticle couplings in a transverse magnetic field, a
system that has been recently used to ascertain non-Markovian
dynamical features [11]. This provides a pragmatic scenario
where we illustrate our results: On the one hand, we test the
tightness of the bound using a physically motivated example.
On the other hand, we quantify the amount of SECs and show
the similarity between the behavior of the rate of change
of SECs and that of the derivative of the trace distance.
As we discuss thoroughly, our investigation almost naturally
paves the way to the critical assessment of the definition of
“information flow” upon which the measure in [4] is built.

Trace distance-based measure of non-Markovianity. We
start by setting up a framework for relating non-Markovianity
and SECs and based on state distinguishability, which is mea-
sured, throughout this paper, by the trace distance D(ρ1,ρ2) =
||ρ1 − ρ2||/2 between two states ρ1 and ρ2. Here, ||A|| =
Tr

√
A†A is the trace-1 norm of a matrix A. Given a quantum

system that is prepared in state ρj (j = 1,2) with probability
1/2, the average probability for an observer to guess correctly
such preparation is [1 + D(ρ1,ρ2)]/2. In what follows, we
exploit the subadditive property of the trace norm with respect
to the tensor product, i.e., D(ρ1⊗ρ2,ρ3⊗ρ4) � D(ρ1,ρ3) +
D(ρ2,ρ4) with ρk (k = 1, . . . ,4) arbitrary density matrices,
and its contractivity under a positive trace-preserving map
�t , i.e., D(�t [ρ1],�t [ρ2]) � D(ρ1,ρ2). Contractivity gives
rise to the decrement of the trace distance under completely
positive (CP) maps and is a key ingredient in the definition of
non-Markovianity.

According to Ref. [4], a process is defined as non-
Markovian if there is a pair of initial states ρ1,2(0) of the
system and a time t in their evolution such that

σ (t,ρ1,2(0)) = d

dt
D(ρ1(t),ρ2(t))>0. (1)

The associated measure of non-Markovianity is then calcu-
lated as N = maxρ1,2(0)

∫
σ+

dt σ (t,ρ1,2(0)), where σ+ is the
union of the temporal domains where σ (t,ρ1,2(0)) > 0. The
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optimization over the pair of input states ensures that such a
figure of merit faithfully reveals non-Markovianity.

Bound to non-Markovianity. We now provide the connec-
tion between the emergence of non-Markovianity as witnessed
by Eq. (1) and the evolution of SECs by formulating an upper
bound to the derivative of the trace distance between two
system states ρS

1 and ρS
2 at a generic instant of time t . Our

result can be effectively formulated as the following.
Theorem. For any quantum process described by a com-

pletely positive map with associated system-environment
interaction ruled by the propagator Û(t,0) = e−iĤ t we have

σ
(
t,ρS

1,2

)
� 1

2

(
min
k=1,2

∥∥TrE
{[

Ĥ ,ρS
k (t) ⊗ {

ρE
1 (t) − ρE

2 (t)
}]}∥∥

+ ∥∥TrE
{[

Ĥ ,
{
χSE

1 (t) − χSE
2 (t)

}]}∥∥ )
, (2)

where ρS
1,2 are arbitrary systems states, χSE

j (t) = ρSE
j (t) −

ρS
j (t) ⊗ ρE

j (t) are the SECs, and ρ
S(E)
j (t) = TrE(S)[Û(t,t ′)ρ

SE
j

(t ′)Û †
(t,t ′)] (for any t ′ < t) is the system (environment) state at

the time t .
The technical steps needed to prove this statement are

sketched in the Appendix. Here we focus on the significance
and the implications of this theorem, which is the central result
of our study. Equation (2) bridges the occurrence of non-
Markovianity (as revealed by a growing trace distance) with
the dynamics of SECs and environmental distinguishability.
The upper bound consists of two different contributions. The
first term contains the information about the two different
states of the environment. By decomposing the interaction
Hamiltonian in terms of the eigen-operators ÂS

