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Fractional Chern insulators of few bosons in a box:
Hall plateaus from center-of-mass drifts and density profiles
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Realizing strongly correlated topological phases of ultracold gases is a central goal for ongoing experiments.
While fractional quantum Hall states could soon be implemented in small atomic ensembles, detecting their
signatures in few-particle settings remains a fundamental challenge. In this work, we numerically analyze the
center-of-mass Hall drift of a small ensemble of hardcore bosons, initially prepared in the ground state of the
Harper-Hofstadter-Hubbard model in a box potential. By monitoring the Hall drift upon release, for a wide range
of magnetic flux values, we identify an emergent Hall plateau compatible with a fractional Chern insulator state:
The extracted Hall conductivity approaches a fractional value determined by the many-body Chern number,
while the width of the plateau agrees with the spectral and topological properties of the prepared ground
state. Besides, a direct application of Streda’s formula indicates that such Hall plateaus can also be directly
obtained from static density-profile measurements. Our calculations suggest that fractional Chern insulators can
be detected in cold-atom experiments, using available detection methods.

DOI: 10.1103/PhysRevA.102.063316

I. INTRODUCTION

Important progress is being made in view of realizing
strongly correlated topological phases of ultracold atoms in
optical lattices [1,2]. On the one hand, experimental efforts
have been dedicated to the creation of artificial gauge fields
[3,4] and topological bands [2] for neutral atoms, leading to
measurements of topological properties [5–21]. On the other
hand, theoretical studies have identified realistic schemes for
preparing small atomic ensembles in fractional Chern insula-
tors (FCIs) [22–29], which are lattice analogues of fractional
quantum Hall (FQH) liquids [30,31]; they also proposed
methods to probe their characteristic features [32–42]. This
progress should soon lead to the realization of FCIs in small
atomic ensembles, with N � 10 atoms, and to the possibility
of observing their properties. However, identifying clear and
accessible topological signatures of FCIs in small interacting
atomic systems still constitutes a central challenge. In fact,
this question concerns a wide range of quantum-engineered
platforms, including strongly interacting photonic systems
[43–47], where FQH-type states of few photons are currently
under intense investigation [48–50].
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The canonical signature of FQH states is provided by the
Hall conductivity, i.e., the linear-response coefficient relating
an induced transverse current to the applied force. In the
FQH effect, the Hall conductivity is quantized to a value
σH/σ0 ∈Q in the thermodynamic limit [51]; σ−1

0 =RK is von
Klitzing’s constant. The Hall response is also accessible in
ultracold atoms; it has been measured in weakly interacting
gases through various probes, including center-of-mass (c.m.)
drifts [6,17,21,52–54] and local currents [20,55], and more in-
directly, through collective-mode excitations [56] and circular
dichroism [18]. Whether the Hall response can be extracted
and used as a topological marker in few-body interacting
systems remain important questions to be addressed.

In this work, we numerically analyze the Hall drift of
a small ensemble of strongly interacting (hardcore) bosons,
initially prepared in the ground state of the Harper-Hofstadter-
Hubbard model [57,58]. Building on Refs. [6,59], we monitor
the c.m. of the prepared state upon releasing it into a larger
lattice while applying a weak static force [Fig. 1(a)]. This
Hall drift measurement, which provides an estimation of the
Hall conductivity in the prepared state, is performed in a wide
range of magnetic flux values [Fig. 1(b)]. From this, we iden-
tify an emergent but robust Hall plateau, whose value σH/σ0 ≈
0.5 approaches the many-body Chern number [60–62], a topo-
logical marker of the FCI phase. Moreover, the width of the
Hall plateau perfectly coincides with the flux window where
an FCI state is formed in the initially confined geometry, as we
demonstrate based on a static analysis of the ground state’s en-
tanglement spectrum. Our results indicate that Hall signatures
of FCI states composed of few bosons (N � 3) can be identi-
fied under realistic experimental conditions. We also compare
this approach with a direct application of Streda’s formula
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FIG. 1. (a) Hall drift protocol: A prepared fractional Chern in-
sulator (FCI) state is released into a larger lattice and a uniform
force is applied. The Hall conductivity is extracted from the c.m. drift
transverse to the force [Eq. (2)]. (b) Sketch of the Hall conductivity
σH(α) as a function of the flux density in the Harper-Hofstadter-
Hubbard (HHH) model. In the continuum limit α�1, the system
follows the classical prediction σH ∼1/α. In the vicinity of the filling
factor ν =ρbulk/α=1/2, where ρbulk is the bulk particle density, an
FCI is formed and σH(α) depicts a Hall plateau.

[63–66], which indicates that static density-profile measure-
ments lead to a robust Hall plateau for N � 10 bosons.

This article is organized as follows: We first analyze the
ground-state properties of our model in Sec. II, setting the
focus on the subtle identification of FCI states in confined sys-
tems with edges. We then study the center-of-mass Hall drift
of this setting, upon release into a larger lattice, and comment
on the emergence of quantized Hall plateaus in Sec. III. We
then explore the applicability of the Streda formula approach
in Sec. IV, before concluding with a discussion on the experi-
mental realization of our Hall drift protocol in Section V.

