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We discuss an implementation of the minimum error state discrimination measurement, originally introduced
by Helstrom [Quantum Detection and Estimation Theory (Academic Press, New York, 1976)]. In this implemen-
tation, instead of performing the optimal projective measurement directly on the system, it is first entangled
to an ancillary system and the measurement is performed on the ancilla. We show that, by an appropriate
choice of the entanglement transformation, the Helstrom bound can be attained. The advantage of this approach
is twofold. First, it provides an implementation when the optimal projective measurement cannot be directly
performed. For example, in the case of continuous variable states (binary and N phase-shifted coherent signals),
the available detection methods, photon counting and homodyning, are insufficient to perform the required
cat-state projection. In the case of symmetric states, the square-root measurement is optimal, but it is not easy
to perform directly for more than two states. Our approach provides a feasible alternative in both cases. Second,
the measurement is nondestructive from the point of view of the original system and one has a certain amount of
freedom in designing the post-measurement state, which can then be processed further.
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I. INTRODUCTION

The Helstrom bound is one of the first rigorous results in
quantum information theory. It provides the optimal solution
to the following problem [1–3]. Alice randomly prepares a
quantum system in one of two states, |ψ1〉 and |ψ2〉, and sends
the system to Bob. The states and their a priori probabilities
(or priors, in short), η1 and η2 (such that η1 + η2 = 1), are
also known to Bob, so he receives |ψi〉 with probability ηi.
Bob’s task is to guess, the best he can, the state of the system
every time he receives one, possibly aided by a measurement
he can perform on the system. This cannot be accomplished
without error if the states are not mutually orthogonal and
the task is to find the measurement that will identify the
state with the smallest error allowed by the laws of quantum
mechanics. The optimal error probability for minimum error
state discrimination strategy (MESD) is given by the Helstrom
bound [1,4],

PE = 1
2 (1 −

√
1 − 4η1η2|〈ψ1|ψ2〉|2). (1)

The impossibility to perfectly discriminate nonorthogo-
nal states is central to quantum communication schemes
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and, in particular, to security of quantum key distribution.
Various strategies have been proposed for discrimination of
nonorthogonal states [5–8]. The existing methods are remark-
ably successful for many state discrimination problems with
discrete variables. However, there are limitations that are
difficult to overcome in discriminating continuous variable
states. The limitations come from both the types of available
detectors and their efficiencies.

When an observer performs a standard projective mea-
surement (rank-1 projector) on a system, the state of the
system often “collapses” at the detector. The so-called post-
measurement state does not only become an eigenstate of
the projector but also it is often completely destroyed by
the detector such that no residual states escape from the
detector. The measurement is, thus, destructive, and it is
generally assumed that any information about the state before
the measurement is lost in the process (for an alternate view,
however, see [9]).

The purpose of this paper is to show that this commonly
accepted view of standard quantum measurements can be sig-
nificantly refined. We present an alternative derivation of the
Helstrom bound based on a nondestructive implementation
of positive-operator-valued measurements (POVMs). In this
implementation, Bob first entangles the system with an ancilla
qunit in such a way that the information carried by the system
is transferred to the ancilla, and a projective measurement is
then performed on the (discrete) ancilla.

In addition to offering a simple mathematical deriva-
tion of the Helstrom bound, this implementation also yields
two significant advances. First, it offers a solution to the
discrimination of systems for which the direct physical
implementation of the Helstrom measurement is not available.
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For example, when discriminating continuous variable states,
such as coherent states, it is notoriously difficult or outright
impossible to reach the Helstrom bound. The optimum mea-
surement would require projections to “cat states” but the only
available detections, photon counting and homodyning, are
insufficient to implement the required projections [10–12].
Based on the currently available detection techniques, bounds
less tight than Eq. (1) were established and some of them were
demonstrated in recent experiments [13–17]. Second, since
the measurement is on the ancilla and, thus, nondestructive
for the system, there is a certain amount of information left in
the post-measurement state if the measurement is not optimal
and this residual information can be extracted using subse-
quent measurements [18]. Therefore, it offers the flexibility
of implementing sequential measurements [19].