α and B̂E
α ,

so that Ĥ = ∑
α ÂS

α⊗B̂E
α , the first term can be recast into

the form ||[∑α γαÂα,ρS
2(1)(t)]|| with γα = ±TrE{Bα[ρE

1 (t) −
ρE

2 (t)]}. Here γ clearly depends on the difference between the
environment states. The second term of the bound accounts for
the presence and evolution of SECs. This term contains all the
nondiagonal elements of the S-E state, depends by definition
on both the reduced state of the system and the total system-
environment state, and is such that TrS(E)[χSE

j (t ′)] = 0.
The bound in Eq. (2) shows that if SECs are not produced

across the evolution and the environment is left in the same
conditions regardless of the state of the system, the process
is necessarily Markovian. This demonstrates the intimate
connection between SECs and the changes in distinguisha-
bility of different input states in a non-Markovian evolution,
broadening the view on the occurrence of such effects. On
the other hand, our upper bound states that the creation of
correlations can be compatible with Markovian dynamics.

An important point to stress is that the theorem is formulated
under the assumptions of zero initial SECs: the initial
state of system and environment is factorized. A unification
between witness of initial SECs and witness of non-Markovian
dynamics is proposed and thoroughly discussed in Ref. [10].

Physical model. We now test Eq. (2) against a physically
motivated situation that will help us illustrate its deep physical
implications. We consider the generation of SECs and their
relation with non-Markovianity in a simple unidimensional
quantum many-body system embodied by N + 1 spin-1/2
particles (labelled n = 0,1, . . . ,N ) mutually coupled via an

XX model and subjected to a transverse magnetic field.
We are interested in the bipartition consisting of the small
system given by spin 0 and the environment represented by
the remaining N particles. Assuming units such that h̄ = 1
across the manuscript, the corresponding Hamiltonian model
is Ĥ = ĤSE + ĤE with

ĤSE = −2J0
(
σ̂ x

0 σ̂ x
1 + σ̂

y

0 σ̂
y

1

)
,

(3)

ĤE = −2J

N−1∑
n=1

(
σ̂ x

n σ̂ x
n+1 + σ̂ y

n σ̂
y

n+1

) − 2B

N∑
n=1

σ̂ z
n ,

where σ̂ k
n is the k-Pauli matrix (k = x,y,z) for particle n, B is

the amplitude of the magnetic field affecting S, and J (J0) is
the interenvironment (system-environment) coupling strength.
This model presupposes that the free evolutions of S and E are
identical, thus allowing the passage to the interaction picture
without the introduction of time-dependent coefficients. The
open-system evolution of S and its consequences for non-
Markovianity have been analyzed in Ref. [11], where it
was found that for interaction times that are well within
the recurrence time of the system (when any information
propagating across the chain returns to S after reaching
the end of the chain), there is a working point defined by
(J0/J,B/J ) at which the measure of non-Markovianity N is
null. As the optimization inherent in the definition of such
measure is achieved for system states lying on the equatorial
plane of the Bloch sphere [11], we consider the input states
ρS

1,2(0) = |±〉〈±| with |±〉 = (|0〉 ± |1〉)/√2. The environ-
ment is initialized in ρE

1,2(0) = ρE
ini = ⊗N−1

i=1 |0〉i〈0|, so that the
total system-environment state is ρSE

1,2 (0) = ρS
1,2(0) ⊗ ρE

ini.
Figure 1(a) compares σ (t,ρ1,2) and its upper bound under

the above initial conditions and for J0/J = 1, B/J = 0.01.
We have restricted the width of the time window that we
consider to values within the time at which finite-size effects
are expected to occur. This is easily estimated by considering
that the maximum single-excitation group velocity of our
model is 2, which implies that it takes at least a time N

for a single excitation to leave S and come back to it. As
the right-hand side of Eq. (2) is non-negative, a quantitative
comparison between the derivative of the trace distance and