II. FRACTIONAL CHERN INSULATOR IN A BOX:
GROUND-STATE PROPERTIES

The central scope of this work concerns the emergence of
quantized Hall plateaus in the c.m. dynamics of strongly inter-
acting bosons moving on a 2D square lattice in the presence
of a uniform magnetic flux. The corresponding Harper-
Hofstadter-Hubbard (HHH) Hamiltonian reads [57,58]

Ĥ0 = − J

(∑
m,n

â†
m,n+1âm,n + ei2παnâ†

m+1,nâm,n + H.c.

)

+ (U/2)
∑

m

â†
m,nâm,n(â†

m,nâm,n − 1), (1)

where â†
m,n creates a boson at lattice site (m, n), J denotes the

tunneling amplitude, U is the on-site (Hubbard) interaction
strength [67], and where the Peierls phase factors [57] account
for the presence of a flux �=2πα per plaquette. This model
has been experimentally implemented for N =2 strongly in-
teracting bosonic atoms [68], in a box-type potential [68–72].
It is the aim of this section to shed some light on the ground-
state properties of this realistic system for N > 2 bosons.

Numerical simulations using periodic boundary conditions
have established that the HHH model hosts a bosonic FCI
akin to the Laughlin state [51], for strongly repulsive in-
teractions and filling factor ν =ρ/α=1/2, where ρ denotes
the particle density; see Refs. [26–28,32,58,62]. For hardcore
bosons, these calculations reveal a stable FCI ground state
for α�0.3; the bulk gap is maximal around α≈0.2–0.25
[28,58,62], and vanishes in the limit α�1. This FCI phase
is characterized by a fractional many-body Chern number,
νMB

Ch =1/2, a topological invariant associated with the ground
state of the many-body system [60–62]. In the thermodynamic
limit, the Hall conductivity of an incompressible phase ap-
proaches the quantized value σH/σ0 =νMB

Ch ∈Q; see Ref. [40]
for a numerical analysis of finite-size effects. In the relevant
case of the ν =1/2 FCI phase, a Hall plateau is thus expected
at σH/σ0 =1/2; see Fig. 1(b).

In the present work, we consider N hardcore bosons ini-
tially confined in a circular box containing Ns lattice sites
[Fig. 1(a)]; such box potentials are indeed available in experi-
ments [68–72]. In this geometry with edges, we still expect
to find the ν =1/2 FCI phase in the regime ρbulk/α≈1/2,
where ρbulk denotes the bulk particle density. However, we
note that the bulk density ρbulk, which differs from the total
density ρ =N/Ns, has a nontrivial dependence on the flux; see
Sec. IV. Hence, we first analyze the ground-state properties of
this few-body system in view of determining the values of ρ

and α that realize an FCI state.
We first gain some intuition from the physics of the FQH

effect in the (continuum) disk geometry.1 For a flux den-
sity α�0.3, the lowest Bloch band of the single-particle
Hofstadter spectrum contains a set of roughly N0(α) nearly
degenerate states, which are connected to the next band by
dispersive edge states; see Appendix C. These N0(α) states are
analogous [33,34] to the orbitals of the lowest Landau level
(LLL) in the disk geometry; there, the ν =1/2 Laughlin state
with N bosons occupies 2N−1 LLL orbitals. Likewise, we
may expect a ν =1/2 FCI state when N0(α)�2N −1.

We use exact diagonalization to verify the existence of the
FCI ground state in our model and specify its phase bound-
aries based on (i) the low-energy spectrum, (ii) entanglement
spectroscopy, and (iii) the occupation of single-particle or-
bitals. For concreteness, we analyze N= 4 hardcore bosons
in Ns =60 sites:

(i) Figure 2(a) shows the low-energy spectrum of this few-
body system; there are three avoided crossings between the
ground state and the first excited state within the range 0�α�
0.3, which we interpret as the finite-size signatures of three

1We refer to the infinite plane geometry, where the FQH droplet
is confined through total angular momentum conservation, not by a
confinement potential.
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FIG. 2. Spectral and topological ground-state properties. We
present the ground-state properties for N = 4 hardcore bosons in
the HHH model, in a circular box of Ns = 60 sites. The FCI
stability region (shaded) is indicated according to three markers:
(a) Low-energy many-body spectrum (lowest 10 energies per discrete
rotation-symmetry sector) relative to the ground-state energy EGS.
Analyzing absolute energies (not shown) reveals that the three local
minima of the gap correspond to level crossings, which are avoided
due to finite-size effects (arrows). (b) Particle entanglement spec-
trum (PES) for a bipartition with two particles in each subsystem.
In the shaded region, the first 15 levels (blue) are well separated
from the other levels, revealing that the ground state is topologically
equivalent to the Laughlin state. (c) Occupation of the single-particle
orbitals in the ground state (histograms) and in the exact Laughlin
state on the disk (line). The orbitals are sorted in increasing energy
and angular momentum, respectively.

phase transitions. We focus on the regime 0.15<α<0.25,
where the expected FCI bulk gap is the largest [28,58], and no
phase transition is observed. In this regime, the approximate
degeneracy of the lowest band is N0(α)�7 (see Appendix C),
which is compatible with an FCI ground-state candidate for
N =4. We note that the nature of the phases at α<0.15 is
likely to be nonuniversal due to finite-size effects.2

(ii) In finite geometries with edges, the topological nature
of FCIs can be revealed through the degeneracies of their edge
spectrum [33,34]; however, this spectral signature requires
a smooth confining potential.3 Instead, we probe the bulk

2The ν = 2/3 Jain fraction is a possible candidate among these
phases [33,73], but we did not identify any clear topological signa-
ture of this phase in our setting.