In this paper, we first show how to construct the nonde-
structive implementation for the discrimination of two pure
quantum states, and that it can saturate the Helstrom bound.
Next, we extend the scheme to the discrimination of two other
classes of quantum states for which the lower bound and
the Helstrom measurements are theoretically known, namely,
the discrimination of N real symmetric states (definitions see
below) and the discrimination of N phase-shifted coherent
states. For these two classes, we show that the lower bound of
the error probability, given by the optimal measurement oper-
ators [20,21], can be attained with the nondestructive scheme.
The scheme not only gives alternative mathematical construc-
tions of the minimum error probabilities, it also provides an
alternative approach for the physical implementations using
ancilla systems. We conclude with a summary and outlook.

II. NONDESTRUCTIVE IMPLEMENTATION

The nondestructive approach employs the Neumark exten-
sion [22], which has been routinely used in the implementa-
tion of POVMs, for the implementation of the optimal mea-
surement (some of the ideas of the present paper were already
introduced in Ref. [19], where a theory of sequential quantum
measurements has been developed). In this approach, instead
of performing the measurement directly on the state sent by
Alice, Bob first prepares an ancilla in some initial state |i〉 and
applies a unitary transformation that entangles the state he re-
ceived with the ancilla. In the general scenario, Alice encodes
her message using a set of N pure quantum states {|ψ j〉, j =
1, 2, . . . , N}, with prior probabilities {η j, j = 1, 2, . . . , N},
the unitary transformation between the signal and ancilla is

U |ψ j〉|i〉 =
N∑

k=1

c jk|ϕ jk〉|k〉 for j = 1, 2, . . . , N, (2)

where {|k〉, k = 1, 2, . . . , N} forms an orthonormal basis for
the ancilla space. The unitary is constructed in such a way
that the diagonal amplitudes c j j are as large as possible,
i.e., as permitted by the constraints imposed by the laws of
quantum mechanics. After the unitary transformation, Bob
performs standard projective quantum measurements on the
ancilla with the projectors {Pj = | j〉〈 j|, j = 1, 2, . . . , N} and
identifies his state with |ψ j〉 if Pj clicks. Hence, the probability
that Bob identifies the state correctly is Psucc = η j

∑N
j=1 |c j j |2,

where η j is the prior probability of state |ψ j〉, and the error
probability is

Perr = 1 − η j

N∑
j=1

|c j j |2. (3)

The task is minimize Perr with the constraints given by the
unitarity of transformation (2).

III. BINARY STATE DISCRIMINATION

For the discrimination of binary states, the Neumark ex-
pansion can be described by

U |ψ1〉|i〉 = √
p1|ϕ1〉|1〉 + √

r1|φ1〉|2〉,
U |ψ2〉|i〉 = √

r2|ϕ2〉|1〉 + √
p2|φ2〉|2〉. (4)

So, when Bob performs an orthogonal measurement on the
ancilla in the {|1〉, |2〉} basis, he will guess the input as |ψ1〉
if the outcome is |1〉 and |ψ2〉 if the outcome is |2〉. and, the
average probability of error is

Perr = η1r1 + η2r2. (5)

Let us first discuss the role of the post-measurement states.
Clearly, if Alice sent |ψ1〉 then |ϕ1〉 is the state of the system
after the measurement if the ancilla is found in |1〉 and |φ1〉 if
the ancilla is found in |2〉. Similarly, |ϕ2〉 and |φ2〉 are the post-
measurement states if |ψ2〉 was sent. When Bob finds the an-
cilla in |1〉, the state of the qubit is either |ϕ1〉 or |ϕ2〉. If these
states were different Bob could perform further discrimination
of the post-measurement states, gaining further information
on the initial preparation. So, his measurement would not be
optimal since discrimination of the post-measurement states
of the system would reduce the probability of error. From here
it follows that we must require |ϕ1〉 = |ϕ2〉 and |φ1〉 = |φ2〉,
for optimal discrimination.

Since the transformation is unitary we have p1 + r1 = 1
and p2 + r2 = 1, so we either correctly identify the state
or make an error. By taking the inner product of the two
equations in Eq. (4), we have

s ≡ 〈ψ1|ψ2〉 =
√

(1 − r1)r2 +
√

(1 − r2)r1, (6)

which is the constraint for the minimization of Perr. Before
proceeding to the general solution, we notice that for the
case of equal priors, η1 = η2 = 1

2 , no further optimization
is necessary. In this case the problem is symmetric in the
two inputs, so we can assume r1 = r2 = r and the above
equation immediately yields s = 2

√
(1 − r)r. Solving this

equation for r gives the average error probability r = 1
2 (1 −√

1 − |〈ψ1|ψ2〉|2) = PE. which is the Helstrom bound for
equal priors.