1 2 3

-0.3

0.3
(b)

1 2 3 4 5

-1.5

-0.5

0.5

1.5 (a)
0 1 2 N

ES

FIG. 1. (Color online) (a) We show σ (t,ρ1,2) (solid blue line) and
the right-hand side of Eq. (2) (which we label B for convenience
and display as a dashed orange line) against the rescaled interaction
time J t for a chain of N = 9 particles (i.e., an environment with 8
spins) when S is prepared in either |+〉 or |−〉 (see inset for a sketch
of the physical situation at hand). (b) We compare the behavior of
σ (t,ρ12) (solid blue line) with the evolution of the environmental
indistinguishability E = 1 − D(ρE

1 (t),ρE
2 (t)) (amplified by a factor

of 10 for ease of visualization, dotted red line) and the quantity X
defined in the body of the manuscript (dashed green line). In both
panels, J0/J = 1 and B = 10−2J , while shaded regions highlight
the regions of non-Markovianity.
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its upper bound is meaningful only when σ (t,ρ1,2(t)) > 0.
Interestingly, the bound becomes very tight as soon as the
derivative of the trace distance becomes positive.

The two terms appearing in the bound have a different
time behavior: the one depending on the reduced environ-
mental states contributes the most to the right-hand side.
The second term, which is associated with the correlations,
has local minima whenever σ (t,ρ1,2) crosses the horizontal
axis. This observation prompts us to study the behavior
of other quantities. In Fig. 1(b) we plot the evolution of
the trace distance of the correlations X = D(χSE

1 (t),χSE
2 (t))

and the indistinguishability between the environmental states
E = 1 − D(ρE

1 (t),ρE
2 (t)) finding that they are both minimal

when σ (t,ρ1,2) changes sign from being negative, thus showing
that non-Markovianity occurs when the environmental states
become perfectly distinguishable [i.e., D(ρE

1 (t),ρE
2 (t)) = 1].

At these times, a careful analysis shows that not only X � 0
but also the correlations within each state almost disappear
(||χSE

1,2 (t)|| � 0), thus leaving system-environment states that
are basically factorized.

Time-derivative of quantum mutual information. We now
pass to the quantification of SECs in non-Markovian dynamics.
The quantum mutual informationI between S and E quantifies
the total amount of information shared between system and
environment, and accounts for classical and quantum correla-
tions between the parts. Given that the state of the total system
(plus environment) is pure and evolves via unitary dynamics,
the quantum mutual information is simply equal to twice the
von Neumann entropy SvN (t) = −Tr[ρS

1,2(t) log2 ρS
1,2(t)] of

the system (coinciding also with the entanglement between
S and E). Notice that the von Neumann entropy is the same
for the two system’s states. Figure 2(a) compares the derivative
of the von Neumann entropy with σ (t,ρ1,2): with the exception
of the initial part of the dynamics, the two functions exhibit
the same qualitative behavior. When the evolution starts, the
quantum mutual information increases, so SECs are created,
leading to a loss of information over the system’s state and thus
to decoherence. Later on, both mutual information and SECs
decrease: this is the time window where recoherence takes
place. If such a process becomes significant, and thus corre-
lations become small enough (implying an actual comeback
of the information that was previously encoded in the S-E
state to S only), the system “jumps” to the non-Markovian
regime with an abrupt change of σ (t,ρ1,2). Quite interestingly,
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FIG. 2. (Color online) (a) We show σ (t,ρ1,2) (solid blue line)
and ṠvN (t) (dashed red curve) against the interaction time J t

for J0/J = 1,B/J = 10−2. The trace distance D(ρS
1 (t),ρS

2 (t)) and
entanglement associated with this situation are reported for the same
time window. The shaded regions highlight non-Markovianity. (b)
Same analysis but for the Markovian point corresponding to J0/J = 1
and B/J = 1/2.

such recoherence processes do not coincide with the non-
Markovianity period, but seem to act as precursors of it.