3In the continuum, a hard confinement was shown to suppress the
typical Luttinger liquid dispersion relation of edge modes [75,76].

quasihole excitations of the ground state; their degeneracy
is a topological fingerprint of the FCI phase, and it can be
extracted from the ground state |�GS〉 using the particle en-
tanglement spectrum [74] (PES). The PES is the spectrum of
the reduced density matrix obtained by tracing |�GS〉〈�GS|
over a bipartition containing NA particles, while keeping the
geometry of the system intact. The degeneracy of Laugh-
lin quasiholes is determined through a generalized exclusion
principle [77]; for two bosons in seven orbitals, it is 15-fold.
Indeed, for 0.15<α<0.25 and NA =2, the PES in Fig. 2(b)
reveals a clear gap above the 15th state, which confirms the
FCI nature of |�GS〉 in this parameter range.

(iii) To further characterize the ground state, we calculated
the occupation of each single-particle orbital. For the Laughlin
state on the disk, there is a uniform occupation of all 2N − 1
orbitals in the thermodynamic limit, with moderate deviations
from this distribution for small systems. We find a similar
distribution in the regime 0.15�α�0.25 for the same number
of particles [Fig. 2(c)].

Overall, these probes consistently reveal that the ground
state is in the ν =1/2 FCI phase within the range 0.15 � α �
0.25. We have verified that these results are qualitatively ro-
bust with respect to changes in the particle number (N = 3, 4)
and number of sites Ns. Quantitatively, we point out that a
change in the density ρ leads to a shift of the FCI phase along
the flux axis; see Appendix A.

III. THE CENTER-OF-MASS HALL DRIFT

We extract the Hall conductivity σH from the c.m. drift
of an initially prepared state upon applying a weak external
force. This c.m. probe [6,59,78] is particularly suitable when
considering a small ensemble of particles for which local
currents substantially fluctuate. In order to limit boundary
effects, we release the initially prepared state into a larger
lattice [59,79] before monitoring the c.m. drift; see Fig. 1(a).
This protocol is implementable in cold-atom experiments,
where tunneling can be dynamically tuned and c.m. motion
measured [6,17,21,52–54]. In our simulations, the timescale
associated with the progressive release of the inner system,
as well as the duration of the Hall drift measurement, are
adjusted to avoid boundary effects due to the finite simulation
box.

We extract the Hall velocity v⊥ =x⊥(t )/t from the c.m.
Hall drift x⊥(t ) transverse to the applied force F , upon reach-
ing a stationary regime within linear response. This Hall
velocity is related to the transverse current density through
v⊥ = j⊥/ρbulk, where ρbulk denotes the bulk particle density.
From the transport equation, j⊥ =σHF , one extracts the Hall
conductivity through

σH/σ0 = (2πρbulk/F )v⊥, (2)

where σ0 =1/2π is the conductivity quantum, and we set h̄=
1 except otherwise stated. In the FQH effect [66,80], incom-
pressible states exhibit quantized Hall plateaus at fractional
values σH/σ0 =νMB

Ch ∈Q, where νMB
Ch denotes the aforemen-

tioned many-body Chern number [60,61]. The main scope of
this section is to analyze the possibility of observing such Hall
plateaus, through the Hall drift of few-boson FCI states.
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FIG. 3. Benchmark using noninteracting fermions. Hall conduc-
tivity extracted from the Hall drift of N =20 fermions, initially
prepared in a small circular box of Ns =81 sites (quarter filling);
the release into the larger system (1005 sites) and the ramping up of
the force (F =0.2J/d) are performed over a duration τramp =15J−1,
and the Hall drift measurement over τhold =13J−1; the bulk density
ρbulk(α) in Eq. (2) is evaluated in a central region of 20 sites; fit
error bars reflect the 95% confidence interval when extracting the
Hall velocity v⊥. The gray dashed line indicates the quantized value
expected in the thermodynamic limit, σH/σ0 =1, as dictated by the
many-body Chern number of the corresponding insulating state.
(Inset) Single-particle spectrum E (α), for the same box (81 sites);
the Fermi level (EF ; gray curve) corresponds to the same number of
fermions N =20; filled states are colored in green (bulk states are
dark and edge states are light), while empty states are gray; EF is
located in the main bulk gap (Chern insulator) within the blue shaded
region.