For arbitrary priors we use the method of Langrange mul-
tipliers. The quantity to be optimized becomes

Pλ
err = η1r1 + η2r2 + λ(s −

√
(1 − r1)r2 −

√
(1 − r2)r1).

(7)

We follow the usual procedure by taking the derivative of
the above expression with respect to λ, r1, and r2, respec-
tively, and set them equal to 0. The first one just yields the
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constraint (6), and the other two yield

η1

√
r1(1 − r1) = λ

2
(
√

(1 − r1)(1 − r2) − √
r1r2),

η2

√
r2(1 − r2) = λ

2
(
√

(1 − r1)(1 − r2) − √
r1r2).

The left-hand side (LHS) of the first equation is independent
of r2 and the LHS of the second equation is independent of
r1. For the two expressions to be equal (as it is for their right-
hand side), the LHS expressions must be a constant c that is
independent of both r1 and r2. Solving it together with the
constraint, we have c2 = η2

1η
2
2s2(1 − s2)/(1 − 4η1η2s2), and

r1,2 = 1

2

(
1 − 1 − 2η2,1s2√

1 − 4η1η2s2

)
. (8)

Using these optimized individual error probabilities in Eq. (5)
immediately yields the Helstrom bound, Eq. (1). It is worth
noting that not only the overall error probability but also the
individual error probabilities are exactly the same as those of
the optimal Helstrom measurement.

Here, we would like to point out the two main advantages
of the nondestructive scheme. First, it allows for a simple
derivation of the minimum error probability for any set of
pure binary signals, especially when the prior probabilities
are equal. Second, instead of implementing the Helstrom
measurement, which is complicated to construct for some
systems, systems with continuous variables, for example, it
just requires standard orthogonal projective measurements
on the ancilla. The complication is shifted to finding the
suitable easy-to-measure ancilla qunit and implementing the
optimal unitary operation U . For example, the signal states
can be entangled to discrete atomic ancilla via atom-light
interaction, or they can be entangled to different degrees of
freedom (or different fields) using nonlinear medium. A near
optimal discrimination of binary coherent signals via atom-
light interaction is demonstrated in Ref. [23].

IV. REAL SYMMETRIC STATE DISCRIMINATION

As our next example, we consider the case in which Alice
encodes her message using a set of N real symmetric states
{|ψ j〉, j = 1, 2, . . . , N}, with equal priors η j = 1/N . The term
“real symmetric” implies that the overlaps of any two of these
states are equal and real,

s ≡ 〈ψ j |ψk〉 = s∗ ∈ Re, for j �= k. (9)

These states are also referred to as the edges of a quantum
pyramid where s is the cosine of the angle of the pyramid
[24], or equidistance states [25]. In general, the set of N real
symmetric states used by Alice are linearly independent and
spans an N-dimensional Hilbert space, except in the limiting
case s = −1/(N − 1) when the dimensionality of the states
is reduced to N − 1 and the states are linearly dependent.
Other than its applications in quantum cryptography, the real
symmetric states also appear in many other applications of
quantum information science [26–28]. Thus, it is not only a
system of theoretical interest but also of practical significance.

Such discrimination problems have been intensively
studied both analytically and numerically. The optimal

measurement that minimizes the average error probability for
any set of real symmetric states is given by the well-known
square-root measurement (SRM) [20]. Although a closed-
form analytical expression of SRM is available, the optimal
measurements are generally challenging to implement as they
require projective measurements onto superpositions of the
entire set of N states [29]. Here, we apply the nondestructive
measurement scheme to the discrimination of an arbitrary set
of real symmetric quantum states and show that the minimum
error probability given by SRM can be attained with projec-
tive measurements on the ancilla system in a straightforward
manner.

Since the set of states to discriminate is real and symmetric,
there is no reason to introduce asymmetry for the unitary
operation. Furthermore, one can restrict the coefficients of the
ancilla state |i〉 to be real and having only real coefficients c jks.
Thus, we can set c j j = √

p and c jk = √
r for k �= j, where

p + (N − 1)r = 1 is required by the unitarity of the process.
Following our arguments of the previous example, optimal
discrimination is achieved when the post-measurement states
are identical for any given measurement outcome, because
no further information is contained in the post-measurement
states. Thus, the optimal discrimination requires

U |ψ1〉|i〉 = √
p|ϕ1〉|1〉 + √

r|ϕ2〉|2〉 + · · · + √
r|ϕN 〉|N〉,

U |ψ2〉|i〉 = √
r|ϕ1〉|1〉 + √

p|ϕ2〉|2〉 + · · · + √
r|ϕN 〉|N〉,

...

