Erratum: Phase-resolved attosecond near-threshold photoionization of molecular nitrogen [Phys. Rev. A 80, 011404(R) (2009)]

S. Haessler, B. Fabre, J. Higuet, J. Caillat, T. Ruchon, P. Breger, B. Carré, E. Constant, A. Maquet, E. Mével, P. Salières, R. Taïeb, and Y. Mairesse

(Received 17 July 2022; published 1 August 2022)

DOI: 10.1103/PhysRevA.106.029901

We have found a small mistake in the calibration of the experimental data. The phase of the sideband of order 2q measured by the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions (RABBIT) technique in molecular nitrogen is the sum

$$\Phi_{2q}^{N_2} = \varphi_{2q+1} - \varphi_{2q-1} + \Delta \theta_{2q}^{N_2} \tag{1}$$

of the harmonic phase difference $\varphi_{2q+1} - \varphi_{2q-1}$ and the molecular phase difference $\Delta \theta_{2q}^{N_2}$. The latter is the phase of interest in this study. The sideband phase obtained in a calibration measurement in atomic argon is given by

$$\Phi_{2q}^{\rm Ar} = \varphi_{2q+1} - \varphi_{2q-1} + \Delta \theta_{2q}^{\rm Ar}.$$
(2)

The atomic phase difference $\Delta \theta_{2q}^{Ar}$ is determined from theory. The molecular phase difference is thus obtained by

$$\Delta \theta_{2q}^{N_2} = \Phi_{2q}^{N_2} - \Phi_{2q}^{Ar} + \Delta \theta_{2q}^{Ar}.$$
(3)

In our original manuscript, there was a sign error on the values of $\Delta \theta_{2q}^{Ar}$ used in the calibration procedure due to the different sign convention of Ref. [15] from which they were extracted. The molecular phase differences were therefore too small by $2\Delta \theta_{2q}^{Ar}$, i.e., by (0.4, 0.36, 0.32, 0.28) rad for sidebands (12, 14, 16, 18).

The correctly extracted evolution of the molecular phases $\Delta \theta_{2q}$ for N₂ as a function of sideband order is shown in Fig. 3, which replaces Fig. 3 of the original paper. Roughly, all curves shift upwards by $\approx 0.1\pi$ rad, which is of the order of the error bars magnitude. The sentences mentioning the molecular phase values in the article are to be corrected as follows: For the X channel, sideband 12 shows a remarkable behavior: $\Delta \theta_{12}$ is -0.21π for v' = 0 and reaches -0.76π for v' = 1 and v' = 2. For the A channel, $\Delta \theta_{2q}$ stays close to zero for all sideband orders, between -0.1π and 0.08π .

None of these corrections affect the conclusions of the original paper, in particular the attribution of the molecular phases' behavior to the presence of a resonance in the vicinity of harmonic 11 and their sensitivity to vibrational excitation of the ion.

FIG. 3. Molecular phase difference $\Delta \theta_{2a}$ as a function of the sideband order for different ionization channels.