This behavior is typical of the working points at which
the model at hand gives rise to non-Markovian processes
certified by N �= 0. On the other hand, as mentioned above,
a parameter regime exists for which the many-body dynamics
corresponds to a perfectly Markovian process for spin S [11].
This is reported in Fig. 2(b). Clearly, the much higher degree of
quantum correlations between S and E at the times at which, in
panel (a), the non-Markovian thresholds were passed, leaves
σ (t,ρ1,2) < 0. The quantum mutual information approaches
zero [and σ (t,ρ1,2) is positive again] only for windows of time
wide enough to cover the effects of the chain’s finite size.
However, this sort of non-Markovianity should be set apart
from the features discussed here and associated with shorter
time scales. While the former are due to the physical return
of excitations to the S particle, the latter have a much deeper
origin, now captured by Eq. (2) and our analysis.

Concluding remarks. We have proposed and analyzed in
depth an approach to the establishment of non-Markovian
dynamics, based on the assessment of the state of the
environment and the explicit presence of SECs during the
open evolution. Our perspective is that in order to get insight
into the reasons behind a non-Markovian process, one should
focus on the structural modifications that the interaction with S

induces on the system-environment states. Quite significantly,
our investigation appears to support such a vision by linking
explicitly one of the measures for non-Markovianity to the
presence of SECs and possible deviations of the environment
from its initial state. We have provided an upper bound to the
rate of change of the distinguishability between different states
of S that clearly shows a dependence on such key features. The
tightness of the bound was investigated using a spin-chain
system whose rich non-Markovianity diagram allowed the
exploration of various interesting dynamical conditions [11]
and the study of the subtle role played by SECs in the
emergence of non-Markovianity.

We believe that SECs can be instrumental also to ad-
dress critically the interpretation of the measure of non-
Markovianity based on the trace distance. Such a quantifier
is operationally interpreted in terms of the so-called “flow of
information” to and from the environment: for non-Markovian
systems, the natural direction of the decoherence process
leading the system to lose energy, coherence, or quantumness
into the environment is, in certain time windows, reversed. The
reversal of the flow of information is assumed to happen when
the derivative of the trace distance increases. Nevertheless,
when used in the context of non-Markovian dynamics, the
term “information flow” does not have a uniquely defined
mathematical meaning.

Our view is that SECs embody a proper figure of merit
to define information flow. In such a perspective, information
would be identified by the quantum mutual information I
shared by system and environment, thus quantifying the
total amount of SECs. On the other hand, its flow will be
encompassed by the time derivative of I. An inflow (outflow)
of information to (from) the system would be signaled by its
negative (positive) time derivative. The application of such
a definition to the physical model at hand would challenge
the commonly accredited view according to which S recovers
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information while the trace distance is positive. In fact, in the
physical model studied here, the recoherence process, which
is associated with an increased purity of the system’s state
and the decrease of SECs, occurs before the transition to a
non-Markovian window and, in a sense, precedes it. Our study
calls out loud for a clearer definition of information flow in
open quantum systems and proposes the use of correlations
between system and environment as the figure of merit against
which such an analysis should be performed.
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Appendix. Proof of the stated theorem. We now provide the
steps needed to derive the upper bound to σ (t,ρ1,2) stated in
Eq. (2). As discussed in the paper, we consider a quantum
process described by a completely positive map and take the
derivative of the trace distance between two system states, ρS

1
and ρS

2 , at a generic instant of time t . We get

σ (t,ρ1,2) = 1

2
lim
t ′→t

∥∥ρS
1 (t) − ρS

2 (t)
∥∥ − ∥∥ρS

1 (t ′) − ρS
2 (t ′)

∥∥
t − t ′

. (4)