U |ψN 〉|i〉 = √
r|ϕ1〉|1〉 + √

r|ϕ2〉|2〉 + · · · + √
p|ϕN 〉|N〉.

(10)

In this case the error probability is Perr = 1 − p, and the task
is to maximize p.

In general, a set of N (N − 1)/2 equations obtained from
taking pairwise inner product of the N equations in Eq. (2)
serves as the constraints to minimize Perr, which could make
the optimization problem highly nontrivial. Fortunately, for
the unitary process described by Eq. (10), taking the inner
product of any two equations gives the same constraint, i.e.,
s = 2

√
pr + (N − 2)r. This yields a quadratic equation in p

to solve, and the solutions are

p = 1

N2
[
√

1 + s(N − 1) ± (N − 1)
√

1 − s]2. (11)

Both solutions are positive and the larger solution among the
two, which is the one with the “+” sign, gives the minimum
error probability,

Pmin
err (N, s) = 1 − 1

N2
[
√

1+s(N−1) + (N−1)
√

1−s]2. (12)

This simple analytical expression of Pmin
err for discrimination

among any set of N real symmetric states with transition am-
plitude s among the states is illustrated by Fig. 1. As expected,
it agrees with the expression obtained from SRM [20,24,31]
that requires the implementation of projective measure-
ments Pj = |μ j〉〈μ j |, where |μ j〉 = �−1/2|ψ j〉 with � =∑N

j=1 |ψ j〉〈ψ j |.
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FIG. 1. The minimum error probability Pmin
err (N, s) for discrim-

ination among N real symmetric states for N = 2, 3, 4, 5, 6 as a
function of the overlap between the states, s ≡ 〈ψ j |ψk〉 (for j �= k).

V. PHASE-SHIFTED COHERENT STATE
DISCRIMINATION

As our final example, we show that our scheme also
provides an easy implementation for the discrimination of
coherent-state signals obtained from phase shift keying—
another class of widely used systems for classical and quan-
tum communications [30,32] and implementations of quan-
tum information science [33–38]. Suppose Alice encodes
her information using a set of N coherent states {|ψ j〉 =
|e2π i j−1

N α〉, j = 1, 2, . . . , N} with equal priors. These coherent
states have the same intensity |α|2 and the information is
encoded in the symmetrically distributed phases. The binary
case covered by our first example has been well studied
analytically and the minimum error probability is given by
the Helstrom bound. For information encoded in a set of
more than two such states, the minimum error probability is
obtained with the optimum detection operators given by SRM.
The explicit analytical solutions for ternary and quaternary
phase-shifted signals have been derived in Ref. [21].

Following the procedure of the nondestructive measure-
ment scheme, Bob entangles the signal state with the ancilla
qunit with the unitary described in Eq. (2). The optimal uni-
tary should preserve the symmetry of the set of phase-shifted
coherent states. In the case of N = 3, discrimination among
{|α〉, |e2π i/3α〉, |e−2π i/3α〉}, the symmetry suggests

U

⎡
⎣|ψ1〉
|ψ2〉
|ψ3〉

⎤
⎦|i〉 =

⎡
⎣

√
p

√
reiθ √

re−iθ√
re−iθ √

p
√

reiθ√
reiθ √

re−iθ √
p

⎤
⎦

⎡
⎣|ϕ1〉|1〉
|ϕ2〉|2〉
|ϕ3〉|3〉

⎤
⎦,

(13)

for real probabilities p, r = (1 − p)/2 and angle θ . The aver-
age error probability Perr = 1 − p can be minimized with the
constraint given by the pairwise inner product of the equations
above,

s = e− 3
2 |α|2 ei

√
3

2 |α|2 = 2
√

pre−iθ + re2iθ . (14)

We now have an optimization problem of two real parameters
p and θ with two real constraints given by the real and
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FIG. 2. The error probability Pmin
err (N, |α|2) vs |α|2 for discrim-

ination among N phase-shifted coherent states. The solid curves
are the standard quantum limits achievable with perfect homodyne
detectors, the dashed curves show the minimum error probability
given by the optimum operator measurements [21], and the dots in-
dicate the minimum error probabilities given by the present optimum
nondestructive measurement scheme, which are the same as those
given by the dashed curves.

imaginary parts of the complex equation above. Let r1 =√
r cos θ and r2 = √

r sin θ , we have
√

p + 2(r1 + r2) = 1,

2
√

pr1 + r2
1 − r2

2 = e− 3
2 |α|2 cos (

√
3|α|2/2) (15)

−2
√

pr2 + 2r1r2 = e− 3
2 |α|2 sin (

√
3|α|2/2).