A. Benchmark using noninteracting fermions

We first benchmark the Hall drift measurement by consid-
ering noninteracting fermions in the Harper-Hofstadter model,
at quarter filling ρ =1/4. In this setting, (integer) Chern in-
sulators are expected around flux densities α=1/(4n), with
n∈ Z, where they exhibit quantized Hall plateaus σH/σ0 =n

in the thermodynamic limit. While this result can be directly
deduced from a Diophantine equation [81,82], the actual size
of these plateaus follows a rather complicated law established
by the underlying single-particle (Hofstadter butterfly) spec-
trum [57]. Furthermore, such Hall plateaus can be altered
by finite-size effects. This first numerical study aims to shed
some light on these properties.

We determine the Hall drift by calculating the time evo-
lution of N =20 noninteracting fermions, initially prepared
in the ground state within a circular box of Ns = 81 sites
(ρ ≈ 1/4), which are then released into a larger lattice (1005
sites) and subjected to a weak force F = 0.2J/d , where d
is the lattice spacing; see Appendix D. The Hall conductiv-
ity extracted from the stationary (linear-response) Hall drift
[Eq. (2)] is depicted as a function of the flux density in
Fig. 3. In the low-flux regime (α � 0.1), lattice effects are
negligible and the Hall drift follows the classical prediction

σH ∼ 1/α. At α = 0.25, the Fermi energy lies within a large
bulk gap (see inset of Fig. 3), which yields an approximately
quantized value σH/σ0 ≈ 0.9, close to the many-body Chern
number νMB

Ch = 1 of the corresponding insulating state [60]. In
order to explain the deviation from the exact quantized value
expected in the thermodynamic limit, we have evaluated the
local real-space Chern number [83,84], as averaged over 29
bulk sites in the prepared ground state; we have verified that
this local real-space Chern number indeed matches the value
of the extracted Hall conductivity σH/σ0 ≈ 0.9; see Appendix
B regarding the convergence of the local real-space Chern
number as a function of the system size.

The Hall response remains approximately constant for a
wide range of flux, α∈ [0.21, 0.32], in agreement with the
Fermi level’s location within the main bulk gap of the but-
terfly spectrum (Fig. 3); we verified that the flatness of this
emergent Hall plateau, as well as the approached quantized
value, improve as the system size Ns increases. Besides, we
also observe the emergence of additional plateaus in Fig. 3, as
the Fermi level visits other bulk gaps in the spectrum. These
results illustrate how the Hofstadter butterfly spectrum dic-
tates the size of emergent Hall plateaus in realistic finite-size
(noninteracting) settings.

B. Hall drift of interacting bosons

A system of N =4 hardcore bosons is initially prepared in
the ground state of the HHH model, using a circular box of
Ns =60 sites. At t =0, this bosonic cloud is slowly released
into a larger circle (124 sites), while the force is ramped up
to the value F =0.01J/d; see Appendix D for details on the
ramps used to reach a stationary regime. Our numerics show
that a stationary c.m. motion takes place after the ramp, over
a few tunneling times (inset of Fig. 4), from which we extract
the (constant) Hall velocity v⊥. For longer times, the c.m.
motion is affected by the edge of the finite simulation box,
which sets the end of the stationary regime; we point out that
this numerical constraint is not an experimental one, since the
prepared state can be released into a much larger lattice in
realistic setups.

We extract the Hall conductivity σH, from the stationary
Hall velocity v⊥ and bulk density ρbulk [Eq. (2)], for a large
range of flux values; see Fig. 4. First, we find that the classical
behavior σH ∼ 1/α is recovered [85] in the low-flux (contin-
uum) limit. The correlated behavior of our interacting system
then appears for α � 0.1. Most strikingly, σH(α) depicts an
emergent Hall plateau, whose width matches the flux window
associated with the ν =1/2 FCI phase (Fig. 2). In this re-
gion, the extracted Hall conductivity approaches the quantized
value σH/σ0 ≈ 0.5, which is expected in the thermodynamic
limit. Calculations performed on larger systems (up to N =10
bosons in Ns =120 sites) indeed demonstrate convergence to
a quantized Hall plateau; see Appendix A. Interestingly, a
second plateau appears in the range α∈ [0.1, 0.15], which may
signal the onset of the ν = 2/3 FCI phase [33,73].

In the prospect of experimental implementation, we sought
for minimal configurations that exhibit Hall-plateau signa-
tures of the FCI state, by simulating our Hall drift protocol
for various system sizes Ns, considering N =3, 4 bosons; see
Appendix A. Our results show that emergent Hall plateaus,
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FIG. 4. Hall drift of hardcore bosons in the HHH model. Initially,
N = 4 bosons are prepared in the ground state within a circular box
of Ns = 60 sites. The bosons are then progressively released into
a larger box containing 124 sites and subjected to a uniform force
F = 0.01J/d . At the end of this ramp, the c.m. motion is stationary
for a few tunneling times (inset), permitting the extraction of the Hall
velocity v⊥; the bulk density ρbulk(α) is evaluated in a central region
of 16 sites; fit error bars reflect the 95% confidence interval when
extracting the Hall velocity v⊥. The FCI phase (shaded region from
Fig. 2) coincides with the emergent Hall plateau. The gray dashed
line indicates the quantized value expected in the thermodynamic
limit, σH/σ0 = 1/2, as dictated by the many-body Chern number.

compatible with the ν =1/2 FCI state, can be detected by
measuring the c.m. Hall drift of systems as small as three
bosons in Ns =40 sites and four bosons in Ns =49 sites.