We now use the decomposition of the S-E state at time
t ′ ρSE

j (t ′) = ρS
j (t ′) ⊗ ρE

j (t ′) + χSE
j (t ′) and the triangular in-

equality for the trace distance to obtain

∥∥ρS
1 (t) − ρS

2 (t)
∥∥

�
∥∥TrE

{
Û(t,t ′)

[
ρS

1 (t ′) − ρS
2 (t ′)

] ⊗ ρE
1(2)(t

′)Û †
(t,t ′)

}∥∥
+ min

k=1,2

∥∥TrE
{
Û(t,t ′)

[
ρS

k (t ′)
] ⊗ [

ρE
1 (t ′) − ρE

2 (t ′)
]
Û

†
(t,t ′)

}∥∥
+ ∥∥TrE

{
Û(t,t ′)

[
χSE

1 (t ′) − χSE
2 (t ′)

]
Û

†
(t,t ′)

}∥∥. (5)

By using the fact that the evolution of a system through
the unitary operator Û(t,0) is described by the completely
positive (CP) dynamical map, the first term in the right-hand
side of Eq. (5) is written as ||�̃(t,t ′)[ρS

1 (t ′)] − �̃(t,t ′)[ρS
2 (t ′)]||,

where �̃(t,t ′)[ρS
i (t ′)] = TrE{U(t,t ′)ρ

S
i (t ′) ⊗ ρE

1(2)(t
′)U(t,t ′)} is a

CP trace-preserving map. Using again contractivity we have
that∥∥�̃(t,t ′)

[
ρS

1 (t ′)
] − �̃(t,t ′)

[
ρS

2 (t ′)
]∥∥ �

∥∥ρS
1 (t ′) − ρS

2 (t ′)
∥∥. (6)

By plugging Eq. (6) into Eq. (5) and substituting back into
Eq. (4), we find

σ (t,ρ1,2)

� 1

2
lim
t ′→t

{∥∥�(t,t ′)
[
ρS

1 (t ′) − ρS
2 (t ′)

]∥∥ − ∥∥ρS
1 (t ′) − ρS

2 (t ′)
∥∥

t − t ′

+
∥∥TrE

{
Û(t,t ′)

[
χSE

1 (t ′) − χSE
2 (t ′)

]
Û

†
(t,t ′)

}∥∥
t − t ′

+ min
k=1,2

∥∥TrE
{
Û(t,t ′)ρ

S
k (t ′) ⊗ [

ρE
1 (t ′) − ρE

2 (t ′)
]
Û

†
(t,t ′)

}∥∥
t − t ′

}
.

(7)

The first term in the right-hand side is nonpositive due to the
contraction property of the trace distance under CP maps. We
discard it, thus providing a loser upper bound to σ (t,ρ1,2). In
order to manage the second and third terms we assume to know
the Hamiltonian Ĥ regulating the S-E interaction and expand
Û(t,t ′) = e−iĤ (t−t ′) in power series, stopping it at first order in
Ĥ . We find

lim
t→t ′

∥∥TrE
{
Û(t,t ′)

[
χSE

1 (t ′) − χSE
2 (t ′)

]
Û

†
(t,t ′)

}∥∥
(t − t ′)

= ∥∥TrE
{[

Ĥ ,χSE
1 (t) − χSE

2 (t)
]}∥∥.

An analogous calculation holds for the third term, from which
Eq. (2) is then straightforwardly found.
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[3] Á. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105,
050403 (2010).

[4] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103,
210401 (2009).

[5] X.-M. Lu, X. Wang, and C. P. Sun, Phys. Rev. A 82, 042103
(2010).

[6] A. K. Rajagopal, A. R. Usha Devi, and R. W. Rendell, Phys.
Rev. A 82, 042107 (2010).

[7] P. Haikka, J. D. Cresser, and S. Maniscalco, Phys. Rev. A 83,
012112 (2011).

[8] D. Chruscinski, A. Kossakowski, and Á. Rivas, Phys. Rev. A 83,
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