This is exactly the set of constraints for SRM. The analytical
solutions are explicitly given in Ref. [21].

In the case of quaternary signal set {|α〉, |iα〉, |−α〉,
|−iα〉}, the pairwise inner products of the signal states
are 〈β| − β〉 = e−2|β|2 and 〈β| ± iβ〉 = e−|β|2(1±i), for β =
{α, iα,−α,−iα}. This pairwise symmetry of the signal set
suggests that the optimal unitary coupling should have coef-
ficients c12 = c∗

14 = √
reiθ1 and independent coefficient c13 =√

r′eiθ2 . Thus, the optimal unitary operation, suggested by the
permutation symmetry of the signal set, is of the form,

U

⎡
⎢⎣

|ψ1〉
|ψ2〉
|ψ3〉
|ψ4〉

⎤
⎥⎦|i〉 =

⎡
⎢⎢⎣

√
p

√
reiθ1

√
r′eiθ2

√
re−iθ1√

re−iθ1
√

p
√

reiθ1
√

r′eiθ2√
r′eiθ2

√
re−iθ1

√
p

√
reiθ1√

reiθ1
√

r′eiθ2
√

re−iθ1
√

p

⎤
⎥⎥⎦

×

⎡
⎢⎣

|ϕ1〉|1〉
|ϕ2〉|2〉
|ϕ3〉|3〉
|ϕ4〉|4〉

⎤
⎥⎦. (16)

These yield the same set of equations to solve for the op-
timization of Perr (with real parameters p, r, r′, θ1, and θ2)
as for the SRM, which can be solved analytically with five
real constraints given by Eq. (16). The optimized minimum
error probabilities for ternary and quaternary phase-shifted
coherent signals are shown in Fig. 2.

For simplicity, only examples with equal priors were ex-
plicitly discussed above. The scheme, however, can be ex-
tended to the discrimination of N states with arbitrary priors.
The average error probability Perr = 1 − ∑N

j=1 η j |c j j |2 needs
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to be minimized under the N (N − 1)/2 constraints that result
by taking the pairwise inner products of the N equations in
Eq. (2). The coefficients c jk can, in principle, be obtained in
the same way as as before, although often only numerically.

VI. SUMMARY AND OUTLOOK

In summary, we propose a nondestructive implementation
of the Helstrom measurement which is optimal to discrimi-
nate two pure quantum states with minimum error. We also
demonstrate that the method can be extended to the implemen-
tation of SRMs for the discrimination between any set of real
symmetric quantum states or any set of phase-shifted coherent
states with equal prior probabilities. More importantly, it
is shown that, instead of constructing the complicated and
destructive SRMs on the signal states directly, the optimal
measurements can be implemented with simple projective
measurements on the ancilla and they are nondestructive from
the point of view of the system. The challenge is shifted from
the construction of optimum measurement operators on the
signal to the construction of optimal interaction between the
system and ancilla.

The choice of the ancilla system and the entangling opera-
tion would strongly depend on the properties of the specific
signals. Let us take the discrimination of binary coherent

signals for example. Using atom-light interaction, the infor-
mation encoded in the phase of the coherent states can be
transferred into the discrete quantum states of the ancilla
atom. This can be realized via the coupling between the light
field and the electric dipole moment of the atom [23]. In
general, this coupling can be between any levels of the an-
cilla atom (either on-resonantly or off-resonantly), moreover,
instead of using a real atom, the field can also be coupled
to an artificial atom such as a quantum dot. Alternatively,
in an optical setup using nonlinear medium, the information
encoded in the phases of the coherent states can be transferred
into another easy-to-measure degree of freedom, such as the
polarization, the angular momentum, or the position. One
can try to either realize the unitary entangling operation by
a proper single Hamiltonian or engineer it by a sequence of
suboperations.
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