C. Stability of the Hall plateau and bulk density evaluation

Extracting the Hall conductivity σH from the center-of-
mass (c.m.) Hall drift requires the evaluation of the bulk
density ρbulk, according to Eq. (2). For large enough systems,
one can evaluate ρbulk by averaging the density over a central
circular region, whose radius is large compared to the lattice
spacing but small compared to the radius of the atomic cloud;
see Fig. 6 and Sec. IV. In few-boson systems, however, such
scale separation may not exist. For instance, in the configu-
ration studied in Fig. 4, i.e., N = 4 bosons initially confined
in Ns = 60 sites, one notices substantial spatial fluctuations of
the particle density.

Here, we analyze the impact of such density fluctuations
on the extracted Hall conductivity shown in Fig. 4. To do
so, we evaluate ρbulk as the average particle density within a
small and central circular region of radius rbulk, considering
values in the range rbulk ∈ [0.4r0, 0.6r0], where r0 is the radius
of the (initial) circular box containing Ns sites. We illustrate
the impact of this radius choice in Fig. 5, which shows σH as
extracted from the c.m. Hall drift [Eq. (2)] for three different
choices. Interestingly, the Hall plateau displayed in Fig. 4 is
shown to be very robust: Neither its existence nor its position
and range on the flux axis depend on the radius rbulk used

FIG. 5. Impact of the bulk density evaluation on the determina-
tion of σH for the few-boson system in Fig. 4. Here, we determined
ρbulk as the average particle density within a central circular region
of radius rbulk, with rbulk =0.4r0, rbulk =0.5r0 and rbulk =0.6r0, where
r0 is the radius of the initial circular box (Ns =60); these three radii
correspond respectively to 12, 16, and 24 sites. In this small system,
the radius choice affects the value of σH, as extracted from the c.m.
Hall drift [Eq. (2)]; however, the existence of the Hall plateau and its
position and range along the flux axis are robust.

to evaluate the bulk density. While the exact value of σH/σ0

depends on rbulk, one notices that σH/σ0 ≈0.5 on this plateau
for all choices.

IV. EXTRACTING THE HALL PLATEAU FROM THE
PARTICLE DENSITY: STREDA’S FORMULA

In this section, we consider an alternative approach
based on density-profile measurements. For an incompressible
phase, the variation of the bulk density ρbulk with respect to
the flux density α is directly related to the quantized Hall con-
ductivity. This relation, which is known as Streda’s formula
[63–66,78,86,87], reads in our units

σH/σ0 = ∂ρbulk

∂α
. (3)

Applying this approach to the ν =1/2 FCI phase, one thus
expects the existence of a plateau ∂ρbulk/∂α ≈ 0.5 within the
corresponding flux range.

We have validated this prediction by analyzing the density
profiles of N =10 hardcore bosons confined in Ns =120 sites,
for various values of the flux α. We display three represen-
tative profiles in Fig. 6(a), which illustrate the existence of a
density plateau in the bulk. One verifies that the bulk density
ρbulk, as extracted from the density plateau, increases linearly
as a function of the flux α within a well-defined flux win-
dow. This result is represented in Fig. 6(b), which depicts the
derivative of the extracted bulk density [Eq. (3)]. The clear
plateau at σH/σ0 = ∂ρbulk

∂α
≈ 1/2 offers a striking signature of

the FCI phase within this flux window. One verifies that this
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FIG. 6. Streda analysis of the HHH ground state, for N =10
hardcore bosons in a circular box of Ns = 120 sites, using DMRG:
(a) Particle density profiles; (b) derivative of the bulk particle den-
sity ρbulk with respect to the flux density; in the FCI phase, it
satisfies Streda’s formula in Eq. (3). The bulk density ρbulk was
evaluated as the average density in a circle comprising 16 sites.
The gray dashed line indicates the quantized value expected in the
thermodynamic limit, σH/σ0 = ∂ρbulk/∂α = 1/2, as dictated by the
many-body Chern number.

“Streda-Hall” plateau matches the plateau obtained from the
Hall drift protocol using the same system parameters; see
Fig. 7 in Appendix A.

For smaller systems, the irregular density profile compli-
cates the extraction of ρbulk, as already explained in Sec. III C.
Nevertheless, evaluating ρbulk in a small circular region of
radius rbulk, we still observe emergent plateaus of ∂ρbulk/∂α

within the FCI phase of smaller systems (N ≈ 4). In those
configurations, the value on emergent plateaus displays a
strong dependence on rbulk, which complicates a quantitative
application of Streda’s formula for such small systems.

V. EXPERIMENTAL CONSIDERATIONS

For a possible implementation of the proposed Hall-drift
protocol, we consider the following experimental scheme.
First, the FCI is prepared through adiabatic quantum state
engineering, starting from a topologically trivial state and
inducing a topological phase transition to an FCI by slowly
tuning the Hamiltonian parameters [24–29]. The adiabaticity
of this preparation relies on the small number of particles and
size of the system, which prevents the many-body gap from
vanishing at the transition point. In our scheme, the FCI would
be embedded in a lattice with more sites, which are initially
uncoupled either by switching off the tunneling to those sites
(as assumed in our numerical calculations), or by increasing
their energy with a repulsive potential. The drift protocol is
initiated by restoring the coupling to outer sites and simulta-
neously ramping up a force induced by, for instance, an optical
or magnetic potential gradient [6,53]. Finally, the Hall drift is
detected by measuring the c.m. position after variable drift

times. Detecting c.m. displacements smaller than one lattice
site, as depicted in Fig. 4, is within the current capabilities of
cold-atom experiments [68]. Yet, we expect that even stronger
signatures are possible because experiments allow access to
total system sizes and drift times beyond the reach of exact
numerics. In addition, the ability to choose finite interactions
and to tune them dynamically opens up the possibility for
advanced transport studies. The simplicity of this realistic
experimental scheme paves the way to the exploration of
quantum transport in strongly correlated ultracold topological
matter.

Note added: Recently, we became aware of a recent work
[88], which also analyses the Hall response of an FCI in the
HHH model.
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APPENDIX A: OTHER SYSTEM SIZES

In the main text, we have shown numerical data for N =4
hardcore bosons prepared in a circular box of Ns =60 sites. We
have obtained consistent results for other particle numbers N
and lattice sizes Ns (corresponding to other densities ρ), which
we present in this Appendix.

1. Hall drift in larger systems: DMRG results

We used DMRG to extend our results to larger system sizes
(with N =5 to N =10 bosons); methodological details of the
DMRG simulations are given in Appendix B. We simulated
the Hall drift of up to N =10 hardcore bosons, initially pre-
pared in a circular box of Ns =120 sites and released into a
square box of 256 sites; see Fig. 7. The particle density in the
ground state [Fig. 6(a)] depicts a plateau in the central region;
as a result, the value of ρbulk is relatively insensitive to the
radius rbulk chosen for its evaluation. In order to extract σH

from the c.m. Hall drift [Eq. (2)], we evaluated ρbulk as the
average density in a circle of 16 sites; the results are shown in
Fig. 7. As expected for a ν = 1/2 FCI phase, the value of the
Hall conductivity on the plateau approaches the many-body
Chern number σH/σ0 = 0.5. We point out that the approached
quantization is already accurate up to �5% for this system of
N =10 bosons.

2. Minimal configurations: Three and four bosons

We sought for minimal configurations that exhibit Hall-
plateau signatures of the FCI state, by simulating the Hall
drift protocol for various system sizes Ns and number of
bosons N . For both N =3 and N =4, we hereby show the
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FIG. 7. Hall drift from N =10 hardcore bosons initially con-
tained in a circular box of Ns = 120 sites in the Harper-Hofstadter-
Hubbard model, obtained using DMRG. The Hall conductivity was
extracted from the c.m. Hall drift upon releasing the ground state
into a square with 256 sites and applying a force F =0.04J/d . The
bulk density ρbulk was evaluated as the average density in a circle
comprising 16 sites; fit error bars reflect the 95% confidence interval
when extracting the Hall velocity v⊥. The inset is a reminder of
the Streda analysis (Sec. IV). The gray dashed line indicates the
quantized value expected in the thermodynamic limit, σH/σ0 =1/2,
as dictated by the many-body Chern number.

exact-diagonalization results obtained for the smallest system
size where Hall drift signatures of a ν =1/2 FCI state were
found: Ns = 40 for N = 3 and Ns = 49 for N = 4.

Figure 10 shows the ground-state properties and the center-
of-mass Hall drift for N =4 bosons and Ns =49 sites. Based
on the low-energy spectra and entanglement spectroscopy, we
find clear signatures of the ν =1/2 FCI state for 0.18�α�
0.29. We point out that this shift of the FCI phase toward
larger values of α compared to the case presented in the main
text (N = 4, Ns = 60, where the FCI regime corresponds to
0.15 � α � 0.25; see Fig. 2 in the main text) is consistent
with a larger particle density ρ =N/Ns.

We observe an emergent Hall plateau for α � 0.18. We
note that its width is slightly smaller than the FCI region;
as shown in the main text (using Ns =60 sites for N = 4
bosons), this discrepancy is reduced by increasing the system
size, which suggests that it is due to the smallness of this
minimal setting (Ns = 49 sites for N = 4 bosons). We note
that additional plateau features appear for each gap opening
in the finite-size energy spectrum.

For N = 3 bosons, the particle entanglement spectrum
(PES) cannot provide a topological signature of the FCI.
Indeed the PES that results from the only available parti-
cle bipartition (2 + 1) corresponds to the spectrum of the
single-particle density matrix (which cannot probe topological
order). Nevertheless, for N = 3 bosons and Ns = 40 sites,
the low-energy many-body spectrum and the orbital occu-
pation are compatible with a FCI state in the flux window

FIG. 8. Local Chern number as a function of the system size
(
√

Ns, where Ns is the number of lattice sites), for noninteracting
fermions in the Harper-Hofstadter model in a box, at flux density α =
1/4 and total particle density ρ ≈1/4, i.e., a completely filled lowest
energy band. The local Chern number is obtained by averaging the
local Chern marker over 29 central sites. The value ν local

Ch ≈ 0.9 for
Ns =81 lattice sites corresponds to the system configuration in Fig. 3.

0.16 � α � 0.28, where the Hall drift simulation reveals an
emergent Hall plateau; see Fig. 11.

APPENDIX B: FINITE-SIZE EFFECTS
IN NONINTERACTING FERMIONS

In this Appendix, we discuss the deviation between
the Hall plateau extracted from the drift of noninteract-
ing fermions σH and the quantized value σH/σ0 =νMB

Ch ∈Z
expected in the thermodynamic limit, where νMB

Ch is the many-
body Chern number of the prepared insulating state; see
Fig. 3.

To confirm the finite-size origin of this deviation, we have
evaluated the local real-space Chern number [83,84] for the
same number of fermions (N =20), in the same initial box of
Ns =81 sites, and a fixed flux density α=0.25. By averaging
the local Chern marker over 29 sites, located in a circular
region at the center of the bulk, we have obtained that the local
real-space Chern number matches the value of the extracted
Hall conductivity, i.e., ν local

Ch ≈σH/σ0 ≈0.9. We have further
calculated this local real-space Chern number for increasing
system sizes while fixing the particle density ρ ≈1/4 and
flux α=0.25 (i.e., keeping the lowest energy band completely
filled). As shown in Fig. 8, the local topological index con-
verges towards the quantized value ν local

Ch →1. This behavior
is reminiscent of the convergence of the nonintegrated many-
body Chern number under periodic boundary conditions [90];
we note that these two quantities should indeed become equiv-
alent in the thermodynamic limit.

APPENDIX C: SINGLE-PARTICLE HOFSTADTER
SPECTRUM IN A SMALL CIRCULAR BOX

We show the single-particle Hofstadter spectrum for a lat-
tice of Ns =60 sites in Fig. 9, for three representative values
of the flux α. To label the eigenstates, we use the eigenvalues
of the C4-rotation operator; in this system with discrete ro-
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FIG. 9. Single-particle spectrum for Ns = 60 sites and flux den-
sity α = 0.08, 0.12, and 0.2, labeled according to the eigenvalues of
the C4-rotation operator. The occupation of each of these orbitals in
the N = 4 hardcore-boson configuration is given in Fig. 2(c) of the
main text.

tational symmetry [91,92], they are equivalent to the angular
momentum modulo 4.

Considering this lattice of Ns = 60 sites and a flux α ≈ 0.2,
we have shown that the ground state of N = 4 hardcore bosons
can be identified as a ν = 1/2 FCI ground state (see main
text). In this setting, only the seven lowest-energy orbitals
have a substantial occupation in this ground state [see Fig. 2(c)
of the main text]. In Fig. 9, we show that these seven orbitals
form the nearly flat lowest band of the single-particle spec-
trum at α = 0.2.

APPENDIX D: METHODS

1. Ramps used in numerical calculations

In the Hall drift protocol described in the main text, the
force F (t ) and the tunneling terms J (r, t ) are slowly ramped
up until reaching a stationary regime at t = τramp; here r de-
notes the radial coordinate on the 2D plane. In our numerical
calculations, the force is ramped up according to the first-
order smooth-step function

F (t ) = F

[
3

(
t

τramp

)2

− 2

(
t

τramp

)3]
, (D1)

while we have used an exponential ramp for the tunneling
terms,

J (r, t ) = J exp
[
− r − r0

r1

(τramp

t
− 1

)]
, (D2)

where r0 is the radius of the small circular box where the
initial state is prepared and r1 is the radius of the larger
circular box (i.e., the simulation box) into which it is released.
These ramps were used both for the hardcore-boson (exact di-
agonalization and DMRG) and non-interacting-fermion cases.
We expect that the exact form of the ramps should not be

crucial in view of reaching a stationary regime, as long as
they are smooth enough. Besides, we have verified that the
linear-response regime is reached when using a weak force
F �0.04J/d in the hardcore bosons simulations.

2. Particle entanglement spectrum

We obtain the ground state |�GS〉 of the HHH model us-
ing exact diagonalization. Here, we consider N =4 hardcore
bosons in a box of Ns =60 sites. We consider a bipartition
of the system with NA =2 (resp. NB =N − NA =2) bosons
in Ns sites in subsystem A (resp. B). The particle entangle-
ment spectrum [74] (PES) is the spectrum of − log ρ̂A, where
ρ̂A =TrBρ̂ is the reduced density matrix obtained by tracing
ρ̂ =|�GS〉〈�GS| over the subsystem B.

3. Exact diagonalization: Ground state
and time-evolution calculations

For systems with N � 4 hardcore bosons, our numerical
results were obtained using exact diagonalization. To obtain
the initial state, we first calculate the ground state |�GS〉 of
the HHH model in a small circular box of Ns sites. This state
is then embedded in a larger circular box, by performing the
direct product of |�GS〉 with several empty sites. The state
|�(t + δt )〉 at time t + δt is obtained by applying the uni-
tary time-evolution operator Û (t )=e−iĤ (t )δt onto |�(t )〉 for a
small time interval δt =0.05J−1; here Ĥ (t ) is the Hamiltonian
acting on N bosons in the large circular box; it corresponds
to the HHH Hamiltonian in Eq. (1) with uniform tunneling
amplitude J in the inner circular region, and tunneling ampli-
tude J (r, t ) in the outer region; it also contains the potential
gradient realizing the uniform force F (t ). During the ramp,
0 � t < τramp = 8J−1, the time-dependent quantities F (t ) and
J (r, t ) are given by Eqs. (D1) and (D2). After the ramp,
F (t )=F is constant and the tunneling amplitude is constant
and uniform throughout the entire system. The time-evolution
operator Û (t ) is evaluated using a series expansion with accu-
racy 10−15.

4. DMRG: Ground state and time-evolution calculations

For systems with more than N = 4 particles, where exact
diagonalization becomes prohibitively costly, we have used
DMRG. We first calculate the ground state |�GS〉 of the HHH
model in a small circular box of Ns. This box is embedded
from the start in a larger rectangular box, but the bosons
are initially confined to the small box due to the absence of
tunneling terms to the outer sites. The size of the rectangular
box is chosen to be large enough to permit a stationary regime
during the Hall drift protocol. For the Hall drift protocol, we
performed the time evolution using the matrix product opera-
tor algorithm introduced in Ref. [93] with the WII expression
for the time-evolution operator (see Eq. 10 therein), and a
time step δt =0.02J−1. We verified that the error due to this
finite time step was smaller than the linear fit error associated
with the extraction of the Hall velocity v⊥. For N =10 and
Ns =120, the results shown here were obtained with a bond
dimension χ =500; we have verified that using χ =800 only
resulted in a negligible difference of the c.m. motion.
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FIG. 10. Properties of a system of N =4 hardcore bosons in a circular box of Ns = 49 sites in the Harper-Hofstadter-Hubbard model. The
left column shows the characterization of the ground state through static signatures (following Fig. 2 of the main text): (a) energy spectrum;
(b) particle entanglement spectrum; (c) occupation of the single-particle orbitals in the ground state, in increasing energy order (the line shows
the orbital occupation for the N =4 Laughlin state on the disk, where the orbitals are sorted in increasing angular momentum); (d) Hall
conductivity as extracted from the c.m. Hall drift upon releasing the ground state into a circle with 113 sites and applying a force F =
0.0001J/d . The bulk density ρbulk was evaluated as the average particle density within a circle comprising nine sites (rbulk = 0.5r0). The gray
dashed line indicates the quantized value expected in the thermodynamic limit, σH/σ0 = 1/2, as dictated by the many-body Chern number.

FIG. 11. Properties of a system of N = 3 hardcore bosons in an elliptic box of Ns = 40 sites in the Harper-Hofstadter-Hubbard model. The
left column shows the characterization of the ground state through static signatures: (a) energy spectrum; (b) occupation of the single-particle
orbitals in the ground state, in increasing energy order (the line shows the orbital occupation for the N = 3 Laughlin state on the disk, where
the orbitals are sorted in increasing angular momentum); (c) Hall conductivity as extracted from the c.m. Hall drift upon releasing the ground
state into an ellipse with 100 sites and applying a force F =0.0001J/d . The bulk density ρbulk was evaluated as the average particle density
within a circle comprising eight sites (rbulk = 0.5r0). The gray dashed line indicates the quantized value expected in the thermodynamic limit,
σH/σ0 =1/2, as dictated by the many-body Chern number.
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5. The case of noninteracting fermions

We first calculate the ground state of N fermions in the
noninteracting Harper-Hofstadter model, within a circular box
containing Ns sites. This sets our initial state |�GS〉, for a given
flux density α. In our calculations, we set N ≈Ns/4 so that
the particle density is close to quarter filling ρ ≈1/4. We then
obtain the time evolution operator Ûramp describing the ramp,
during which both the force and the tunneling into the larger

lattice are activated; since the corresponding Hamiltonian is
explicitly time dependent, we discretize the time evolution in
small time steps t =0.1J−1; the full duration of the ramp
is τramp =15J−1. From this, we calculate the state at the end
of the ramp through |�ramp〉=Ûramp|�GS〉. Finally, the center-
of-mass of the system is monitored by calculating the time
evolution of the state after the ramp, |�(t )〉=Ûhold(t )|�ramp〉,
in the presence of the constant force.
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